first compiling version (MC,INtel,gcc)
This commit is contained in:
parent
9f8932c620
commit
b21109bdfe
|
@ -24,6 +24,9 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.4 2004/04/29 10:47:06 ganovelli
|
||||
some siyntax error corrected
|
||||
|
||||
Revision 1.3 2004/04/05 12:36:43 tarini
|
||||
unified version: PointBase version, with no guards "(N==3)"
|
||||
|
||||
|
@ -80,7 +83,7 @@ public:
|
|||
**/
|
||||
|
||||
inline PointBase () { };
|
||||
inline PointBase ( const S nv[N] );
|
||||
// inline PointBase ( const S nv[N] );
|
||||
|
||||
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
|
||||
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
|
||||
|
@ -96,8 +99,8 @@ public:
|
|||
{
|
||||
_v[0] = ScalarType(b[0]);
|
||||
_v[1] = ScalarType(b[1]);
|
||||
if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0};
|
||||
if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0};
|
||||
if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0;};
|
||||
if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0;};
|
||||
}
|
||||
|
||||
/// constructor for points with different scalar type and-or dimensionality
|
||||
|
@ -293,32 +296,38 @@ public:
|
|||
template <class S>
|
||||
class Point<2, S> : public PointBase<2,S> {
|
||||
public:
|
||||
typedef S ScalarType;
|
||||
typedef Point<2,S> PointType;
|
||||
|
||||
//@{
|
||||
/** @name Special members for 2D points. **/
|
||||
|
||||
/// default
|
||||
inline Point (){}
|
||||
|
||||
/// yx constructor
|
||||
inline Point ( const S a, const S b, const S c){
|
||||
inline Point ( const S a, const S b){
|
||||
_v[0]=a; _v[1]=b; };
|
||||
|
||||
/// unary orthogonal operator (2D equivalent of cross product)
|
||||
/// returns orthogonal vector (90 deg left)
|
||||
inline PointType operator ~ () const {
|
||||
inline Point operator ~ () const {
|
||||
return Point ( -_v[2], _v[1] );
|
||||
}
|
||||
|
||||
/// returns the angle with X axis (radiants, in [-PI, +PI] )
|
||||
inline S &Angle(){
|
||||
return Math::Atan2(_v[1],_v[0]);};
|
||||
inline ScalarType &Angle(){
|
||||
return math::Atan2(_v[1],_v[0]);}
|
||||
|
||||
/// transform the point in cartesian coords into polar coords
|
||||
inline PointType & ToPolar(){
|
||||
inline Point & ToPolar(){
|
||||
ScalarType t = Angle();
|
||||
_v[0] = Norm();
|
||||
_v[1] = t;
|
||||
return *this;}
|
||||
|
||||
/// transform the point in polar coords into cartesian coords
|
||||
inline PointType & ToCartesian() {
|
||||
inline Point & ToCartesian() {
|
||||
ScalarType l = _v[0];
|
||||
_v[0] = (ScalarType)(l*math::Cos(_v[1]));
|
||||
_v[1] = (ScalarType)(l*math::Sin(_v[1]));
|
||||
|
@ -384,35 +393,35 @@ public:
|
|||
template <class PT> static S SquaredNorm(const PT &p ) {
|
||||
return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) );}
|
||||
|
||||
inline S operator * ( PointType const & p ) const {
|
||||
inline S operator * ( Point const & p ) const {
|
||||
return ( _v[0]*p._v[0] + _v[1]*p._v[1]) ; }
|
||||
|
||||
inline bool operator == ( PointType const & p ) const {
|
||||
inline bool operator == ( Point const & p ) const {
|
||||
return _v[0]==p._v[0] && _v[1]==p._v[1] ;}
|
||||
|
||||
inline bool operator != ( PointType const & p ) const {
|
||||
inline bool operator != ( Point const & p ) const {
|
||||
return _v[0]!=p._v[0] || _v[1]!=p._v[1] ;}
|
||||
|
||||
inline bool operator < ( PointType const & p ) const{
|
||||
inline bool operator < ( Point const & p ) const{
|
||||
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<p._v[0]); }
|
||||
|
||||
inline bool operator > ( PointType const & p ) const {
|
||||
inline bool operator > ( Point const & p ) const {
|
||||
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); }
|
||||
|
||||
inline bool operator <= ( PointType const & p ) {
|
||||
inline bool operator <= ( Point const & p ) {
|
||||
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); }
|
||||
|
||||
inline bool operator >= ( PointType const & p ) const {
|
||||
inline bool operator >= ( Point const & p ) const {
|
||||
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
|
||||
|
||||
inline PointType & Normalize() {
|
||||
T n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n;} return *this;};
|
||||
inline Point & Normalize() {
|
||||
PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n;} return *this;};
|
||||
|
||||
template <class PT> static PointType & Normalize(const PT &p){
|
||||
T n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; }
|
||||
template <class PT> Point & Normalize(const PT &p){
|
||||
PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; }
|
||||
return *this;};
|
||||
|
||||
inline PointType & HomoNormalize(){
|
||||
inline Point & HomoNormalize(){
|
||||
if (_v[2]!=0.0) { _v[0] /= W(); W()=1.0; } return *this;};
|
||||
|
||||
inline S NormInfinity() const {
|
||||
|
@ -421,8 +430,8 @@ public:
|
|||
inline S NormOne() const {
|
||||
return math::Abs(_v[0])+ math::Abs(_v[1]);}
|
||||
|
||||
inline S operator % ( PointType const & p ) const {
|
||||
return _v[0] * p._v[1] - _v[1] * p._v[0] };
|
||||
inline S operator % ( Point const & p ) const {
|
||||
return _v[0] * p._v[1] - _v[1] * p._v[0]; }
|
||||
|
||||
inline S Sum() const {
|
||||
return _v[0]+_v[1];}
|
||||
|
@ -449,11 +458,16 @@ public:
|
|||
};
|
||||
|
||||
template <class S>
|
||||
class Point<3, S> : public PointBase<3,S> {
|
||||
class Point<3,S> : public PointBase<3,S> {
|
||||
public:
|
||||
typedef S ScalarType;
|
||||
typedef Point<3,S> PointType;
|
||||
|
||||
//@{
|
||||
/** @name Special members for 3D points. **/
|
||||
|
||||
/// default
|
||||
inline Point ():PointBase<3,S>(){}
|
||||
/// yxz constructor
|
||||
inline Point ( const S a, const S b, const S c){
|
||||
_v[0]=a; _v[1]=b; _v[2]=c; };
|
||||
|
@ -476,7 +490,7 @@ public:
|
|||
inline Point ( const S nv[3] ){
|
||||
_v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; };
|
||||
|
||||
inline Point operator + ( Point const & p) const {
|
||||
inline Point operator + ( Point const & p) const{
|
||||
return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2]); }
|
||||
|
||||
inline Point operator - ( Point const & p) const {
|
||||
|
@ -542,11 +556,14 @@ public:
|
|||
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
|
||||
|
||||
inline PointType & Normalize() {
|
||||
T n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; }
|
||||
S n = Norm();
|
||||
if(n!=0.0) {
|
||||
n=S(1.0)/n;
|
||||
_v[0]*=n; _v[1]*=n; _v[2]*=n; }
|
||||
return *this;};
|
||||
|
||||
template <class PT> static PointType & Normalize(const PT &p){
|
||||
T n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; }
|
||||
template <class PT> PointType & Normalize(const PT &p){
|
||||
S n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; }
|
||||
return *this;};
|
||||
|
||||
inline PointType & HomoNormalize(){
|
||||
|
@ -562,7 +579,7 @@ public:
|
|||
|
||||
inline S operator % ( PointType const & p ) const {
|
||||
S t = (*this)*p; /* Area, general formula */
|
||||
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) ) };
|
||||
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );};
|
||||
|
||||
inline S Sum() const {
|
||||
return _v[0]+_v[1]+_v[2];}
|
||||
|
@ -583,7 +600,7 @@ public:
|
|||
_v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; return *this; }
|
||||
|
||||
inline S StableDot ( const PointType & p ) const {
|
||||
T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2];
|
||||
PointType k0(_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2]);
|
||||
int exp0,exp1,exp2;
|
||||
frexp( double(k0), &exp0 );
|
||||
frexp( double(k1), &exp1 );
|
||||
|
@ -600,8 +617,13 @@ public:
|
|||
template <class S>
|
||||
class Point<4, S> : public PointBase<4,S> {
|
||||
public:
|
||||
typedef S ScalarType;
|
||||
typedef Point<4,S> PointType;
|
||||
//@{
|
||||
/** @name Special members for 4D points. **/
|
||||
/// default
|
||||
inline Point (){}
|
||||
|
||||
/// xyzw constructor
|
||||
//@}
|
||||
inline Point ( const S a, const S b, const S c, const S d){
|
||||
|
@ -624,6 +646,11 @@ public:
|
|||
inline Point operator * ( const S s ) const {
|
||||
return Point( _v[0]*s, _v[1]*s , _v[2]*s , _v[3]*s ); }
|
||||
|
||||
inline PointType operator ^ ( PointType const & p ) const {
|
||||
assert(0);
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline Point operator / ( const S s ) const {
|
||||
S t=1.0/s;
|
||||
return Point( _v[0]*t, _v[1]*t , _v[2]*t , _v[3]*t ); }
|
||||
|
@ -681,11 +708,11 @@ public:
|
|||
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
|
||||
|
||||
inline PointType & Normalize() {
|
||||
T n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; _v[3]*=n; }
|
||||
PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; _v[3]*=n; }
|
||||
return *this;};
|
||||
|
||||
template <class PT> static PointType & Normalize(const PT &p){
|
||||
T n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; V(3)*=n; }
|
||||
template <class PT> PointType & Normalize(const PT &p){
|
||||
PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; V(3)*=n; }
|
||||
return *this;};
|
||||
|
||||
inline PointType & HomoNormalize(){
|
||||
|
@ -701,7 +728,7 @@ public:
|
|||
|
||||
inline S operator % ( PointType const & p ) const {
|
||||
S t = (*this)*p; /* Area, general formula */
|
||||
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) ) };
|
||||
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );};
|
||||
|
||||
inline S Sum() const {
|
||||
return _v[0]+_v[1]+_v[2]+_v[3];}
|
||||
|
@ -740,7 +767,7 @@ public:
|
|||
|
||||
|
||||
template <class S>
|
||||
inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 )
|
||||
inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 )
|
||||
{
|
||||
S w = p1.Norm()*p2.Norm();
|
||||
if(w==0) return -1;
|
||||
|
@ -752,7 +779,7 @@ inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 )
|
|||
|
||||
// versione uguale alla precedente ma che assume che i due vettori siano unitari
|
||||
template <class S>
|
||||
inline S AngleN( Point<3,S> const & p1, Point<3,S> const & p2 )
|
||||
inline S AngleN( Point<3,S> const & p1, Point<3,S> const & p2 )
|
||||
{
|
||||
S w = p1*p2;
|
||||
if(w>1)
|
||||
|
@ -794,32 +821,56 @@ inline S SquaredDistance( Point<N,S> const & p1,Point<N,S> const & p2 )
|
|||
return (p1-p2).SquaredNorm();
|
||||
}
|
||||
|
||||
typedef Point<2,short> Point2s;
|
||||
typedef Point<2,int> Point2i;
|
||||
typedef Point<2,float> Point2f;
|
||||
typedef Point<2,double> Point2d;
|
||||
typedef Point<2,short> Vector2s;
|
||||
typedef Point<2,int> Vector2i;
|
||||
typedef Point<2,float> Vector2f;
|
||||
typedef Point<2,double> Vector2d;
|
||||
|
||||
typedef Point<3,short> Point3s;
|
||||
typedef Point<3,int> Point3i;
|
||||
typedef Point<3,float> Point3f;
|
||||
typedef Point<3,double> Point3d;
|
||||
typedef Point<3,short> Vector3s;
|
||||
typedef Point<3,int> Vector3i;
|
||||
typedef Point<3,float> Vector3f;
|
||||
typedef Point<3,double> Vector3d;
|
||||
template <typename S>
|
||||
struct Point2:public Point<2,S>{
|
||||
inline Point2(){};
|
||||
inline Point2(Point<2,S> const & p):Point<2,S>(p){} ;
|
||||
inline Point2( const S a, const S b):Point<2,S>(a,b){};
|
||||
};
|
||||
|
||||
typedef Point<4,short> Point4s;
|
||||
typedef Point<4,int> Point4i;
|
||||
typedef Point<4,float> Point4f;
|
||||
typedef Point<4,double> Point4d;
|
||||
typedef Point<4,short> Vector4s;
|
||||
typedef Point<4,int> Vector4i;
|
||||
typedef Point<4,float> Vector4f;
|
||||
typedef Point<4,double> Vector4d;
|
||||
template <typename S>
|
||||
struct Point3:public Point<3,S> {
|
||||
inline Point3(){};
|
||||
inline Point3(Point<3,S> const & p):Point<3,S> (p){}
|
||||
inline Point3( const S a, const S b, const S c):Point<3,S> (a,b,c){};
|
||||
};
|
||||
|
||||
|
||||
template <typename S>
|
||||
struct Point4:public Point<4,S>{
|
||||
inline Point4(){};
|
||||
inline Point4(Point<4,S> const & p):Point<4,S>(p){}
|
||||
inline Point4( const S a, const S b, const S c, const S d):Point<4,S>(a,b,c,d){};
|
||||
};
|
||||
|
||||
typedef Point2<short> Point2s;
|
||||
typedef Point2<int> Point2i;
|
||||
typedef Point2<float> Point2f;
|
||||
typedef Point2<double> Point2d;
|
||||
typedef Point2<short> Vector2s;
|
||||
typedef Point2<int> Vector2i;
|
||||
typedef Point2<float> Vector2f;
|
||||
typedef Point2<double> Vector2d;
|
||||
|
||||
typedef Point3<short> Point3s;
|
||||
typedef Point3<int> Point3i;
|
||||
typedef Point3<float> Point3f;
|
||||
typedef Point3<double> Point3d;
|
||||
typedef Point3<short> Vector3s;
|
||||
typedef Point3<int> Vector3i;
|
||||
typedef Point3<float> Vector3f;
|
||||
typedef Point3<double> Vector3d;
|
||||
|
||||
|
||||
typedef Point4<short> Point4s;
|
||||
typedef Point4<int> Point4i;
|
||||
typedef Point4<float> Point4f;
|
||||
typedef Point4<double> Point4d;
|
||||
typedef Point4<short> Vector4s;
|
||||
typedef Point4<int> Vector4i;
|
||||
typedef Point4<float> Vector4f;
|
||||
typedef Point4<double> Vector4d;
|
||||
|
||||
/*@}*/
|
||||
|
||||
|
|
Loading…
Reference in New Issue