first compiling version (MC,INtel,gcc)

This commit is contained in:
ganovelli 2004-10-20 16:45:21 +00:00
parent 9f8932c620
commit b21109bdfe
1 changed files with 111 additions and 60 deletions

View File

@ -24,6 +24,9 @@
History History
$Log: not supported by cvs2svn $ $Log: not supported by cvs2svn $
Revision 1.4 2004/04/29 10:47:06 ganovelli
some siyntax error corrected
Revision 1.3 2004/04/05 12:36:43 tarini Revision 1.3 2004/04/05 12:36:43 tarini
unified version: PointBase version, with no guards "(N==3)" unified version: PointBase version, with no guards "(N==3)"
@ -80,7 +83,7 @@ public:
**/ **/
inline PointBase () { }; inline PointBase () { };
inline PointBase ( const S nv[N] ); // inline PointBase ( const S nv[N] );
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4 /// Useful for managing in a consistent way object that could have point2 / point3 / point4
@ -96,8 +99,8 @@ public:
{ {
_v[0] = ScalarType(b[0]); _v[0] = ScalarType(b[0]);
_v[1] = ScalarType(b[1]); _v[1] = ScalarType(b[1]);
if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0}; if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0;};
if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0}; if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0;};
} }
/// constructor for points with different scalar type and-or dimensionality /// constructor for points with different scalar type and-or dimensionality
@ -293,32 +296,38 @@ public:
template <class S> template <class S>
class Point<2, S> : public PointBase<2,S> { class Point<2, S> : public PointBase<2,S> {
public: public:
typedef S ScalarType;
typedef Point<2,S> PointType;
//@{ //@{
/** @name Special members for 2D points. **/ /** @name Special members for 2D points. **/
/// default
inline Point (){}
/// yx constructor /// yx constructor
inline Point ( const S a, const S b, const S c){ inline Point ( const S a, const S b){
_v[0]=a; _v[1]=b; }; _v[0]=a; _v[1]=b; };
/// unary orthogonal operator (2D equivalent of cross product) /// unary orthogonal operator (2D equivalent of cross product)
/// returns orthogonal vector (90 deg left) /// returns orthogonal vector (90 deg left)
inline PointType operator ~ () const { inline Point operator ~ () const {
return Point ( -_v[2], _v[1] ); return Point ( -_v[2], _v[1] );
} }
/// returns the angle with X axis (radiants, in [-PI, +PI] ) /// returns the angle with X axis (radiants, in [-PI, +PI] )
inline S &Angle(){ inline ScalarType &Angle(){
return Math::Atan2(_v[1],_v[0]);}; return math::Atan2(_v[1],_v[0]);}
/// transform the point in cartesian coords into polar coords /// transform the point in cartesian coords into polar coords
inline PointType & ToPolar(){ inline Point & ToPolar(){
ScalarType t = Angle(); ScalarType t = Angle();
_v[0] = Norm(); _v[0] = Norm();
_v[1] = t; _v[1] = t;
return *this;} return *this;}
/// transform the point in polar coords into cartesian coords /// transform the point in polar coords into cartesian coords
inline PointType & ToCartesian() { inline Point & ToCartesian() {
ScalarType l = _v[0]; ScalarType l = _v[0];
_v[0] = (ScalarType)(l*math::Cos(_v[1])); _v[0] = (ScalarType)(l*math::Cos(_v[1]));
_v[1] = (ScalarType)(l*math::Sin(_v[1])); _v[1] = (ScalarType)(l*math::Sin(_v[1]));
@ -384,35 +393,35 @@ public:
template <class PT> static S SquaredNorm(const PT &p ) { template <class PT> static S SquaredNorm(const PT &p ) {
return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) );} return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) );}
inline S operator * ( PointType const & p ) const { inline S operator * ( Point const & p ) const {
return ( _v[0]*p._v[0] + _v[1]*p._v[1]) ; } return ( _v[0]*p._v[0] + _v[1]*p._v[1]) ; }
inline bool operator == ( PointType const & p ) const { inline bool operator == ( Point const & p ) const {
return _v[0]==p._v[0] && _v[1]==p._v[1] ;} return _v[0]==p._v[0] && _v[1]==p._v[1] ;}
inline bool operator != ( PointType const & p ) const { inline bool operator != ( Point const & p ) const {
return _v[0]!=p._v[0] || _v[1]!=p._v[1] ;} return _v[0]!=p._v[0] || _v[1]!=p._v[1] ;}
inline bool operator < ( PointType const & p ) const{ inline bool operator < ( Point const & p ) const{
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<p._v[0]); } return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<p._v[0]); }
inline bool operator > ( PointType const & p ) const { inline bool operator > ( Point const & p ) const {
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); } return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); }
inline bool operator <= ( PointType const & p ) { inline bool operator <= ( Point const & p ) {
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); } return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); }
inline bool operator >= ( PointType const & p ) const { inline bool operator >= ( Point const & p ) const {
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); } return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
inline PointType & Normalize() { inline Point & Normalize() {
T n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n;} return *this;}; PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n;} return *this;};
template <class PT> static PointType & Normalize(const PT &p){ template <class PT> Point & Normalize(const PT &p){
T n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; } PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; }
return *this;}; return *this;};
inline PointType & HomoNormalize(){ inline Point & HomoNormalize(){
if (_v[2]!=0.0) { _v[0] /= W(); W()=1.0; } return *this;}; if (_v[2]!=0.0) { _v[0] /= W(); W()=1.0; } return *this;};
inline S NormInfinity() const { inline S NormInfinity() const {
@ -421,8 +430,8 @@ public:
inline S NormOne() const { inline S NormOne() const {
return math::Abs(_v[0])+ math::Abs(_v[1]);} return math::Abs(_v[0])+ math::Abs(_v[1]);}
inline S operator % ( PointType const & p ) const { inline S operator % ( Point const & p ) const {
return _v[0] * p._v[1] - _v[1] * p._v[0] }; return _v[0] * p._v[1] - _v[1] * p._v[0]; }
inline S Sum() const { inline S Sum() const {
return _v[0]+_v[1];} return _v[0]+_v[1];}
@ -449,11 +458,16 @@ public:
}; };
template <class S> template <class S>
class Point<3, S> : public PointBase<3,S> { class Point<3,S> : public PointBase<3,S> {
public: public:
typedef S ScalarType;
typedef Point<3,S> PointType;
//@{ //@{
/** @name Special members for 3D points. **/ /** @name Special members for 3D points. **/
/// default
inline Point ():PointBase<3,S>(){}
/// yxz constructor /// yxz constructor
inline Point ( const S a, const S b, const S c){ inline Point ( const S a, const S b, const S c){
_v[0]=a; _v[1]=b; _v[2]=c; }; _v[0]=a; _v[1]=b; _v[2]=c; };
@ -476,7 +490,7 @@ public:
inline Point ( const S nv[3] ){ inline Point ( const S nv[3] ){
_v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; }; _v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; };
inline Point operator + ( Point const & p) const { inline Point operator + ( Point const & p) const{
return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2]); } return Point( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2]); }
inline Point operator - ( Point const & p) const { inline Point operator - ( Point const & p) const {
@ -542,11 +556,14 @@ public:
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); } (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
inline PointType & Normalize() { inline PointType & Normalize() {
T n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; } S n = Norm();
if(n!=0.0) {
n=S(1.0)/n;
_v[0]*=n; _v[1]*=n; _v[2]*=n; }
return *this;}; return *this;};
template <class PT> static PointType & Normalize(const PT &p){ template <class PT> PointType & Normalize(const PT &p){
T n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; } S n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; }
return *this;}; return *this;};
inline PointType & HomoNormalize(){ inline PointType & HomoNormalize(){
@ -562,7 +579,7 @@ public:
inline S operator % ( PointType const & p ) const { inline S operator % ( PointType const & p ) const {
S t = (*this)*p; /* Area, general formula */ S t = (*this)*p; /* Area, general formula */
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) ) }; return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );};
inline S Sum() const { inline S Sum() const {
return _v[0]+_v[1]+_v[2];} return _v[0]+_v[1]+_v[2];}
@ -583,7 +600,7 @@ public:
_v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; return *this; } _v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; return *this; }
inline S StableDot ( const PointType & p ) const { inline S StableDot ( const PointType & p ) const {
T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2]; PointType k0(_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2]);
int exp0,exp1,exp2; int exp0,exp1,exp2;
frexp( double(k0), &exp0 ); frexp( double(k0), &exp0 );
frexp( double(k1), &exp1 ); frexp( double(k1), &exp1 );
@ -600,8 +617,13 @@ public:
template <class S> template <class S>
class Point<4, S> : public PointBase<4,S> { class Point<4, S> : public PointBase<4,S> {
public: public:
typedef S ScalarType;
typedef Point<4,S> PointType;
//@{ //@{
/** @name Special members for 4D points. **/ /** @name Special members for 4D points. **/
/// default
inline Point (){}
/// xyzw constructor /// xyzw constructor
//@} //@}
inline Point ( const S a, const S b, const S c, const S d){ inline Point ( const S a, const S b, const S c, const S d){
@ -624,6 +646,11 @@ public:
inline Point operator * ( const S s ) const { inline Point operator * ( const S s ) const {
return Point( _v[0]*s, _v[1]*s , _v[2]*s , _v[3]*s ); } return Point( _v[0]*s, _v[1]*s , _v[2]*s , _v[3]*s ); }
inline PointType operator ^ ( PointType const & p ) const {
assert(0);
return *this;
}
inline Point operator / ( const S s ) const { inline Point operator / ( const S s ) const {
S t=1.0/s; S t=1.0/s;
return Point( _v[0]*t, _v[1]*t , _v[2]*t , _v[3]*t ); } return Point( _v[0]*t, _v[1]*t , _v[2]*t , _v[3]*t ); }
@ -681,11 +708,11 @@ public:
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); } (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
inline PointType & Normalize() { inline PointType & Normalize() {
T n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; _v[3]*=n; } PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; _v[3]*=n; }
return *this;}; return *this;};
template <class PT> static PointType & Normalize(const PT &p){ template <class PT> PointType & Normalize(const PT &p){
T n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; V(3)*=n; } PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; V(3)*=n; }
return *this;}; return *this;};
inline PointType & HomoNormalize(){ inline PointType & HomoNormalize(){
@ -701,7 +728,7 @@ public:
inline S operator % ( PointType const & p ) const { inline S operator % ( PointType const & p ) const {
S t = (*this)*p; /* Area, general formula */ S t = (*this)*p; /* Area, general formula */
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) ) }; return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );};
inline S Sum() const { inline S Sum() const {
return _v[0]+_v[1]+_v[2]+_v[3];} return _v[0]+_v[1]+_v[2]+_v[3];}
@ -740,7 +767,7 @@ public:
template <class S> template <class S>
inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 ) inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 )
{ {
S w = p1.Norm()*p2.Norm(); S w = p1.Norm()*p2.Norm();
if(w==0) return -1; if(w==0) return -1;
@ -752,7 +779,7 @@ inline S Angle( Point<3,S> const & p1, Point<3,S> const & p2 )
// versione uguale alla precedente ma che assume che i due vettori siano unitari // versione uguale alla precedente ma che assume che i due vettori siano unitari
template <class S> template <class S>
inline S AngleN( Point<3,S> const & p1, Point<3,S> const & p2 ) inline S AngleN( Point<3,S> const & p1, Point<3,S> const & p2 )
{ {
S w = p1*p2; S w = p1*p2;
if(w>1) if(w>1)
@ -794,32 +821,56 @@ inline S SquaredDistance( Point<N,S> const & p1,Point<N,S> const & p2 )
return (p1-p2).SquaredNorm(); return (p1-p2).SquaredNorm();
} }
typedef Point<2,short> Point2s;
typedef Point<2,int> Point2i;
typedef Point<2,float> Point2f;
typedef Point<2,double> Point2d;
typedef Point<2,short> Vector2s;
typedef Point<2,int> Vector2i;
typedef Point<2,float> Vector2f;
typedef Point<2,double> Vector2d;
typedef Point<3,short> Point3s; template <typename S>
typedef Point<3,int> Point3i; struct Point2:public Point<2,S>{
typedef Point<3,float> Point3f; inline Point2(){};
typedef Point<3,double> Point3d; inline Point2(Point<2,S> const & p):Point<2,S>(p){} ;
typedef Point<3,short> Vector3s; inline Point2( const S a, const S b):Point<2,S>(a,b){};
typedef Point<3,int> Vector3i; };
typedef Point<3,float> Vector3f;
typedef Point<3,double> Vector3d;
typedef Point<4,short> Point4s; template <typename S>
typedef Point<4,int> Point4i; struct Point3:public Point<3,S> {
typedef Point<4,float> Point4f; inline Point3(){};
typedef Point<4,double> Point4d; inline Point3(Point<3,S> const & p):Point<3,S> (p){}
typedef Point<4,short> Vector4s; inline Point3( const S a, const S b, const S c):Point<3,S> (a,b,c){};
typedef Point<4,int> Vector4i; };
typedef Point<4,float> Vector4f;
typedef Point<4,double> Vector4d;
template <typename S>
struct Point4:public Point<4,S>{
inline Point4(){};
inline Point4(Point<4,S> const & p):Point<4,S>(p){}
inline Point4( const S a, const S b, const S c, const S d):Point<4,S>(a,b,c,d){};
};
typedef Point2<short> Point2s;
typedef Point2<int> Point2i;
typedef Point2<float> Point2f;
typedef Point2<double> Point2d;
typedef Point2<short> Vector2s;
typedef Point2<int> Vector2i;
typedef Point2<float> Vector2f;
typedef Point2<double> Vector2d;
typedef Point3<short> Point3s;
typedef Point3<int> Point3i;
typedef Point3<float> Point3f;
typedef Point3<double> Point3d;
typedef Point3<short> Vector3s;
typedef Point3<int> Vector3i;
typedef Point3<float> Vector3f;
typedef Point3<double> Vector3d;
typedef Point4<short> Point4s;
typedef Point4<int> Point4i;
typedef Point4<float> Point4f;
typedef Point4<double> Point4d;
typedef Point4<short> Vector4s;
typedef Point4<int> Vector4i;
typedef Point4<float> Vector4f;
typedef Point4<double> Vector4d;
/*@}*/ /*@}*/