First working version

This commit is contained in:
Paolo Cignoni 2005-12-12 12:08:30 +00:00
parent 9f4c253caf
commit b6f13e7eb1
1 changed files with 41 additions and 358 deletions

View File

@ -24,6 +24,9 @@
History
$Log: not supported by cvs2svn $
Revision 1.1 2005/11/21 15:58:12 cignoni
First Release (not working!)
Revision 1.13 2005/11/17 00:42:03 cignoni
****************************************************************************/
@ -45,14 +48,28 @@ journal of graphics tools, volume 1, number 2, 1996
*/
#include <vcg/math/matrix33.h>
template <class MESH>
#include <vcg/complex/trimesh/update/normal.h>
namespace vcg
{
namespace tri
{
template <class InertiaMeshType>
class Inertia
{
typedef InertiaMeshType MeshType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
private :
enum {X=0,Y=1,Z=2};
inline MESH::scalar_type SQR(MESH::scalar_type &x) const { return x*x;}
inline MESH::scalar_type CUBE(MESH::scalar_type &x) const { return x*x*x;}
inline ScalarType SQR(ScalarType &x) const { return x*x;}
inline ScalarType CUBE(ScalarType &x) const { return x*x*x;}
int A; /* alpha */
int B; /* beta */
@ -70,7 +87,7 @@ private :
public:
/* compute various integrations over projection of face */
void compProjectionIntegrals(MESH::face_type &f)
void compProjectionIntegrals(FaceType &f)
{
double a0, a1, da;
double b0, b1, db;
@ -127,10 +144,10 @@ public:
}
void CompFaceIntegrals(MESH::face_type &f)
void CompFaceIntegrals(FaceType &f)
{
MESH::vectorial_type n;
MESH::scalar_type w;
Point3<ScalarType> n;
ScalarType w;
double k1, k2, k3, k4;
compProjectionIntegrals(f);
@ -162,17 +179,17 @@ void CompFaceIntegrals(MESH::face_type &f)
}
void Compute(MESH &m)
void Compute(MeshType &m)
{
//
tri::UpdateNormals<MeshType>::PerFaceNormalized(m);
double nx, ny, nz;
T0 = T1[X] = T1[Y] = T1[Z]
= T2[X] = T2[Y] = T2[Z]
= TP[X] = TP[Y] = TP[Z] = 0;
MESH::face_iterator fi;
FaceIterator fi;
for (fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) {
MESH::face_type &f=(*fi);
FaceType &f=(*fi);
nx = fabs(f.N()[0]);
ny = fabs(f.N()[1]);
@ -202,21 +219,21 @@ void Compute(MESH &m)
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
}
MESH::scalar_type Mass()
ScalarType Mass()
{
return T0;
}
MESH::vectorial_type CenterOfMass()
Point3<ScalarType> CenterOfMass()
{
MESH::vectorial_type r;
Point3<ScalarType> r;
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
return r;
}
void InertiaTensor(Matrix33<MESH::scalar_type> &J ){
MESH::vectorial_type r;
void InertiaTensor(Matrix33<ScalarType> &J ){
Point3<ScalarType> r;
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
@ -236,10 +253,10 @@ void InertiaTensor(Matrix33<MESH::scalar_type> &J ){
J[Z][X] = J[X][Z] += T0 * r[Z] * r[X];
}
void InertiaTensor(Matrix44<MESH::scalar_type> &J )
void InertiaTensor(Matrix44<ScalarType> &J )
{
J.SetIdentity();
MESH::vectorial_type r;
Point3<ScalarType> r;
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
@ -263,9 +280,9 @@ void InertiaTensor(Matrix44<MESH::scalar_type> &J )
// Calcola autovalori ed autovettori dell'inertia tensor.
// Gli autovettori fanno una rotmatrix che se applicata mette l'oggetto secondo gli assi id minima/max inerzia.
void InertiaTensorEigen(Matrix44<MESH::scalar_type> &EV, Point4<MESH::scalar_type> &ev )
void InertiaTensorEigen(Matrix44<ScalarType> &EV, Point4<ScalarType> &ev )
{
Matrix44<MESH::scalar_type> it;
Matrix44<ScalarType> it;
InertiaTensor(it);
Matrix44d EVd,ITd;ITd.Import(it);
Point4d evd; evd.Import(ev);
@ -275,343 +292,9 @@ void InertiaTensorEigen(Matrix44<MESH::scalar_type> &EV, Point4<MESH::scalar_typ
ev.Import(evd);
}
};
}; // end class Inertia
} // end namespace tri
} // end namespace vcg
#if 0
/*
============================================================================
constants
============================================================================
*/
#define MAX_VERTS 100 /* maximum number of polyhedral vertices */
#define MAX_FACES 100 /* maximum number of polyhedral faces */
#define MAX_POLYGON_SZ 10 /* maximum number of verts per polygonal face */
#define X 0
#define Y 1
#define Z 2
/*
============================================================================
macros
============================================================================
*/
inline MESH:scalar_Type SQR(MESH:scalar_Type &x) const { return x*x;}
inline MESH:scalar_Type CUBE(MESH:scalar_Type &x) const { return x*x*x;}
//#define CUBE(x) ((x)*(x)*(x))
/*
============================================================================
data structures
============================================================================
*/
typedef struct {
int numVerts;
double norm[3];
double w;
int verts[MAX_POLYGON_SZ];
struct polyhedron *poly;
} FACE;
typedef struct polyhedron {
int numVerts, numFaces;
double verts[MAX_VERTS][3];
FACE faces[MAX_FACES];
} POLYHEDRON;
/*
============================================================================
globals
============================================================================
*/
static int A; /* alpha */
static int B; /* beta */
static int C; /* gamma */
/* projection integrals */
static double P1, Pa, Pb, Paa, Pab, Pbb, Paaa, Paab, Pabb, Pbbb;
/* face integrals */
static double Fa, Fb, Fc, Faa, Fbb, Fcc, Faaa, Fbbb, Fccc, Faab, Fbbc, Fcca;
/* volume integrals */
static double T0, T1[3], T2[3], TP[3];
/*
============================================================================
read in a polyhedron
============================================================================
*/
void readPolyhedron(char *name, POLYHEDRON *p)
{
FILE *fp;
char line[200], *c;
int i, j, n;
double dx1, dy1, dz1, dx2, dy2, dz2, nx, ny, nz, len;
FACE *f;
if (!(fp = fopen(name, "r"))) {
printf("i/o error\n");
exit(1);
}
fscanf(fp, "%d", &p->numVerts);
printf("Reading in %d vertices\n", p->numVerts);
for (i = 0; i < p->numVerts; i++)
fscanf(fp, "%lf %lf %lf",
&p->verts[i][X], &p->verts[i][Y], &p->verts[i][Z]);
fscanf(fp, "%d", &p->numFaces);
printf("Reading in %d faces\n", p->numFaces);
for (i = 0; i < p->numFaces; i++) {
f = &p->faces[i];
f->poly = p;
fscanf(fp, "%d", &f->numVerts);
for (j = 0; j < f->numVerts; j++) fscanf(fp, "%d", &f->verts[j]);
/* compute face normal and offset w from first 3 vertices */
dx1 = p->verts[f->verts[1]][X] - p->verts[f->verts[0]][X];
dy1 = p->verts[f->verts[1]][Y] - p->verts[f->verts[0]][Y];
dz1 = p->verts[f->verts[1]][Z] - p->verts[f->verts[0]][Z];
dx2 = p->verts[f->verts[2]][X] - p->verts[f->verts[1]][X];
dy2 = p->verts[f->verts[2]][Y] - p->verts[f->verts[1]][Y];
dz2 = p->verts[f->verts[2]][Z] - p->verts[f->verts[1]][Z];
nx = dy1 * dz2 - dy2 * dz1;
ny = dz1 * dx2 - dz2 * dx1;
nz = dx1 * dy2 - dx2 * dy1;
len = sqrt(nx * nx + ny * ny + nz * nz);
f->norm[X] = nx / len;
f->norm[Y] = ny / len;
f->norm[Z] = nz / len;
f->w = - f->norm[X] * p->verts[f->verts[0]][X]
- f->norm[Y] * p->verts[f->verts[0]][Y]
- f->norm[Z] * p->verts[f->verts[0]][Z];
}
fclose(fp);
}
/*
============================================================================
compute mass properties
============================================================================
*/
/* compute various integrations over projection of face */
void compProjectionIntegrals(FACE *f)
{
double a0, a1, da;
double b0, b1, db;
double a0_2, a0_3, a0_4, b0_2, b0_3, b0_4;
double a1_2, a1_3, b1_2, b1_3;
double C1, Ca, Caa, Caaa, Cb, Cbb, Cbbb;
double Cab, Kab, Caab, Kaab, Cabb, Kabb;
int i;
P1 = Pa = Pb = Paa = Pab = Pbb = Paaa = Paab = Pabb = Pbbb = 0.0;
for (i = 0; i < f->numVerts; i++) {
a0 = f->poly->verts[f->verts[i]][A];
b0 = f->poly->verts[f->verts[i]][B];
a1 = f->poly->verts[f->verts[(i+1) % f->numVerts]][A];
b1 = f->poly->verts[f->verts[(i+1) % f->numVerts]][B];
da = a1 - a0;
db = b1 - b0;
a0_2 = a0 * a0; a0_3 = a0_2 * a0; a0_4 = a0_3 * a0;
b0_2 = b0 * b0; b0_3 = b0_2 * b0; b0_4 = b0_3 * b0;
a1_2 = a1 * a1; a1_3 = a1_2 * a1;
b1_2 = b1 * b1; b1_3 = b1_2 * b1;
C1 = a1 + a0;
Ca = a1*C1 + a0_2; Caa = a1*Ca + a0_3; Caaa = a1*Caa + a0_4;
Cb = b1*(b1 + b0) + b0_2; Cbb = b1*Cb + b0_3; Cbbb = b1*Cbb + b0_4;
Cab = 3*a1_2 + 2*a1*a0 + a0_2; Kab = a1_2 + 2*a1*a0 + 3*a0_2;
Caab = a0*Cab + 4*a1_3; Kaab = a1*Kab + 4*a0_3;
Cabb = 4*b1_3 + 3*b1_2*b0 + 2*b1*b0_2 + b0_3;
Kabb = b1_3 + 2*b1_2*b0 + 3*b1*b0_2 + 4*b0_3;
P1 += db*C1;
Pa += db*Ca;
Paa += db*Caa;
Paaa += db*Caaa;
Pb += da*Cb;
Pbb += da*Cbb;
Pbbb += da*Cbbb;
Pab += db*(b1*Cab + b0*Kab);
Paab += db*(b1*Caab + b0*Kaab);
Pabb += da*(a1*Cabb + a0*Kabb);
}
P1 /= 2.0;
Pa /= 6.0;
Paa /= 12.0;
Paaa /= 20.0;
Pb /= -6.0;
Pbb /= -12.0;
Pbbb /= -20.0;
Pab /= 24.0;
Paab /= 60.0;
Pabb /= -60.0;
}
compFaceIntegrals(FACE *f)
{
double *n, w;
double k1, k2, k3, k4;
compProjectionIntegrals(f);
w = f->w;
n = f->norm;
k1 = 1 / n[C]; k2 = k1 * k1; k3 = k2 * k1; k4 = k3 * k1;
Fa = k1 * Pa;
Fb = k1 * Pb;
Fc = -k2 * (n[A]*Pa + n[B]*Pb + w*P1);
Faa = k1 * Paa;
Fbb = k1 * Pbb;
Fcc = k3 * (SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb
+ w*(2*(n[A]*Pa + n[B]*Pb) + w*P1));
Faaa = k1 * Paaa;
Fbbb = k1 * Pbbb;
Fccc = -k4 * (CUBE(n[A])*Paaa + 3*SQR(n[A])*n[B]*Paab
+ 3*n[A]*SQR(n[B])*Pabb + CUBE(n[B])*Pbbb
+ 3*w*(SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb)
+ w*w*(3*(n[A]*Pa + n[B]*Pb) + w*P1));
Faab = k1 * Paab;
Fbbc = -k2 * (n[A]*Pabb + n[B]*Pbbb + w*Pbb);
Fcca = k3 * (SQR(n[A])*Paaa + 2*n[A]*n[B]*Paab + SQR(n[B])*Pabb
+ w*(2*(n[A]*Paa + n[B]*Pab) + w*Pa));
}
void CompVolumeIntegrals(POLYHEDRON *p)
{
FACE *f;
double nx, ny, nz;
int i;
T0 = T1[X] = T1[Y] = T1[Z]
= T2[X] = T2[Y] = T2[Z]
= TP[X] = TP[Y] = TP[Z] = 0;
for (i = 0; i < p->numFaces; i++) {
f = &p->faces[i];
nx = fabs(f->norm[X]);
ny = fabs(f->norm[Y]);
nz = fabs(f->norm[Z]);
if (nx > ny && nx > nz) C = X;
else C = (ny > nz) ? Y : Z;
A = (C + 1) % 3;
B = (A + 1) % 3;
compFaceIntegrals(f);
T0 += f->norm[X] * ((A == X) ? Fa : ((B == X) ? Fb : Fc));
T1[A] += f->norm[A] * Faa;
T1[B] += f->norm[B] * Fbb;
T1[C] += f->norm[C] * Fcc;
T2[A] += f->norm[A] * Faaa;
T2[B] += f->norm[B] * Fbbb;
T2[C] += f->norm[C] * Fccc;
TP[A] += f->norm[A] * Faab;
TP[B] += f->norm[B] * Fbbc;
TP[C] += f->norm[C] * Fcca;
}
T1[X] /= 2; T1[Y] /= 2; T1[Z] /= 2;
T2[X] /= 3; T2[Y] /= 3; T2[Z] /= 3;
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
}
/*
============================================================================
main
============================================================================
*/
int main(int argc, char *argv[])
{
POLYHEDRON p;
double density, mass;
double r[3]; /* center of mass */
double J[3][3]; /* inertia tensor */
if (argc != 2) {
printf("usage: %s <polyhedron geometry filename>\n", argv[0]);
exit(0);
}
readPolyhedron(argv[1], &p);
compVolumeIntegrals(&p);
printf("\nT1 = %+20.6f\n\n", T0);
printf("Tx = %+20.6f\n", T1[X]);
printf("Ty = %+20.6f\n", T1[Y]);
printf("Tz = %+20.6f\n\n", T1[Z]);
printf("Txx = %+20.6f\n", T2[X]);
printf("Tyy = %+20.6f\n", T2[Y]);
printf("Tzz = %+20.6f\n\n", T2[Z]);
printf("Txy = %+20.6f\n", TP[X]);
printf("Tyz = %+20.6f\n", TP[Y]);
printf("Tzx = %+20.6f\n\n", TP[Z]);
density = 1.0; /* assume unit density */
mass = density * T0;
/* compute center of mass */
r[X] = T1[X] / T0;
r[Y] = T1[Y] / T0;
r[Z] = T1[Z] / T0;
/* compute inertia tensor */
J[X][X] = density * (T2[Y] + T2[Z]);
J[Y][Y] = density * (T2[Z] + T2[X]);
J[Z][Z] = density * (T2[X] + T2[Y]);
J[X][Y] = J[Y][X] = - density * TP[X];
J[Y][Z] = J[Z][Y] = - density * TP[Y];
J[Z][X] = J[X][Z] = - density * TP[Z];
/* translate inertia tensor to center of mass */
J[X][X] -= mass * (r[Y]*r[Y] + r[Z]*r[Z]);
J[Y][Y] -= mass * (r[Z]*r[Z] + r[X]*r[X]);
J[Z][Z] -= mass * (r[X]*r[X] + r[Y]*r[Y]);
J[X][Y] = J[Y][X] += mass * r[X] * r[Y];
J[Y][Z] = J[Z][Y] += mass * r[Y] * r[Z];
J[Z][X] = J[X][Z] += mass * r[Z] * r[X];
printf("center of mass: (%+12.6f,%+12.6f,%+12.6f)\n\n", r[X], r[Y], r[Z]);
printf("inertia tensor with origin at c.o.m. :\n");
printf("%+15.6f %+15.6f %+15.6f\n", J[X][X], J[X][Y], J[X][Z]);
printf("%+15.6f %+15.6f %+15.6f\n", J[Y][X], J[Y][Y], J[Y][Z]);
printf("%+15.6f %+15.6f %+15.6f\n", J[Z][X], J[Z][Y], J[Z][Z]);
}
#endif