Added Requirements. Refactored some funcs and uniformed naming of functions...
This commit is contained in:
parent
e65be2aa17
commit
b849524274
|
@ -8,7 +8,7 @@
|
|||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
|
@ -52,60 +52,68 @@ Initial Commit
|
|||
|
||||
|
||||
namespace vcg {
|
||||
namespace tri{
|
||||
namespace tri{
|
||||
template <class StatMeshType>
|
||||
class Stat
|
||||
{
|
||||
public:
|
||||
typedef StatMeshType MeshType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
public:
|
||||
typedef StatMeshType MeshType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FacePointer FacePointer;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::EdgeIterator EdgeIterator;
|
||||
typedef typename MeshType::FaceContainer FaceContainer;
|
||||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||||
|
||||
static void ComputePerVertexQualityMinMax( MeshType & m, float &minV, float &maxV)
|
||||
{
|
||||
std::pair<float,float> pp=ComputePerVertexQualityMinMax(m);
|
||||
minV=pp.first; maxV=pp.second;
|
||||
}
|
||||
static std::pair<float,float> ComputePerVertexQualityMinMax( MeshType & m)
|
||||
{
|
||||
std::pair<float,float> minmax = std::make_pair(std::numeric_limits<float>::max(),-std::numeric_limits<float>::max());
|
||||
|
||||
VertexIterator vi;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD())
|
||||
{
|
||||
if( (*vi).Q() < minmax.first) minmax.first=(*vi).Q();
|
||||
if( (*vi).Q() > minmax.second) minmax.second=(*vi).Q();
|
||||
}
|
||||
return minmax;
|
||||
}
|
||||
typedef typename MeshType::FaceContainer FaceContainer;
|
||||
typedef typename vcg::Box3<ScalarType> Box3Type;
|
||||
|
||||
static void ComputePerFaceQualityMinMax( MeshType & m, float &minV, float &maxV)
|
||||
{
|
||||
std::pair<float,float> pp=ComputePerFaceQualityMinMax(m);
|
||||
minV=pp.first; maxV=pp.second;
|
||||
}
|
||||
static std::pair<float,float> ComputePerFaceQualityMinMax( MeshType & m)
|
||||
{
|
||||
std::pair<float,float> minmax = std::make_pair(std::numeric_limits<float>::max(),-std::numeric_limits<float>::max());
|
||||
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
if( (*fi).Q() < minmax.first) minmax.first =(*fi).Q();
|
||||
if( (*fi).Q() > minmax.second) minmax.second=(*fi).Q();
|
||||
}
|
||||
return minmax;
|
||||
}
|
||||
static void ComputePerVertexQualityMinMax( MeshType & m, float &minV, float &maxV)
|
||||
{
|
||||
std::pair<float,float> pp=ComputePerVertexQualityMinMax(m);
|
||||
minV=pp.first; maxV=pp.second;
|
||||
}
|
||||
static std::pair<float,float> ComputePerVertexQualityMinMax( MeshType & m)
|
||||
{
|
||||
// assert(0);
|
||||
tri::RequirePerVertexQuality(m);
|
||||
typename MeshType::template PerMeshAttributeHandle < std::pair<float,float> > mmqH;
|
||||
mmqH = tri::Allocator<MeshType>::template GetPerMeshAttribute <std::pair<float,float> >(m,"minmaxQ");
|
||||
|
||||
std::pair<float,float> minmax = std::make_pair(std::numeric_limits<float>::max(),-std::numeric_limits<float>::max());
|
||||
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD())
|
||||
{
|
||||
if( (*vi).Q() < minmax.first) minmax.first=(*vi).Q();
|
||||
if( (*vi).Q() > minmax.second) minmax.second=(*vi).Q();
|
||||
}
|
||||
|
||||
mmqH() = minmax;
|
||||
return minmax;
|
||||
}
|
||||
|
||||
static void ComputePerFaceQualityMinMax( MeshType & m, float &minV, float &maxV)
|
||||
{
|
||||
std::pair<float,float> pp=ComputePerFaceQualityMinMax(m);
|
||||
minV=pp.first; maxV=pp.second;
|
||||
}
|
||||
|
||||
static std::pair<float,float> ComputePerFaceQualityMinMax( MeshType & m)
|
||||
{
|
||||
tri::RequirePerFaceQuality(m);
|
||||
std::pair<float,float> minmax = std::make_pair(std::numeric_limits<float>::max(),-std::numeric_limits<float>::max());
|
||||
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
if( (*fi).Q() < minmax.first) minmax.first =(*fi).Q();
|
||||
if( (*fi).Q() > minmax.second) minmax.second=(*fi).Q();
|
||||
}
|
||||
return minmax;
|
||||
}
|
||||
|
||||
/**
|
||||
\short compute the barycenter of the surface thin-shell.
|
||||
|
@ -119,155 +127,155 @@ class Stat
|
|||
ScalarType areaSum=0;
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
ScalarType area=DoubleArea(*fi);
|
||||
barycenter += Barycenter(*fi)*area;
|
||||
areaSum+=area;
|
||||
}
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
ScalarType area=DoubleArea(*fi);
|
||||
barycenter += Barycenter(*fi)*area;
|
||||
areaSum+=area;
|
||||
}
|
||||
return barycenter/areaSum;
|
||||
}
|
||||
|
||||
|
||||
static ScalarType ComputeMeshArea(MeshType & m)
|
||||
{
|
||||
ScalarType area=0;
|
||||
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
area += DoubleArea(*fi);
|
||||
|
||||
return area/ScalarType(2.0);
|
||||
}
|
||||
|
||||
static void ComputePerVertexQualityDistribution( MeshType & m, Distribution<float> &h, bool selectionOnly = false) // V1.0
|
||||
|
||||
static ScalarType ComputeMeshArea(MeshType & m)
|
||||
{
|
||||
ScalarType area=0;
|
||||
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
area += DoubleArea(*fi);
|
||||
|
||||
return area/ScalarType(2.0);
|
||||
}
|
||||
|
||||
static void ComputePerVertexQualityDistribution( MeshType & m, Distribution<float> &h, bool selectionOnly = false) // V1.0
|
||||
{
|
||||
tri::RequirePerVertexQuality(m);
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
||||
{
|
||||
VertexIterator vi;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
||||
{
|
||||
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*vi).Q());
|
||||
}
|
||||
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*vi).Q());
|
||||
}
|
||||
}
|
||||
|
||||
static void ComputePerFaceQualityDistribution( MeshType & m, Distribution<float> &h, bool selectionOnly = false) // V1.0
|
||||
static void ComputePerFaceQualityDistribution( MeshType & m, Distribution<float> &h, bool selectionOnly = false) // V1.0
|
||||
{
|
||||
tri::RequirePerFaceQuality(m);
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) )
|
||||
{
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) )
|
||||
{
|
||||
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*fi).Q());
|
||||
}
|
||||
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*fi).Q());
|
||||
}
|
||||
}
|
||||
|
||||
static void ComputePerFaceQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly=false,int HistSize=10000 )
|
||||
{
|
||||
std::pair<float,float> minmax = tri::Stat<MeshType>::ComputePerFaceQualityMinMax(m);
|
||||
h.Clear();
|
||||
h.SetRange( minmax.first,minmax.second, HistSize );
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) ){
|
||||
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*fi).Q());
|
||||
}
|
||||
static void ComputePerFaceQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly=false,int HistSize=10000 )
|
||||
{
|
||||
tri::RequirePerFaceQuality(m);
|
||||
std::pair<float,float> minmax = tri::Stat<MeshType>::ComputePerFaceQualityMinMax(m);
|
||||
h.Clear();
|
||||
h.SetRange( minmax.first,minmax.second, HistSize );
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD() && ((!selectionOnly) || (*fi).IsS()) ){
|
||||
assert(!math::IsNAN((*fi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*fi).Q());
|
||||
}
|
||||
}
|
||||
|
||||
static void ComputePerVertexQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly = false, int HistSize=10000 ) // V1.0
|
||||
static void ComputePerVertexQualityHistogram( MeshType & m, Histogramf &h, bool selectionOnly = false, int HistSize=10000 ) // V1.0
|
||||
{
|
||||
tri::RequirePerVertexQuality(m);
|
||||
std::pair<float,float> minmax = ComputePerVertexQualityMinMax(m);
|
||||
|
||||
h.Clear();
|
||||
h.SetRange( minmax.first,minmax.second, HistSize);
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
||||
{
|
||||
VertexIterator vi;
|
||||
std::pair<float,float> minmax = ComputePerVertexQualityMinMax(m);
|
||||
|
||||
h.Clear();
|
||||
h.SetRange( minmax.first,minmax.second, HistSize);
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
||||
{
|
||||
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*vi).Q());
|
||||
}
|
||||
// Sanity check; If some very wrong value has happened in the Q value,
|
||||
// the histogram is messed. If a significant percentage (20% )of the values are all in a single bin
|
||||
// we should try to solve the problem. No easy solution here.
|
||||
// We choose to compute the get the 1percentile and 99 percentile values as new mixmax ranges
|
||||
// and just to be sure enlarge the Histogram.
|
||||
|
||||
if(h.MaxCount() > HistSize/5)
|
||||
{
|
||||
std::vector<float> QV;
|
||||
QV.reserve(m.vn);
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD()) QV.push_back((*vi).Q());
|
||||
|
||||
std::nth_element(QV.begin(),QV.begin()+m.vn/100,QV.end());
|
||||
float newmin=*(QV.begin()+m.vn/100);
|
||||
std::nth_element(QV.begin(),QV.begin()+m.vn-m.vn/100,QV.end());
|
||||
float newmax=*(QV.begin()+m.vn-m.vn/100);
|
||||
|
||||
h.Clear();
|
||||
h.SetRange(newmin, newmax, HistSize*50);
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
||||
h.Add((*vi).Q());
|
||||
}
|
||||
assert(!math::IsNAN((*vi).Q()) && "You should never try to compute Histogram with Invalid Floating points numbers (NaN)");
|
||||
h.Add((*vi).Q());
|
||||
}
|
||||
// Sanity check; If some very wrong value has happened in the Q value,
|
||||
// the histogram is messed. If a significant percentage (20% )of the values are all in a single bin
|
||||
// we should try to solve the problem. No easy solution here.
|
||||
// We choose to compute the get the 1percentile and 99 percentile values as new mixmax ranges
|
||||
// and just to be sure enlarge the Histogram.
|
||||
|
||||
static void ComputeEdgeHistogram( MeshType & m, Histogramf &h)
|
||||
if(h.MaxCount() > HistSize/5)
|
||||
{
|
||||
std::vector<float> QV;
|
||||
QV.reserve(m.vn);
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD()) QV.push_back((*vi).Q());
|
||||
|
||||
std::nth_element(QV.begin(),QV.begin()+m.vn/100,QV.end());
|
||||
float newmin=*(QV.begin()+m.vn/100);
|
||||
std::nth_element(QV.begin(),QV.begin()+m.vn-m.vn/100,QV.end());
|
||||
float newmax=*(QV.begin()+m.vn-m.vn/100);
|
||||
|
||||
h.Clear();
|
||||
h.SetRange(newmin, newmax, HistSize*50);
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD() && ((!selectionOnly) || (*vi).IsS()) )
|
||||
h.Add((*vi).Q());
|
||||
}
|
||||
}
|
||||
|
||||
static void ComputeEdgeLengthHistogram( MeshType & m, Histogramf &h)
|
||||
{
|
||||
assert(m.edge.size()>0);
|
||||
h.Clear();
|
||||
h.SetRange( 0, m.bbox.Diag(), 10000);
|
||||
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
||||
{
|
||||
if(!(*ei).IsD())
|
||||
{
|
||||
assert(m.edge.size()>0);
|
||||
h.Clear();
|
||||
h.SetRange( 0, m.bbox.Diag(), 10000);
|
||||
for(EdgeIterator ei = m.edge.begin(); ei != m.edge.end(); ++ei)
|
||||
h.Add(Distance<float>((*ei).V(0)->P(),(*ei).V(1)->P()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static ScalarType ComputeEdgeLengthAverage(MeshType & m)
|
||||
{
|
||||
Histogramf h;
|
||||
ComputeEdgeLengthHistogram(m,h);
|
||||
return h.Avg();
|
||||
}
|
||||
|
||||
static void ComputeFaceEdgeLengthDistribution( MeshType & m, Distribution<float> &h)
|
||||
{
|
||||
h.Clear();
|
||||
tri::UpdateFlags<MeshType>::FaceBorderFromNone(m);
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
{
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
for(int i=0;i<3;++i)
|
||||
{
|
||||
if(!(*ei).IsD())
|
||||
{
|
||||
h.Add(Distance<float>((*ei).V(0)->P(),(*ei).V(1)->P()));
|
||||
}
|
||||
h.Add(Distance<float>(fi->P0(i),fi->P1(i)));
|
||||
if(fi->IsB(i)) // to be uniform border edges must be added twice...
|
||||
h.Add(Distance<float>(fi->P0(i),fi->P1(i)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static ScalarType ComputeEdgeAverage(MeshType & m)
|
||||
static ScalarType ComputeFaceEdgeLengthAverage(MeshType & m)
|
||||
{
|
||||
double sum=0;
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
Histogramf h;
|
||||
ComputeEdgeHistogram(m,h);
|
||||
return h.Avg();
|
||||
for(int i=0;i<3;++i)
|
||||
sum+=double(Distance<float>(fi->P0(i),fi->P1(i)));
|
||||
}
|
||||
|
||||
static void ComputeFaceEdgeDistribution( MeshType & m, Distribution<float> &h)
|
||||
{
|
||||
h.Clear();
|
||||
tri::UpdateFlags<MeshType>::FaceBorderFromNone(m);
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
{
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
for(int i=0;i<3;++i)
|
||||
{
|
||||
h.Add(Distance<float>(fi->P0(i),fi->P1(i)));
|
||||
if(fi->IsB(i)) // to be uniform border edges must be added twice...
|
||||
h.Add(Distance<float>(fi->P0(i),fi->P1(i)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static ScalarType ComputeFaceEdgeAverage(MeshType & m)
|
||||
{
|
||||
double sum=0;
|
||||
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
for(int i=0;i<3;++i)
|
||||
sum+=double(Distance<float>(fi->P0(i),fi->P1(i)));
|
||||
}
|
||||
return sum/(m.fn*3.0);
|
||||
}
|
||||
return sum/(m.fn*3.0);
|
||||
}
|
||||
|
||||
}; // end class
|
||||
|
||||
} //End Namespace tri
|
||||
|
||||
} //End Namespace tri
|
||||
} // End Namespace vcg
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue