Added comments (Dox) !
Added Import(). Costruct(), ScalarType... Corrected cross prod (sign). Added Angle. Now using Math:: stuff for trigon. etc.
This commit is contained in:
parent
bc1fdc913b
commit
b84e4c7460
|
@ -24,6 +24,9 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.2 2004/03/03 15:07:40 cignoni
|
||||
renamed protected member v -> _v
|
||||
|
||||
Revision 1.1 2004/02/13 00:44:53 cignoni
|
||||
First commit...
|
||||
|
||||
|
@ -33,83 +36,96 @@ First commit...
|
|||
#ifndef __VCGLIB_POINT2
|
||||
#define __VCGLIB_POINT2
|
||||
|
||||
//#include <limits>
|
||||
#include <assert.h>
|
||||
#include <vcg/math/base.h>
|
||||
|
||||
namespace vcg {
|
||||
|
||||
template <class FLTYPE> class Point2
|
||||
/** \addtogroup space */
|
||||
/*@{*/
|
||||
/**
|
||||
The templated class for representing a point in 2D space.
|
||||
The class is templated over the ScalarType class that is used to represent coordinates.
|
||||
All the usual operator overloading (* + - ...) is present.
|
||||
*/
|
||||
template <class P2ScalarType> class Point2
|
||||
{
|
||||
protected:
|
||||
|
||||
FLTYPE _v[2];
|
||||
/// The only data member. Hidden to user.
|
||||
P2ScalarType _v[2];
|
||||
public:
|
||||
typedef FLTYPE scalar;
|
||||
/// the scalar type
|
||||
typedef P2ScalarType ScalarType;
|
||||
|
||||
inline const FLTYPE &X() const {return _v[0];}
|
||||
inline const FLTYPE &Y() const {return _v[1];}
|
||||
inline FLTYPE &X() {return _v[0];}
|
||||
inline FLTYPE &Y() {return _v[1];}
|
||||
inline const FLTYPE & operator [] ( const int i ) const
|
||||
//@{
|
||||
|
||||
/** @name Access to Coords.
|
||||
access to coords is done by overloading of [] or explicit naming of coords (X,Y,)
|
||||
("p[0]" or "p.X()" are equivalent) **/
|
||||
inline const ScalarType &X() const {return _v[0];}
|
||||
inline const ScalarType &Y() const {return _v[1];}
|
||||
inline ScalarType &X() {return _v[0];}
|
||||
inline ScalarType &Y() {return _v[1];}
|
||||
inline const ScalarType & operator [] ( const int i ) const
|
||||
{
|
||||
assert(i>=0 && i<2);
|
||||
return _v[i];
|
||||
}
|
||||
inline FLTYPE & operator [] ( const int i )
|
||||
inline ScalarType & operator [] ( const int i )
|
||||
{
|
||||
assert(i>=0 && i<2);
|
||||
return _v[i];
|
||||
}
|
||||
|
||||
|
||||
//@}
|
||||
/// empty constructor (does nothing)
|
||||
inline Point2 () { }
|
||||
inline Point2 ( const FLTYPE nx, const FLTYPE ny )
|
||||
/// x,y constructor
|
||||
inline Point2 ( const ScalarType nx, const ScalarType ny )
|
||||
{
|
||||
_v[0] = nx; _v[1] = ny;
|
||||
}
|
||||
/// copy constructor
|
||||
inline Point2 ( Point2 const & p)
|
||||
{
|
||||
_v[0]= p._v[0]; _v[1]= p._v[1];
|
||||
}
|
||||
/// copy
|
||||
inline Point2 & operator =( Point2 const & p)
|
||||
{
|
||||
_v[0]= p._v[0]; _v[1]= p._v[1];
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// sets the point to (0,0)
|
||||
inline void Zero()
|
||||
{
|
||||
_v[0] = 0;
|
||||
_v[1] = 0;
|
||||
}
|
||||
|
||||
inline Point2 operator + ( Point2 const & p) const
|
||||
{
|
||||
return Point2<FLTYPE>( _v[0]+p._v[0], _v[1]+p._v[1] );
|
||||
}
|
||||
inline Point2 operator - ( Point2 const & p) const
|
||||
{
|
||||
return Point2<FLTYPE>( _v[0]-p._v[0], _v[1]-p._v[1] );
|
||||
}
|
||||
inline Point2 operator * ( const FLTYPE s ) const
|
||||
{
|
||||
return Point2<FLTYPE>( _v[0] * s, _v[1] * s );
|
||||
}
|
||||
inline Point2 operator / ( const FLTYPE s ) const
|
||||
{
|
||||
return Point2<FLTYPE>( _v[0] / s, _v[1] / s );
|
||||
}
|
||||
inline FLTYPE operator * ( Point2 const & p ) const
|
||||
{ _v[0] = 0;_v[1] = 0;}
|
||||
/// dot product
|
||||
inline ScalarType operator * ( Point2 const & p ) const
|
||||
{
|
||||
return ( _v[0]*p._v[0] + _v[1]*p._v[1] );
|
||||
}
|
||||
|
||||
inline FLTYPE operator ^ ( Point2 const & p ) const
|
||||
/// cross product
|
||||
inline ScalarType operator ^ ( Point2 const & p ) const
|
||||
{
|
||||
return _v[1]*p._v[0] - _v[0]*p._v[1];
|
||||
return _v[0]*p._v[1] - _v[1]*p._v[0];
|
||||
}
|
||||
|
||||
//@{
|
||||
/** @name Linearity for 2d points (operators +, -, *, /, *= ...) **/
|
||||
inline Point2 operator + ( Point2 const & p) const
|
||||
{
|
||||
return Point2<ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1] );
|
||||
}
|
||||
inline Point2 operator - ( Point2 const & p) const
|
||||
{
|
||||
return Point2<ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1] );
|
||||
}
|
||||
inline Point2 operator * ( const ScalarType s ) const
|
||||
{
|
||||
return Point2<ScalarType>( _v[0] * s, _v[1] * s );
|
||||
}
|
||||
inline Point2 operator / ( const ScalarType s ) const
|
||||
{
|
||||
return Point2<ScalarType>( _v[0] / s, _v[1] / s );
|
||||
}
|
||||
inline Point2 & operator += ( Point2 const & p)
|
||||
{
|
||||
_v[0] += p._v[0]; _v[1] += p._v[1];
|
||||
|
@ -120,94 +136,105 @@ public:
|
|||
_v[0] -= p._v[0]; _v[1] -= p._v[1];
|
||||
return *this;
|
||||
}
|
||||
inline Point2 & operator *= ( const FLTYPE s )
|
||||
inline Point2 & operator *= ( const ScalarType s )
|
||||
{
|
||||
_v[0] *= s; _v[1] *= s;
|
||||
return *this;
|
||||
}
|
||||
inline Point2 & operator /= ( const FLTYPE s )
|
||||
inline Point2 & operator /= ( const ScalarType s )
|
||||
{
|
||||
_v[0] /= s; _v[1] /= s;
|
||||
return *this;
|
||||
}
|
||||
inline FLTYPE Norm( void ) const
|
||||
//@}
|
||||
/// returns the norm (Euclidian)
|
||||
inline ScalarType Norm( void ) const
|
||||
{
|
||||
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );
|
||||
return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );
|
||||
}
|
||||
inline FLTYPE SquaredNorm( void ) const
|
||||
/// returns the squared norm (Euclidian)
|
||||
inline ScalarType SquaredNorm( void ) const
|
||||
{
|
||||
return ( _v[0]*_v[0] + _v[1]*_v[1] );
|
||||
}
|
||||
inline Point2 & Scale( const FLTYPE sx, const FLTYPE sy );
|
||||
|
||||
inline Point2 & Scale( const ScalarType sx, const ScalarType sy );
|
||||
/// normalizes, and returns itself as result
|
||||
inline Point2 & Normalize( void )
|
||||
{
|
||||
FLTYPE n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1]);
|
||||
ScalarType n = math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1]);
|
||||
if(n>0.0) { _v[0] /= n; _v[1] /= n; }
|
||||
return *this;
|
||||
}
|
||||
/// points equality
|
||||
inline bool operator == ( Point2 const & p ) const
|
||||
{
|
||||
return (_v[0]==p._v[0] && _v[1]==p._v[1]);
|
||||
}
|
||||
/// disparity between points
|
||||
inline bool operator != ( Point2 const & p ) const
|
||||
{
|
||||
return ( (_v[0]!=p._v[0]) || (_v[1]!=p._v[1]) );
|
||||
}
|
||||
/// lexical ordering
|
||||
inline bool operator < ( Point2 const & p ) const
|
||||
{
|
||||
return (_v[1]!=p._v[1])?(_v[1]<p._v[1]):
|
||||
(_v[0]<p._v[0]);
|
||||
}
|
||||
/// lexical ordering
|
||||
inline bool operator > ( Point2 const & p ) const
|
||||
{
|
||||
return (_v[1]!=p._v[1])?(_v[1]>p._v[1]):
|
||||
(_v[0]>p._v[0]);
|
||||
}
|
||||
|
||||
/// lexical ordering
|
||||
inline bool operator <= ( Point2 const & p ) const
|
||||
{
|
||||
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]):
|
||||
(_v[0]<=p._v[0]);
|
||||
}
|
||||
|
||||
/// lexical ordering
|
||||
inline bool operator >= ( Point2 const & p ) const
|
||||
{
|
||||
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
|
||||
(_v[0]>=p._v[0]);
|
||||
}
|
||||
inline FLTYPE Distance( Point2 const & p ) const
|
||||
/// returns the distance to another point p
|
||||
inline ScalarType Distance( Point2 const & p ) const
|
||||
{
|
||||
return Norm(*this-p);
|
||||
}
|
||||
|
||||
inline FLTYPE SquaredDistance( Point2 const & p ) const
|
||||
/// returns the suqared distance to another point p
|
||||
inline ScalarType SquaredDistance( Point2 const & p ) const
|
||||
{
|
||||
return Norm2(*this-p);
|
||||
}
|
||||
|
||||
/// returns the angle with X axis (radiants, in [-PI, +PI] )
|
||||
inline Point2 &Angle(){
|
||||
return Math::Atan2(_v[1],_v[0]);
|
||||
};
|
||||
/// transform the point in cartesian coords into polar coords
|
||||
inline Point2 & Cartesian2Polar()
|
||||
{
|
||||
FLTYPE t = (FLTYPE)atan2(_v[1],_v[0]);
|
||||
_v[0] = Sqrt(_v[0]*_v[0]+_v[1]*_v[1]);
|
||||
ScalarType t = Angle();
|
||||
_v[0] = Norm();
|
||||
_v[1] = t;
|
||||
return *this;
|
||||
}
|
||||
|
||||
/// transform the point in polar coords into cartesian coords
|
||||
inline Point2 & Polar2Cartesian()
|
||||
{
|
||||
FLTYPE l = _v[0];
|
||||
_v[0] = (FLTYPE)(l*cos(_v[1]));
|
||||
_v[1] = (FLTYPE)(l*sin(_v[1]));
|
||||
ScalarType l = _v[0];
|
||||
_v[0] = (ScalarType)(l*math::Cos(_v[1]));
|
||||
_v[1] = (ScalarType)(l*math::Sin(_v[1]));
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
inline Point2 & rotate( const FLTYPE a )
|
||||
/// rotates the point of an angle (radiants, counterclockwise)
|
||||
inline Point2 & Rotate( const ScalarType rad )
|
||||
{
|
||||
FLTYPE t = _v[0];
|
||||
FLTYPE s = sin(a);
|
||||
FLTYPE c = cos(a);
|
||||
ScalarType t = _v[0];
|
||||
ScalarType s = math::Sin(rad);
|
||||
ScalarType c = math::Cos(rad);
|
||||
|
||||
_v[0] = _v[0]*c - _v[1]*s;
|
||||
_v[1] = t *s + _v[1]*c;
|
||||
|
@ -217,56 +244,66 @@ public:
|
|||
|
||||
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
|
||||
/// paddando gli elementi estesi con zeri
|
||||
inline FLTYPE Ext( const int i ) const
|
||||
inline ScalarType Ext( const int i ) const
|
||||
{
|
||||
if(i>=0 && i<2) return _v[i];
|
||||
else return 0;
|
||||
}
|
||||
/// imports from 2D points of different types
|
||||
template <class T>
|
||||
inline void Import( const Point2<T> & b )
|
||||
{
|
||||
_v[0] = p.X(); _v[1] = p.Y();
|
||||
}
|
||||
/// constructs a 2D points from an existing one of different type
|
||||
template <class T>
|
||||
static Point2 Construct( const Point2<T> & b )
|
||||
{
|
||||
return Point2(b.X(),b.Y());
|
||||
}
|
||||
|
||||
|
||||
}; // end class definition
|
||||
|
||||
|
||||
template <class FLTYPE>
|
||||
inline FLTYPE Angle( Point2<FLTYPE> const & p1, Point2<FLTYPE> const & p2 )
|
||||
template <class T>
|
||||
inline T Angle( Point2<T> const & p1, Point2<T> const & p2 )
|
||||
{
|
||||
return atan2(p2[1],p2[0]) - atan2(p1[1],p1[0]);
|
||||
return p1.Angle() - p0.Angle();
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline Point2<FLTYPE> operator - ( Point2<FLTYPE> const & p ){
|
||||
return Point2<FLTYPE>( -p._v[0], -p._v[1] );
|
||||
template <class T>
|
||||
inline Point2<T> operator - ( Point2<T> const & p ){
|
||||
return Point2<T>( -p._v[0], -p._v[1] );
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline Point2<FLTYPE> operator * ( const FLTYPE s, Point2<FLTYPE> const & p ){
|
||||
return Point2<FLTYPE>( p._v[0] * s, p._v[1] * s );
|
||||
template <class T>
|
||||
inline Point2<T> operator * ( const T s, Point2<T> const & p ){
|
||||
return Point2<T>( p._v[0] * s, p._v[1] * s );
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline FLTYPE Norm( Point2<FLTYPE> const & p ){
|
||||
return Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] );
|
||||
template <class T>
|
||||
inline T Norm( Point2<T> const & p ){
|
||||
return p.Norm();
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline FLTYPE Norm2( Point2<FLTYPE> const & p ){
|
||||
return ( p._v[0]*p._v[0] + p._v[1]*p._v[1] );
|
||||
template <class T>
|
||||
inline T SquaredNorm( Point2<T> const & p ){
|
||||
return p.SquaredNorm();
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline Point2<FLTYPE> & Normalize( Point2<FLTYPE> & p ){
|
||||
FLTYPE n = Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] );
|
||||
if(n>0.0) p/=n;
|
||||
return p;
|
||||
template <class T>
|
||||
inline Point2<T> & Normalize( Point2<T> & p ){
|
||||
return p.Normalize();
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline FLTYPE Distance( Point2<FLTYPE> const & p1,Point2<FLTYPE> const & p2 ){
|
||||
template <class T>
|
||||
inline T Distance( Point2<T> const & p1,Point2<T> const & p2 ){
|
||||
return Norm(p1-p2);
|
||||
}
|
||||
|
||||
template <class FLTYPE>
|
||||
inline FLTYPE SquaredDistance( Point2<FLTYPE> const & p1,Point2<FLTYPE> const & p2 ){
|
||||
template <class T>
|
||||
inline T SquaredDistance( Point2<T> const & p1,Point2<T> const & p2 ){
|
||||
return Norm2(p1-p2);
|
||||
}
|
||||
|
||||
|
@ -275,6 +312,6 @@ typedef Point2<int> Point2i;
|
|||
typedef Point2<float> Point2f;
|
||||
typedef Point2<double> Point2d;
|
||||
|
||||
|
||||
/*@}*/
|
||||
} // end namespace
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue