Added comments (Dox) !

Added Import(). Costruct(), ScalarType...  Corrected cross prod (sign). Added Angle. Now using Math:: stuff for trigon. etc.
This commit is contained in:
mtarini 2004-03-10 17:42:40 +00:00
parent bc1fdc913b
commit b84e4c7460
1 changed files with 130 additions and 93 deletions

View File

@ -24,6 +24,9 @@
History
$Log: not supported by cvs2svn $
Revision 1.2 2004/03/03 15:07:40 cignoni
renamed protected member v -> _v
Revision 1.1 2004/02/13 00:44:53 cignoni
First commit...
@ -33,83 +36,96 @@ First commit...
#ifndef __VCGLIB_POINT2
#define __VCGLIB_POINT2
//#include <limits>
#include <assert.h>
#include <vcg/math/base.h>
namespace vcg {
template <class FLTYPE> class Point2
/** \addtogroup space */
/*@{*/
/**
The templated class for representing a point in 2D space.
The class is templated over the ScalarType class that is used to represent coordinates.
All the usual operator overloading (* + - ...) is present.
*/
template <class P2ScalarType> class Point2
{
protected:
FLTYPE _v[2];
/// The only data member. Hidden to user.
P2ScalarType _v[2];
public:
typedef FLTYPE scalar;
/// the scalar type
typedef P2ScalarType ScalarType;
inline const FLTYPE &X() const {return _v[0];}
inline const FLTYPE &Y() const {return _v[1];}
inline FLTYPE &X() {return _v[0];}
inline FLTYPE &Y() {return _v[1];}
inline const FLTYPE & operator [] ( const int i ) const
//@{
/** @name Access to Coords.
access to coords is done by overloading of [] or explicit naming of coords (X,Y,)
("p[0]" or "p.X()" are equivalent) **/
inline const ScalarType &X() const {return _v[0];}
inline const ScalarType &Y() const {return _v[1];}
inline ScalarType &X() {return _v[0];}
inline ScalarType &Y() {return _v[1];}
inline const ScalarType & operator [] ( const int i ) const
{
assert(i>=0 && i<2);
return _v[i];
}
inline FLTYPE & operator [] ( const int i )
inline ScalarType & operator [] ( const int i )
{
assert(i>=0 && i<2);
return _v[i];
}
//@}
/// empty constructor (does nothing)
inline Point2 () { }
inline Point2 ( const FLTYPE nx, const FLTYPE ny )
/// x,y constructor
inline Point2 ( const ScalarType nx, const ScalarType ny )
{
_v[0] = nx; _v[1] = ny;
}
/// copy constructor
inline Point2 ( Point2 const & p)
{
_v[0]= p._v[0]; _v[1]= p._v[1];
}
/// copy
inline Point2 & operator =( Point2 const & p)
{
_v[0]= p._v[0]; _v[1]= p._v[1];
return *this;
}
/// sets the point to (0,0)
inline void Zero()
{
_v[0] = 0;
_v[1] = 0;
}
inline Point2 operator + ( Point2 const & p) const
{
return Point2<FLTYPE>( _v[0]+p._v[0], _v[1]+p._v[1] );
}
inline Point2 operator - ( Point2 const & p) const
{
return Point2<FLTYPE>( _v[0]-p._v[0], _v[1]-p._v[1] );
}
inline Point2 operator * ( const FLTYPE s ) const
{
return Point2<FLTYPE>( _v[0] * s, _v[1] * s );
}
inline Point2 operator / ( const FLTYPE s ) const
{
return Point2<FLTYPE>( _v[0] / s, _v[1] / s );
}
inline FLTYPE operator * ( Point2 const & p ) const
{ _v[0] = 0;_v[1] = 0;}
/// dot product
inline ScalarType operator * ( Point2 const & p ) const
{
return ( _v[0]*p._v[0] + _v[1]*p._v[1] );
}
inline FLTYPE operator ^ ( Point2 const & p ) const
/// cross product
inline ScalarType operator ^ ( Point2 const & p ) const
{
return _v[1]*p._v[0] - _v[0]*p._v[1];
return _v[0]*p._v[1] - _v[1]*p._v[0];
}
//@{
/** @name Linearity for 2d points (operators +, -, *, /, *= ...) **/
inline Point2 operator + ( Point2 const & p) const
{
return Point2<ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1] );
}
inline Point2 operator - ( Point2 const & p) const
{
return Point2<ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1] );
}
inline Point2 operator * ( const ScalarType s ) const
{
return Point2<ScalarType>( _v[0] * s, _v[1] * s );
}
inline Point2 operator / ( const ScalarType s ) const
{
return Point2<ScalarType>( _v[0] / s, _v[1] / s );
}
inline Point2 & operator += ( Point2 const & p)
{
_v[0] += p._v[0]; _v[1] += p._v[1];
@ -120,94 +136,105 @@ public:
_v[0] -= p._v[0]; _v[1] -= p._v[1];
return *this;
}
inline Point2 & operator *= ( const FLTYPE s )
inline Point2 & operator *= ( const ScalarType s )
{
_v[0] *= s; _v[1] *= s;
return *this;
}
inline Point2 & operator /= ( const FLTYPE s )
inline Point2 & operator /= ( const ScalarType s )
{
_v[0] /= s; _v[1] /= s;
return *this;
}
inline FLTYPE Norm( void ) const
//@}
/// returns the norm (Euclidian)
inline ScalarType Norm( void ) const
{
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );
return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );
}
inline FLTYPE SquaredNorm( void ) const
/// returns the squared norm (Euclidian)
inline ScalarType SquaredNorm( void ) const
{
return ( _v[0]*_v[0] + _v[1]*_v[1] );
}
inline Point2 & Scale( const FLTYPE sx, const FLTYPE sy );
inline Point2 & Scale( const ScalarType sx, const ScalarType sy );
/// normalizes, and returns itself as result
inline Point2 & Normalize( void )
{
FLTYPE n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1]);
ScalarType n = math::Sqrt(_v[0]*_v[0] + _v[1]*_v[1]);
if(n>0.0) { _v[0] /= n; _v[1] /= n; }
return *this;
}
/// points equality
inline bool operator == ( Point2 const & p ) const
{
return (_v[0]==p._v[0] && _v[1]==p._v[1]);
}
/// disparity between points
inline bool operator != ( Point2 const & p ) const
{
return ( (_v[0]!=p._v[0]) || (_v[1]!=p._v[1]) );
}
/// lexical ordering
inline bool operator < ( Point2 const & p ) const
{
return (_v[1]!=p._v[1])?(_v[1]<p._v[1]):
(_v[0]<p._v[0]);
}
/// lexical ordering
inline bool operator > ( Point2 const & p ) const
{
return (_v[1]!=p._v[1])?(_v[1]>p._v[1]):
(_v[0]>p._v[0]);
}
/// lexical ordering
inline bool operator <= ( Point2 const & p ) const
{
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]):
(_v[0]<=p._v[0]);
}
/// lexical ordering
inline bool operator >= ( Point2 const & p ) const
{
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
(_v[0]>=p._v[0]);
}
inline FLTYPE Distance( Point2 const & p ) const
/// returns the distance to another point p
inline ScalarType Distance( Point2 const & p ) const
{
return Norm(*this-p);
}
inline FLTYPE SquaredDistance( Point2 const & p ) const
/// returns the suqared distance to another point p
inline ScalarType SquaredDistance( Point2 const & p ) const
{
return Norm2(*this-p);
}
/// returns the angle with X axis (radiants, in [-PI, +PI] )
inline Point2 &Angle(){
return Math::Atan2(_v[1],_v[0]);
};
/// transform the point in cartesian coords into polar coords
inline Point2 & Cartesian2Polar()
{
FLTYPE t = (FLTYPE)atan2(_v[1],_v[0]);
_v[0] = Sqrt(_v[0]*_v[0]+_v[1]*_v[1]);
ScalarType t = Angle();
_v[0] = Norm();
_v[1] = t;
return *this;
}
/// transform the point in polar coords into cartesian coords
inline Point2 & Polar2Cartesian()
{
FLTYPE l = _v[0];
_v[0] = (FLTYPE)(l*cos(_v[1]));
_v[1] = (FLTYPE)(l*sin(_v[1]));
ScalarType l = _v[0];
_v[0] = (ScalarType)(l*math::Cos(_v[1]));
_v[1] = (ScalarType)(l*math::Sin(_v[1]));
return *this;
}
inline Point2 & rotate( const FLTYPE a )
/// rotates the point of an angle (radiants, counterclockwise)
inline Point2 & Rotate( const ScalarType rad )
{
FLTYPE t = _v[0];
FLTYPE s = sin(a);
FLTYPE c = cos(a);
ScalarType t = _v[0];
ScalarType s = math::Sin(rad);
ScalarType c = math::Cos(rad);
_v[0] = _v[0]*c - _v[1]*s;
_v[1] = t *s + _v[1]*c;
@ -217,56 +244,66 @@ public:
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
/// paddando gli elementi estesi con zeri
inline FLTYPE Ext( const int i ) const
inline ScalarType Ext( const int i ) const
{
if(i>=0 && i<2) return _v[i];
else return 0;
}
/// imports from 2D points of different types
template <class T>
inline void Import( const Point2<T> & b )
{
_v[0] = p.X(); _v[1] = p.Y();
}
/// constructs a 2D points from an existing one of different type
template <class T>
static Point2 Construct( const Point2<T> & b )
{
return Point2(b.X(),b.Y());
}
}; // end class definition
template <class FLTYPE>
inline FLTYPE Angle( Point2<FLTYPE> const & p1, Point2<FLTYPE> const & p2 )
template <class T>
inline T Angle( Point2<T> const & p1, Point2<T> const & p2 )
{
return atan2(p2[1],p2[0]) - atan2(p1[1],p1[0]);
return p1.Angle() - p0.Angle();
}
template <class FLTYPE>
inline Point2<FLTYPE> operator - ( Point2<FLTYPE> const & p ){
return Point2<FLTYPE>( -p._v[0], -p._v[1] );
template <class T>
inline Point2<T> operator - ( Point2<T> const & p ){
return Point2<T>( -p._v[0], -p._v[1] );
}
template <class FLTYPE>
inline Point2<FLTYPE> operator * ( const FLTYPE s, Point2<FLTYPE> const & p ){
return Point2<FLTYPE>( p._v[0] * s, p._v[1] * s );
template <class T>
inline Point2<T> operator * ( const T s, Point2<T> const & p ){
return Point2<T>( p._v[0] * s, p._v[1] * s );
}
template <class FLTYPE>
inline FLTYPE Norm( Point2<FLTYPE> const & p ){
return Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] );
template <class T>
inline T Norm( Point2<T> const & p ){
return p.Norm();
}
template <class FLTYPE>
inline FLTYPE Norm2( Point2<FLTYPE> const & p ){
return ( p._v[0]*p._v[0] + p._v[1]*p._v[1] );
template <class T>
inline T SquaredNorm( Point2<T> const & p ){
return p.SquaredNorm();
}
template <class FLTYPE>
inline Point2<FLTYPE> & Normalize( Point2<FLTYPE> & p ){
FLTYPE n = Sqrt( p._v[0]*p._v[0] + p._v[1]*p._v[1] );
if(n>0.0) p/=n;
return p;
template <class T>
inline Point2<T> & Normalize( Point2<T> & p ){
return p.Normalize();
}
template <class FLTYPE>
inline FLTYPE Distance( Point2<FLTYPE> const & p1,Point2<FLTYPE> const & p2 ){
template <class T>
inline T Distance( Point2<T> const & p1,Point2<T> const & p2 ){
return Norm(p1-p2);
}
template <class FLTYPE>
inline FLTYPE SquaredDistance( Point2<FLTYPE> const & p1,Point2<FLTYPE> const & p2 ){
template <class T>
inline T SquaredDistance( Point2<T> const & p1,Point2<T> const & p2 ){
return Norm2(p1-p2);
}
@ -275,6 +312,6 @@ typedef Point2<int> Point2i;
typedef Point2<float> Point2f;
typedef Point2<double> Point2d;
/*@}*/
} // end namespace
#endif