Heavily restructured and corrected. Now a single Close ear function
Corrected Hole search function, and management of double non manifold vertex in a hole Changed priority strategy in the heap, now a mix of quality and dihedral angle. Changed but still untested IntersectionEar
This commit is contained in:
parent
588582f470
commit
b9be8bd5fd
|
@ -24,6 +24,9 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.24 2006/12/01 21:24:16 cignoni
|
||||
Corrected bug in the search of holes. Removed output prints
|
||||
|
||||
Revision 1.23 2006/12/01 08:53:55 cignoni
|
||||
Corrected pop_heap vs pop_back issue in heap usage
|
||||
|
||||
|
@ -114,7 +117,7 @@ namespace vcg {
|
|||
/*
|
||||
Un ear e' identificato da due hedge pos.
|
||||
i vertici dell'ear sono
|
||||
e0.FlipV().v
|
||||
e0.VFlip().v
|
||||
e0.v
|
||||
e1.v
|
||||
Vale che e1== e0.NextB();
|
||||
|
@ -134,87 +137,67 @@ namespace vcg {
|
|||
template<class MESH> class TrivialEar
|
||||
{
|
||||
public:
|
||||
face::Pos<typename MESH::FaceType> e0;
|
||||
face::Pos<typename MESH::FaceType> e1;
|
||||
typedef typename MESH::FaceType FaceType;
|
||||
typedef typename face::Pos<FaceType> PosType;
|
||||
typedef typename MESH::ScalarType ScalarType;
|
||||
typedef typename MESH::CoordType CoordType;
|
||||
|
||||
PosType e0;
|
||||
PosType e1;
|
||||
CoordType n; // the normal of the face defined by the ear
|
||||
const char * Dump() {return 0;}
|
||||
const CoordType &cP(int i) const {return P(i);}
|
||||
const CoordType &P(int i) const {
|
||||
switch(i) {
|
||||
case 0 : return e0.v->cP();
|
||||
case 1 : return e1.v->cP();
|
||||
case 2 : return e0.VFlip()->cP();
|
||||
default: assert(0);
|
||||
}
|
||||
return e0.v->cP();
|
||||
}
|
||||
|
||||
ScalarType quality;
|
||||
ScalarType angle;
|
||||
std::vector<typename MESH::FaceType>* vf;
|
||||
//std::vector<typename MESH::FaceType>* vf;
|
||||
TrivialEar(){}
|
||||
TrivialEar(const face::Pos<typename MESH::FaceType> & ep)
|
||||
TrivialEar(const PosType & ep)
|
||||
{
|
||||
e0=ep;
|
||||
assert(e0.IsBorder());
|
||||
e1=e0;
|
||||
e1.NextB();
|
||||
n=Normal<TrivialEar>(*this);
|
||||
ComputeQuality();
|
||||
ComputeAngle();
|
||||
}
|
||||
|
||||
void SetAdjacencyRing(std::vector<typename MESH::FaceType>* ar){vf = ar;}
|
||||
|
||||
/// Compute the angle of the two edges of the ear.
|
||||
// it tries to make the computation in a precision safe way.
|
||||
// the angle computation takes into account the case of reversed ears
|
||||
void ComputeAngle()
|
||||
{
|
||||
Point3f p1 = e0.VFlip()->P() - e0.v->P();
|
||||
Point3f p2 = e1.v->P() - e0.v->P();
|
||||
|
||||
ScalarType w = p2.Norm()*p1.Norm();
|
||||
if(w==0)
|
||||
angle = acos(0.0f);
|
||||
else
|
||||
{
|
||||
ScalarType p = (p2*p1);
|
||||
p= p/w;
|
||||
if(p < -1) p = -1;
|
||||
if(p > 1) p = 1;
|
||||
p = acos(p);
|
||||
|
||||
Point3f NormalOfEar = p2^p1;
|
||||
ScalarType n = NormalOfEar * e0.v->N();
|
||||
if(n<0) p = (2.0 *(float)M_PI) - p;
|
||||
angle = p;
|
||||
}
|
||||
angle=Angle(cP(2)-cP(0), cP(1)-cP(0));
|
||||
ScalarType flipAngle = n * e0.v->N();
|
||||
if(flipAngle<0) angle = (2.0 *(float)M_PI) - angle;
|
||||
}
|
||||
|
||||
virtual inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; }
|
||||
|
||||
bool IsNull(){return e0.IsNull() || e1.IsNull();}
|
||||
void SetNull(){e0.SetNull();e1.SetNull();}
|
||||
virtual void ComputeQuality()
|
||||
{
|
||||
ScalarType ar;
|
||||
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
|
||||
ScalarType area = (ar);
|
||||
|
||||
ScalarType l1 = Distance( e0.v->P(),e1.v->P());
|
||||
ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P());
|
||||
ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P());
|
||||
|
||||
quality = area / ( (l1 *l1) + (l2 * l2) + (l3 * l3) );
|
||||
};
|
||||
virtual void ComputeQuality() { quality = QualityFace(*this) ; };
|
||||
bool IsUpToDate() {return ( e0.IsBorder() && e1.IsBorder());};
|
||||
|
||||
bool IsConvex(){return(angle > (float)M_PI);}
|
||||
|
||||
bool Degen()
|
||||
// An ear is degenerated if both of its two endpoints are non manifold.
|
||||
bool IsDegen(const int nonManifoldBit)
|
||||
{
|
||||
face::Pos<typename MESH::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
face::Pos<typename MESH::FaceType> en=e1; en.NextB(); // he successivo a e1
|
||||
|
||||
// caso ear degenere per buco triangolare
|
||||
if(ep==en) return true;//provo a togliere sto controllo
|
||||
// Caso ear non manifold a
|
||||
if(ep.v==en.v) return true;
|
||||
// Caso ear non manifold b
|
||||
if(ep.VFlip()==e1.v) return true;
|
||||
|
||||
return false;
|
||||
if(e0.VFlip()->IsUserBit(nonManifoldBit) && e1.V()->IsUserBit(nonManifoldBit))
|
||||
return true;
|
||||
else return false;
|
||||
}
|
||||
bool IsConcave() const {return(angle > (float)M_PI);}
|
||||
|
||||
virtual bool Close(TrivialEar &ne0, TrivialEar &ne1, typename MESH::FaceType * f)
|
||||
virtual bool Close(PosType &np0, PosType &np1, FaceType * f)
|
||||
{
|
||||
// simple topological check
|
||||
if(e0.f==e1.f) {
|
||||
|
@ -223,12 +206,13 @@ namespace vcg {
|
|||
}
|
||||
|
||||
//usato per generare una delle due nuove orecchie.
|
||||
face::Pos<typename MESH::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
face::Pos<typename MESH::FaceType> en=e1; en.NextB(); // he successivo a e1
|
||||
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
PosType en=e1; en.NextB(); // he successivo a e1
|
||||
|
||||
(*f).V(0) = e0.VFlip();
|
||||
(*f).V(1) = e0.v;
|
||||
(*f).V(2) = e1.v;
|
||||
ComputeNormal(*f);
|
||||
|
||||
(*f).FFp(0) = e0.f;
|
||||
(*f).FFi(0) = e0.z;
|
||||
|
@ -251,39 +235,39 @@ namespace vcg {
|
|||
f->FFi(2)=en.z;
|
||||
en.f->FFp(en.z)=f;
|
||||
en.f->FFi(en.z)=2;
|
||||
ne0.SetNull();
|
||||
ne1.SetNull();
|
||||
np0.SetNull();
|
||||
np1.SetNull();
|
||||
}
|
||||
// Caso ear non manifold a
|
||||
else if(ep.v==en.v)
|
||||
{
|
||||
//printf("Ear Non manif A\n");
|
||||
face::Pos<typename MESH::FaceType> enold=en;
|
||||
PosType enold=en;
|
||||
en.NextB();
|
||||
f->FFp(2)=enold.f;
|
||||
f->FFi(2)=enold.z;
|
||||
enold.f->FFp(enold.z)=f;
|
||||
enold.f->FFi(enold.z)=2;
|
||||
ne0=TrivialEar(ep);
|
||||
ne1=TrivialEar(en);
|
||||
np0=ep;
|
||||
np1=en;
|
||||
}
|
||||
// Caso ear non manifold b
|
||||
else if(ep.VFlip()==e1.v)
|
||||
{
|
||||
//printf("Ear Non manif B\n");
|
||||
face::Pos<typename MESH::FaceType> epold=ep;
|
||||
PosType epold=ep;
|
||||
ep.FlipV(); ep.NextB(); ep.FlipV();
|
||||
f->FFp(2)=epold.f;
|
||||
f->FFi(2)=epold.z;
|
||||
epold.f->FFp(epold.z)=f;
|
||||
epold.f->FFi(epold.z)=2;
|
||||
ne0=TrivialEar(ep);
|
||||
ne1=TrivialEar(en);
|
||||
np0=ep; // assign the two new
|
||||
np1=en; // pos that denote the ears
|
||||
}
|
||||
else // caso standard // Now compute the new ears;
|
||||
{
|
||||
ne0=TrivialEar(ep);
|
||||
ne1=TrivialEar(face::Pos<typename MESH::FaceType>(f,2,e1.v));
|
||||
np0=ep;
|
||||
np1=PosType(f,2,e1.v);
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -294,41 +278,53 @@ namespace vcg {
|
|||
template<class MESH> class MinimumWeightEar : public TrivialEar<MESH>
|
||||
{
|
||||
public:
|
||||
typename MESH::ScalarType dihedral;
|
||||
typename MESH::ScalarType area;
|
||||
MinimumWeightEar(){}
|
||||
MinimumWeightEar(const face::Pos<typename MESH::FaceType> & ep)
|
||||
{
|
||||
this->e0=ep;
|
||||
assert(this->e0.IsBorder());
|
||||
this->e1=this->e0;
|
||||
this->e1.NextB();
|
||||
this->ComputeQuality();
|
||||
this->ComputeAngle();
|
||||
typename MESH::ScalarType dihedralRad;
|
||||
typename MESH::ScalarType aspectRatio;
|
||||
const char * Dump() {
|
||||
static char buf[200];
|
||||
if(IsConcave()) sprintf(buf,"Dihedral (deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
|
||||
else sprintf(buf,"Dihedral-(deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
|
||||
return buf;
|
||||
}
|
||||
|
||||
MinimumWeightEar(){}
|
||||
MinimumWeightEar(const PosType & ep) : TrivialEar<MESH>(ep)
|
||||
{
|
||||
ComputeQuality();
|
||||
}
|
||||
|
||||
// in the heap we retrieve the LARGEST value,
|
||||
// so if we need the ear with minimal dihedral angle, we must reverse the sign of the comparison.
|
||||
/* virtual inline bool operator < ( const MinimumWeightEar & c ) const
|
||||
{
|
||||
if(IsConcave() == c.IsConcave())
|
||||
{
|
||||
if(dihedralRad > c.dihedralRad) return true;
|
||||
else return ((dihedralRad == c.dihedralRad) && (aspectRatio > c.aspectRatio));
|
||||
}
|
||||
if(IsConcave()) return true;
|
||||
return false;
|
||||
}*/
|
||||
|
||||
virtual inline bool operator < ( const MinimumWeightEar & c ) const
|
||||
{
|
||||
if(dihedral < c.dihedral)return true;
|
||||
else return ((dihedral == c.dihedral) && (area < c.area));
|
||||
|
||||
if(IsConcave() == c.IsConcave())
|
||||
{
|
||||
return pow(dihedralRad,1)> pow(c.dihedralRad,1)/c.aspectRatio;
|
||||
}
|
||||
if(IsConcave()) return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void ComputeQuality()
|
||||
{
|
||||
//comute quality by (dihedral ancgle, area/sum(edge^2) )
|
||||
Point3f n1 = (this->e0.v->N() + this->e1.v->N() + this->e0.VFlip()->N() ) / 3;
|
||||
face::Pos<typename MESH::FaceType> tmp = this->e1;
|
||||
tmp.FlipE();tmp.FlipV();
|
||||
Point3f n2=(this->e1.VFlip()->N() + this->e1.v->N() + tmp.v->N() ) / 3;
|
||||
tmp = this->e0;
|
||||
tmp.FlipE(); tmp.FlipV();
|
||||
Point3f n3=(this->e0.VFlip()->N() + this->e0.v->N() + tmp.v->N() ) / 3;
|
||||
dihedral = std::max(Angle(n1,n2),Angle(n1,n3));
|
||||
//compute quality by (dihedral ancgle, area/sum(edge^2) )
|
||||
Point3f n1=e0.FFlip()->cN();
|
||||
Point3f n2=e1.FFlip()->cN();
|
||||
|
||||
typename MESH::ScalarType ar;
|
||||
ar = ( (this->e0.VFlip()->P() - this->e0.v->P()) ^ ( this->e1.v->P() - this->e0.v->P()) ).Norm() ;
|
||||
|
||||
area = ar ;
|
||||
dihedralRad = std::max(Angle(n,n1),Angle(n,n2));
|
||||
aspectRatio = QualityFace(*this) ;
|
||||
}
|
||||
|
||||
};
|
||||
|
@ -336,9 +332,14 @@ namespace vcg {
|
|||
template<class MESH> class SelfIntersectionEar : public TrivialEar<MESH>
|
||||
{
|
||||
public:
|
||||
static std::vector<FaceType> &AdjacencyRing()
|
||||
{
|
||||
static std::vector<FaceType> ar;
|
||||
return ar;
|
||||
}
|
||||
|
||||
SelfIntersectionEar(){}
|
||||
SelfIntersectionEar(const face::Pos<typename MESH::FaceType> & ep)
|
||||
SelfIntersectionEar(const PosType & ep)
|
||||
{
|
||||
this->e0=ep;
|
||||
assert(this->e0.IsBorder());
|
||||
|
@ -348,100 +349,46 @@ namespace vcg {
|
|||
this->ComputeAngle();
|
||||
}
|
||||
|
||||
virtual bool Close(SelfIntersectionEar &ne0, SelfIntersectionEar &ne1, typename MESH::FaceType * f)
|
||||
virtual bool Close(PosType &np0, PosType &np1, typename MESH::FaceType * f)
|
||||
{
|
||||
// simple topological check
|
||||
if(this->e0.f==this->e1.f) {
|
||||
//printf("Avoided bad ear");
|
||||
return false;
|
||||
}
|
||||
|
||||
face::Pos<typename MESH::FaceType> ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
face::Pos<typename MESH::FaceType> en=this->e1; en.NextB(); // he successivo a e1
|
||||
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
|
||||
PosType en=e1; en.NextB(); // he successivo a e1
|
||||
//costruisco la faccia e poi testo, o copio o butto via.
|
||||
(*f).V(0) = this->e0.VFlip();
|
||||
(*f).V(1) = this->e0.v;
|
||||
(*f).V(2) = this->e1.v;
|
||||
(*f).V(0) = e0.VFlip();
|
||||
(*f).V(1) = e0.v;
|
||||
(*f).V(2) = e1.v;
|
||||
|
||||
(*f).FFp(0) = this->e0.f;
|
||||
(*f).FFi(0) = this->e0.z;
|
||||
(*f).FFp(1) = this->e1.f;
|
||||
(*f).FFi(1) = this->e1.z;
|
||||
(*f).FFp(0) = e0.f;
|
||||
(*f).FFi(0) = e0.z;
|
||||
(*f).FFp(1) = e1.f;
|
||||
(*f).FFi(1) = e1.z;
|
||||
(*f).FFp(2) = f;
|
||||
(*f).FFi(2) = 2;
|
||||
|
||||
int a1, a2;
|
||||
a1= this->e0.z;
|
||||
a2= this->e1.z;
|
||||
a1= e0.z;
|
||||
a2= e1.z;
|
||||
|
||||
this->e0.f->FFp(this->e0.z)=f;
|
||||
this->e0.f->FFi(this->e0.z)=0;
|
||||
e0.f->FFp(e0.z)=f;
|
||||
e0.f->FFi(e0.z)=0;
|
||||
|
||||
this->e1.f->FFp(this->e1.z)=f;
|
||||
this->e1.f->FFi(this->e1.z)=1;
|
||||
typename std::vector<typename MESH::FaceType>::iterator it;
|
||||
for(it = (* this->vf).begin();it!= (* this->vf).end();++it)
|
||||
e1.f->FFp(e1.z)=f;
|
||||
e1.f->FFi(e1.z)=1;
|
||||
std::vector<FaceType>::iterator it;
|
||||
for(it = AdjacencyRing().begin();it!= AdjacencyRing().end();++it)
|
||||
{
|
||||
if(!it->IsD())
|
||||
if( tri::Clean<MESH>::TestIntersection(&(*f),&(*it)))
|
||||
{
|
||||
this->e0.f->FFp(this->e0.z)= this->e0.f;
|
||||
this->e0.f->FFi(this->e0.z)=a1;
|
||||
e0.f->FFp(e0.z)= e0.f;
|
||||
e0.f->FFi(e0.z)=a1;
|
||||
|
||||
this->e1.f->FFp(this->e1.z)=this->e1.f;
|
||||
this->e1.f->FFi(this->e1.z)=a2;
|
||||
e1.f->FFp(e1.z)=e1.f;
|
||||
e1.f->FFi(e1.z)=a2;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
// caso ear degenere per buco triangolare
|
||||
if(ep==en)
|
||||
{
|
||||
//printf("Closing the last triangle");
|
||||
f->FFp(2)=en.f;
|
||||
f->FFi(2)=en.z;
|
||||
en.f->FFp(en.z)=f;
|
||||
en.f->FFi(en.z)=2;
|
||||
ne0.SetNull();
|
||||
ne1.SetNull();
|
||||
}
|
||||
// Caso ear non manifold a
|
||||
else if(ep.v==en.v)
|
||||
{
|
||||
//printf("Ear Non manif A\n");
|
||||
face::Pos<typename MESH::FaceType> enold=en;
|
||||
en.NextB();
|
||||
f->FFp(2)=enold.f;
|
||||
f->FFi(2)=enold.z;
|
||||
enold.f->FFp(enold.z)=f;
|
||||
enold.f->FFi(enold.z)=2;
|
||||
ne0=SelfIntersectionEar(ep);
|
||||
ne0.SetAdjacencyRing(this->vf);
|
||||
ne1=SelfIntersectionEar(en);
|
||||
ne1.SetAdjacencyRing(this->vf);
|
||||
}
|
||||
// Caso ear non manifold b
|
||||
else if(ep.VFlip()==this->e1.v)
|
||||
{
|
||||
//printf("Ear Non manif B\n");
|
||||
face::Pos<typename MESH::FaceType> epold=ep;
|
||||
ep.FlipV(); ep.NextB(); ep.FlipV();
|
||||
f->FFp(2)=epold.f;
|
||||
f->FFi(2)=epold.z;
|
||||
epold.f->FFp(epold.z)=f;
|
||||
epold.f->FFi(epold.z)=2;
|
||||
ne0=SelfIntersectionEar(ep);
|
||||
ne0.SetAdjacencyRing(this->vf);
|
||||
ne1=SelfIntersectionEar(en);
|
||||
ne1.SetAdjacencyRing(this->vf);
|
||||
}
|
||||
else// Now compute the new ears;
|
||||
{
|
||||
ne0=SelfIntersectionEar(ep);
|
||||
ne0.SetAdjacencyRing(this->vf);
|
||||
ne1=SelfIntersectionEar(face::Pos<typename MESH::FaceType>(f,2,this->e1.v));
|
||||
ne1.SetAdjacencyRing(this->vf);
|
||||
}
|
||||
return true;
|
||||
return ((TrivialEar<MESH> *)this)->Close(np0,np1,f);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -483,11 +430,6 @@ public:
|
|||
Box3Type bb;
|
||||
|
||||
bool operator < (const Info & hh) const {return size < hh.size;}
|
||||
bool operator > (const Info & hh) const {return size > hh.size;}
|
||||
bool operator == (const Info & hh) const {return size == hh.size;}
|
||||
bool operator != (const Info & hh) const {return size != hh.size;}
|
||||
bool operator >= (const Info & hh) const {return size >= hh.size;}
|
||||
bool operator <= (const Info & hh) const {return size <= hh.size;}
|
||||
|
||||
ScalarType Perimeter()
|
||||
{
|
||||
|
@ -530,68 +472,65 @@ template<class EAR>
|
|||
assert(h.p.f >= &*m.face.begin());
|
||||
assert(h.p.f < &*m.face.end());
|
||||
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
|
||||
std::vector<EAR > H; //vettore di orecchie
|
||||
std::vector< EAR > H;
|
||||
H.reserve(h.size);
|
||||
int nmBit= VertexType::NewBitFlag(); // non manifoldness bit
|
||||
|
||||
//First loops around the hole to mark non manifold vertices.
|
||||
PosType ip = h.p; // Pos iterator
|
||||
do{
|
||||
ip.V()->ClearUserBit(nmBit);
|
||||
ip.V()->ClearV();
|
||||
ip.NextB();
|
||||
} while(ip!=h.p);
|
||||
|
||||
ip = h.p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
|
||||
do{
|
||||
if(!ip.V()->IsV())
|
||||
ip.V()->SetV(); // All the vertexes that are visited more than once are non manifold
|
||||
else ip.V()->SetUserBit(nmBit);
|
||||
ip.NextB();
|
||||
} while(ip!=h.p);
|
||||
|
||||
//prendo le informazioni sul buco
|
||||
PosType ff = h.p;
|
||||
PosType fp = h.p;
|
||||
do{
|
||||
EAR app = EAR(fp);
|
||||
app.SetAdjacencyRing(vf);
|
||||
H.push_back( app );
|
||||
fp.NextB();//semmai da provare a sostituire il codice della NextB();
|
||||
printf("Adding ear %s ",app.Dump());
|
||||
fp.NextB();
|
||||
assert(fp.IsBorder());
|
||||
}while(fp!=ff);
|
||||
}while(fp!=h.p);
|
||||
|
||||
bool fitted = false;
|
||||
int cnt=h.size;
|
||||
FaceIterator tmp;
|
||||
|
||||
make_heap(H.begin(), H.end());
|
||||
|
||||
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
|
||||
while( cnt > 2 && !H.empty() )
|
||||
{
|
||||
pop_heap(H.begin(), H.end());
|
||||
EAR en0,en1;
|
||||
printf("Front of the heap is %s", H.front().Dump());
|
||||
pop_heap(H.begin(), H.end()); // retrieve the MAXIMUM value and put in the back;
|
||||
PosType ep0,ep1;
|
||||
EAR BestEar=H.back();
|
||||
H.pop_back();
|
||||
|
||||
FaceIterator Fadd = f;
|
||||
if(BestEar.IsUpToDate() && !BestEar.IsConvex())
|
||||
if(BestEar.IsUpToDate() && !BestEar.IsDegen(nmBit))
|
||||
{
|
||||
if(!BestEar.Degen()){
|
||||
if(BestEar.Close(en0,en1,&*f))
|
||||
if(BestEar.Close(ep0,ep1,&*f))
|
||||
{
|
||||
if(!en0.IsNull()){
|
||||
H.push_back(en0);
|
||||
if(!ep0.IsNull()){
|
||||
H.push_back(EAR(ep0));
|
||||
push_heap( H.begin(), H.end());
|
||||
}
|
||||
if(!en1.IsNull()){
|
||||
H.push_back(en1);
|
||||
if(!ep1.IsNull()){
|
||||
H.push_back(EAR(ep1));
|
||||
push_heap( H.begin(), H.end());
|
||||
}
|
||||
--cnt;
|
||||
f->SetUserBit(UBIT);
|
||||
if(vf != 0) (*vf).push_back(*f);
|
||||
++f;
|
||||
fitted = true;
|
||||
}
|
||||
}
|
||||
//ultimo buco o unico buco.
|
||||
if(cnt == 3 && !fitted)
|
||||
{
|
||||
if(BestEar.Close(en0,en1,&*f))
|
||||
{
|
||||
--cnt;
|
||||
if(vf != 0)(*vf).push_back(*f);
|
||||
++f;
|
||||
}
|
||||
}
|
||||
}//is update()
|
||||
fitted = false;
|
||||
//non ho messo il triangolo quindi tolgo l'orecchio e continuo.
|
||||
|
||||
}//fine del while principale.
|
||||
//tolgo le facce non utilizzate.
|
||||
while(f!=m.face.end())
|
||||
|
@ -600,10 +539,13 @@ template<class EAR>
|
|||
++f;
|
||||
m.fn--;
|
||||
}
|
||||
|
||||
VertexType::DeleteBitFlag(nmBit); // non manifoldness bit
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template<class EAR>//!!!
|
||||
static void EarCuttingFill(MESH &m, int sizeHole,bool Selected = false, CallBackPos *cb=0)
|
||||
{
|
||||
|
@ -648,35 +590,33 @@ template<class EAR>
|
|||
typename std::vector<Info >::iterator ith;
|
||||
Info app;
|
||||
|
||||
// collect the face pointer that has to be updated by the various addfaces
|
||||
std::vector<FacePointer *> vfp;
|
||||
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
|
||||
{
|
||||
app=(Info)*ith;
|
||||
vfp.push_back( &app.p.f );
|
||||
}
|
||||
vfp.push_back( &(*ith).p.f );
|
||||
|
||||
EAR::AdjacencyRing().clear();
|
||||
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
|
||||
{
|
||||
app=(Info)*ith;
|
||||
if(app.size < sizeHole){
|
||||
if((*ith).size < sizeHole){
|
||||
|
||||
//colleziono il ring intorno al buco per poi fare il test sul'intersezione
|
||||
sp = app.p;
|
||||
//Loops around the hole to collect the races .
|
||||
PosType ip = (*ith).p;
|
||||
do
|
||||
{
|
||||
ap = sp;
|
||||
PosType inp = ip;
|
||||
do
|
||||
{
|
||||
ap.FlipE();
|
||||
ap.FlipF();
|
||||
vf.push_back(*ap.f);
|
||||
}while(!ap.IsBorder());
|
||||
sp.NextB();
|
||||
inp.FlipE();
|
||||
inp.FlipF();
|
||||
EAR::AdjacencyRing().push_back(*inp.f);
|
||||
} while(!inp.IsBorder());
|
||||
ip.NextB();
|
||||
|
||||
}while(sp != app.p);
|
||||
}while(ip != app.p);
|
||||
|
||||
FillHoleEar<EAR >(m, app,UBIT,vfp,&vf);
|
||||
vf.clear();
|
||||
EAR::AdjacencyRing().clear();
|
||||
}
|
||||
}
|
||||
FaceIterator fi;
|
||||
|
@ -705,8 +645,6 @@ template<class EAR>
|
|||
(*fi).SetUserBit(UBIT);
|
||||
}
|
||||
else
|
||||
{
|
||||
if( !(*fi).IsUserBit(UBIT) )
|
||||
{
|
||||
for(int j =0; j<3 ; ++j)
|
||||
{
|
||||
|
@ -735,7 +673,6 @@ template<class EAR>
|
|||
VHI.push_back( Info(sp,holesize,hbox) );
|
||||
}
|
||||
}//for sugli edge del triangolo
|
||||
}//se e' gia stato visitato
|
||||
}//S & !S
|
||||
}//!IsD()
|
||||
}//for principale!!!
|
||||
|
|
Loading…
Reference in New Issue