Heavily restructured and corrected. Now a single Close ear function

Corrected Hole search function, and management of double non manifold vertex in a hole
Changed priority strategy in the heap, now a mix of quality and dihedral angle.
Changed but still untested IntersectionEar
This commit is contained in:
Paolo Cignoni 2006-12-06 00:12:53 +00:00
parent 588582f470
commit b9be8bd5fd
1 changed files with 182 additions and 245 deletions

View File

@ -24,6 +24,9 @@
History
$Log: not supported by cvs2svn $
Revision 1.24 2006/12/01 21:24:16 cignoni
Corrected bug in the search of holes. Removed output prints
Revision 1.23 2006/12/01 08:53:55 cignoni
Corrected pop_heap vs pop_back issue in heap usage
@ -114,7 +117,7 @@ namespace vcg {
/*
Un ear e' identificato da due hedge pos.
i vertici dell'ear sono
e0.FlipV().v
e0.VFlip().v
e0.v
e1.v
Vale che e1== e0.NextB();
@ -134,87 +137,67 @@ namespace vcg {
template<class MESH> class TrivialEar
{
public:
face::Pos<typename MESH::FaceType> e0;
face::Pos<typename MESH::FaceType> e1;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::FaceType FaceType;
typedef typename face::Pos<FaceType> PosType;
typedef typename MESH::ScalarType ScalarType;
typedef typename MESH::CoordType CoordType;
PosType e0;
PosType e1;
CoordType n; // the normal of the face defined by the ear
const char * Dump() {return 0;}
const CoordType &cP(int i) const {return P(i);}
const CoordType &P(int i) const {
switch(i) {
case 0 : return e0.v->cP();
case 1 : return e1.v->cP();
case 2 : return e0.VFlip()->cP();
default: assert(0);
}
return e0.v->cP();
}
ScalarType quality;
ScalarType angle;
std::vector<typename MESH::FaceType>* vf;
TrivialEar(){}
TrivialEar(const face::Pos<typename MESH::FaceType> & ep)
//std::vector<typename MESH::FaceType>* vf;
TrivialEar(){}
TrivialEar(const PosType & ep)
{
e0=ep;
assert(e0.IsBorder());
e1=e0;
e1.NextB();
n=Normal<TrivialEar>(*this);
ComputeQuality();
ComputeAngle();
}
void SetAdjacencyRing(std::vector<typename MESH::FaceType>* ar){vf = ar;}
/// Compute the angle of the two edges of the ear.
/// Compute the angle of the two edges of the ear.
// it tries to make the computation in a precision safe way.
// the angle computation takes into account the case of reversed ears
void ComputeAngle()
{
Point3f p1 = e0.VFlip()->P() - e0.v->P();
Point3f p2 = e1.v->P() - e0.v->P();
ScalarType w = p2.Norm()*p1.Norm();
if(w==0)
angle = acos(0.0f);
else
{
ScalarType p = (p2*p1);
p= p/w;
if(p < -1) p = -1;
if(p > 1) p = 1;
p = acos(p);
Point3f NormalOfEar = p2^p1;
ScalarType n = NormalOfEar * e0.v->N();
if(n<0) p = (2.0 *(float)M_PI) - p;
angle = p;
}
}
{
angle=Angle(cP(2)-cP(0), cP(1)-cP(0));
ScalarType flipAngle = n * e0.v->N();
if(flipAngle<0) angle = (2.0 *(float)M_PI) - angle;
}
virtual inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; }
bool IsNull(){return e0.IsNull() || e1.IsNull();}
void SetNull(){e0.SetNull();e1.SetNull();}
virtual void ComputeQuality()
{
ScalarType ar;
ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ;
ScalarType area = (ar);
ScalarType l1 = Distance( e0.v->P(),e1.v->P());
ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P());
ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P());
quality = area / ( (l1 *l1) + (l2 * l2) + (l3 * l3) );
};
virtual void ComputeQuality() { quality = QualityFace(*this) ; };
bool IsUpToDate() {return ( e0.IsBorder() && e1.IsBorder());};
// An ear is degenerated if both of its two endpoints are non manifold.
bool IsDegen(const int nonManifoldBit)
{
if(e0.VFlip()->IsUserBit(nonManifoldBit) && e1.V()->IsUserBit(nonManifoldBit))
return true;
else return false;
}
bool IsConcave() const {return(angle > (float)M_PI);}
bool IsConvex(){return(angle > (float)M_PI);}
bool Degen()
{
face::Pos<typename MESH::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MESH::FaceType> en=e1; en.NextB(); // he successivo a e1
// caso ear degenere per buco triangolare
if(ep==en) return true;//provo a togliere sto controllo
// Caso ear non manifold a
if(ep.v==en.v) return true;
// Caso ear non manifold b
if(ep.VFlip()==e1.v) return true;
return false;
}
virtual bool Close(TrivialEar &ne0, TrivialEar &ne1, typename MESH::FaceType * f)
virtual bool Close(PosType &np0, PosType &np1, FaceType * f)
{
// simple topological check
if(e0.f==e1.f) {
@ -223,12 +206,13 @@ namespace vcg {
}
//usato per generare una delle due nuove orecchie.
face::Pos<typename MESH::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MESH::FaceType> en=e1; en.NextB(); // he successivo a e1
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
PosType en=e1; en.NextB(); // he successivo a e1
(*f).V(0) = e0.VFlip();
(*f).V(1) = e0.v;
(*f).V(2) = e1.v;
ComputeNormal(*f);
(*f).FFp(0) = e0.f;
(*f).FFi(0) = e0.z;
@ -251,39 +235,39 @@ namespace vcg {
f->FFi(2)=en.z;
en.f->FFp(en.z)=f;
en.f->FFi(en.z)=2;
ne0.SetNull();
ne1.SetNull();
np0.SetNull();
np1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
//printf("Ear Non manif A\n");
face::Pos<typename MESH::FaceType> enold=en;
PosType enold=en;
en.NextB();
f->FFp(2)=enold.f;
f->FFi(2)=enold.z;
enold.f->FFp(enold.z)=f;
enold.f->FFi(enold.z)=2;
ne0=TrivialEar(ep);
ne1=TrivialEar(en);
np0=ep;
np1=en;
}
// Caso ear non manifold b
else if(ep.VFlip()==e1.v)
{
//printf("Ear Non manif B\n");
face::Pos<typename MESH::FaceType> epold=ep;
PosType epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->FFp(2)=epold.f;
f->FFi(2)=epold.z;
epold.f->FFp(epold.z)=f;
epold.f->FFi(epold.z)=2;
ne0=TrivialEar(ep);
ne1=TrivialEar(en);
np0=ep; // assign the two new
np1=en; // pos that denote the ears
}
else // caso standard // Now compute the new ears;
{
ne0=TrivialEar(ep);
ne1=TrivialEar(face::Pos<typename MESH::FaceType>(f,2,e1.v));
np0=ep;
np1=PosType(f,2,e1.v);
}
return true;
@ -294,41 +278,53 @@ namespace vcg {
template<class MESH> class MinimumWeightEar : public TrivialEar<MESH>
{
public:
typename MESH::ScalarType dihedral;
typename MESH::ScalarType area;
typename MESH::ScalarType dihedralRad;
typename MESH::ScalarType aspectRatio;
const char * Dump() {
static char buf[200];
if(IsConcave()) sprintf(buf,"Dihedral (deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
else sprintf(buf,"Dihedral-(deg) %6.2f Quality %6.2f\n",math::ToDeg(dihedralRad),aspectRatio);
return buf;
}
MinimumWeightEar(){}
MinimumWeightEar(const face::Pos<typename MESH::FaceType> & ep)
MinimumWeightEar(const PosType & ep) : TrivialEar<MESH>(ep)
{
this->e0=ep;
assert(this->e0.IsBorder());
this->e1=this->e0;
this->e1.NextB();
this->ComputeQuality();
this->ComputeAngle();
ComputeQuality();
}
virtual inline bool operator < ( const MinimumWeightEar & c ) const
// in the heap we retrieve the LARGEST value,
// so if we need the ear with minimal dihedral angle, we must reverse the sign of the comparison.
/* virtual inline bool operator < ( const MinimumWeightEar & c ) const
{
if(dihedral < c.dihedral)return true;
else return ((dihedral == c.dihedral) && (area < c.area));
if(IsConcave() == c.IsConcave())
{
if(dihedralRad > c.dihedralRad) return true;
else return ((dihedralRad == c.dihedralRad) && (aspectRatio > c.aspectRatio));
}
if(IsConcave()) return true;
return false;
}*/
virtual inline bool operator < ( const MinimumWeightEar & c ) const
{
if(IsConcave() == c.IsConcave())
{
return pow(dihedralRad,1)> pow(c.dihedralRad,1)/c.aspectRatio;
}
if(IsConcave()) return true;
return false;
}
virtual void ComputeQuality()
{
//comute quality by (dihedral ancgle, area/sum(edge^2) )
Point3f n1 = (this->e0.v->N() + this->e1.v->N() + this->e0.VFlip()->N() ) / 3;
face::Pos<typename MESH::FaceType> tmp = this->e1;
tmp.FlipE();tmp.FlipV();
Point3f n2=(this->e1.VFlip()->N() + this->e1.v->N() + tmp.v->N() ) / 3;
tmp = this->e0;
tmp.FlipE(); tmp.FlipV();
Point3f n3=(this->e0.VFlip()->N() + this->e0.v->N() + tmp.v->N() ) / 3;
dihedral = std::max(Angle(n1,n2),Angle(n1,n3));
{
//compute quality by (dihedral ancgle, area/sum(edge^2) )
Point3f n1=e0.FFlip()->cN();
Point3f n2=e1.FFlip()->cN();
typename MESH::ScalarType ar;
ar = ( (this->e0.VFlip()->P() - this->e0.v->P()) ^ ( this->e1.v->P() - this->e0.v->P()) ).Norm() ;
area = ar ;
dihedralRad = std::max(Angle(n,n1),Angle(n,n2));
aspectRatio = QualityFace(*this) ;
}
};
@ -336,9 +332,14 @@ namespace vcg {
template<class MESH> class SelfIntersectionEar : public TrivialEar<MESH>
{
public:
static std::vector<FaceType> &AdjacencyRing()
{
static std::vector<FaceType> ar;
return ar;
}
SelfIntersectionEar(){}
SelfIntersectionEar(const face::Pos<typename MESH::FaceType> & ep)
SelfIntersectionEar(const PosType & ep)
{
this->e0=ep;
assert(this->e0.IsBorder());
@ -348,100 +349,46 @@ namespace vcg {
this->ComputeAngle();
}
virtual bool Close(SelfIntersectionEar &ne0, SelfIntersectionEar &ne1, typename MESH::FaceType * f)
virtual bool Close(PosType &np0, PosType &np1, typename MESH::FaceType * f)
{
// simple topological check
if(this->e0.f==this->e1.f) {
//printf("Avoided bad ear");
return false;
}
face::Pos<typename MESH::FaceType> ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
face::Pos<typename MESH::FaceType> en=this->e1; en.NextB(); // he successivo a e1
PosType ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0
PosType en=e1; en.NextB(); // he successivo a e1
//costruisco la faccia e poi testo, o copio o butto via.
(*f).V(0) = this->e0.VFlip();
(*f).V(1) = this->e0.v;
(*f).V(2) = this->e1.v;
(*f).V(0) = e0.VFlip();
(*f).V(1) = e0.v;
(*f).V(2) = e1.v;
(*f).FFp(0) = this->e0.f;
(*f).FFi(0) = this->e0.z;
(*f).FFp(1) = this->e1.f;
(*f).FFi(1) = this->e1.z;
(*f).FFp(0) = e0.f;
(*f).FFi(0) = e0.z;
(*f).FFp(1) = e1.f;
(*f).FFi(1) = e1.z;
(*f).FFp(2) = f;
(*f).FFi(2) = 2;
int a1, a2;
a1= this->e0.z;
a2= this->e1.z;
a1= e0.z;
a2= e1.z;
this->e0.f->FFp(this->e0.z)=f;
this->e0.f->FFi(this->e0.z)=0;
e0.f->FFp(e0.z)=f;
e0.f->FFi(e0.z)=0;
this->e1.f->FFp(this->e1.z)=f;
this->e1.f->FFi(this->e1.z)=1;
typename std::vector<typename MESH::FaceType>::iterator it;
for(it = (* this->vf).begin();it!= (* this->vf).end();++it)
e1.f->FFp(e1.z)=f;
e1.f->FFi(e1.z)=1;
std::vector<FaceType>::iterator it;
for(it = AdjacencyRing().begin();it!= AdjacencyRing().end();++it)
{
if(!it->IsD())
if( tri::Clean<MESH>::TestIntersection(&(*f),&(*it)))
if( tri::Clean<MESH>::TestIntersection(&(*f),&(*it)))
{
this->e0.f->FFp(this->e0.z)= this->e0.f;
this->e0.f->FFi(this->e0.z)=a1;
e0.f->FFp(e0.z)= e0.f;
e0.f->FFi(e0.z)=a1;
this->e1.f->FFp(this->e1.z)=this->e1.f;
this->e1.f->FFi(this->e1.z)=a2;
e1.f->FFp(e1.z)=e1.f;
e1.f->FFi(e1.z)=a2;
return false;
}
}
// caso ear degenere per buco triangolare
if(ep==en)
{
//printf("Closing the last triangle");
f->FFp(2)=en.f;
f->FFi(2)=en.z;
en.f->FFp(en.z)=f;
en.f->FFi(en.z)=2;
ne0.SetNull();
ne1.SetNull();
}
// Caso ear non manifold a
else if(ep.v==en.v)
{
//printf("Ear Non manif A\n");
face::Pos<typename MESH::FaceType> enold=en;
en.NextB();
f->FFp(2)=enold.f;
f->FFi(2)=enold.z;
enold.f->FFp(enold.z)=f;
enold.f->FFi(enold.z)=2;
ne0=SelfIntersectionEar(ep);
ne0.SetAdjacencyRing(this->vf);
ne1=SelfIntersectionEar(en);
ne1.SetAdjacencyRing(this->vf);
}
// Caso ear non manifold b
else if(ep.VFlip()==this->e1.v)
{
//printf("Ear Non manif B\n");
face::Pos<typename MESH::FaceType> epold=ep;
ep.FlipV(); ep.NextB(); ep.FlipV();
f->FFp(2)=epold.f;
f->FFi(2)=epold.z;
epold.f->FFp(epold.z)=f;
epold.f->FFi(epold.z)=2;
ne0=SelfIntersectionEar(ep);
ne0.SetAdjacencyRing(this->vf);
ne1=SelfIntersectionEar(en);
ne1.SetAdjacencyRing(this->vf);
}
else// Now compute the new ears;
{
ne0=SelfIntersectionEar(ep);
ne0.SetAdjacencyRing(this->vf);
ne1=SelfIntersectionEar(face::Pos<typename MESH::FaceType>(f,2,this->e1.v));
ne1.SetAdjacencyRing(this->vf);
}
return true;
return ((TrivialEar<MESH> *)this)->Close(np0,np1,f);
}
};
@ -483,11 +430,6 @@ public:
Box3Type bb;
bool operator < (const Info & hh) const {return size < hh.size;}
bool operator > (const Info & hh) const {return size > hh.size;}
bool operator == (const Info & hh) const {return size == hh.size;}
bool operator != (const Info & hh) const {return size != hh.size;}
bool operator >= (const Info & hh) const {return size >= hh.size;}
bool operator <= (const Info & hh) const {return size <= hh.size;}
ScalarType Perimeter()
{
@ -530,68 +472,65 @@ template<class EAR>
assert(h.p.f >= &*m.face.begin());
assert(h.p.f < &*m.face.end());
assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto!
std::vector<EAR > H; //vettore di orecchie
std::vector< EAR > H;
H.reserve(h.size);
int nmBit= VertexType::NewBitFlag(); // non manifoldness bit
//First loops around the hole to mark non manifold vertices.
PosType ip = h.p; // Pos iterator
do{
ip.V()->ClearUserBit(nmBit);
ip.V()->ClearV();
ip.NextB();
} while(ip!=h.p);
ip = h.p; // Re init the pos iterator for another loop (useless if everithing is ok!!)
do{
if(!ip.V()->IsV())
ip.V()->SetV(); // All the vertexes that are visited more than once are non manifold
else ip.V()->SetUserBit(nmBit);
ip.NextB();
} while(ip!=h.p);
//prendo le informazioni sul buco
PosType ff = h.p;
PosType fp = h.p;
do{
EAR app = EAR(fp);
app.SetAdjacencyRing(vf);
H.push_back( app );
fp.NextB();//semmai da provare a sostituire il codice della NextB();
printf("Adding ear %s ",app.Dump());
fp.NextB();
assert(fp.IsBorder());
}while(fp!=ff);
}while(fp!=h.p);
bool fitted = false;
int cnt=h.size;
FaceIterator tmp;
make_heap(H.begin(), H.end());
//finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare.
while( cnt > 2 && !H.empty() )
{
pop_heap(H.begin(), H.end());
EAR en0,en1;
{
printf("Front of the heap is %s", H.front().Dump());
pop_heap(H.begin(), H.end()); // retrieve the MAXIMUM value and put in the back;
PosType ep0,ep1;
EAR BestEar=H.back();
H.pop_back();
FaceIterator Fadd = f;
if(BestEar.IsUpToDate() && !BestEar.IsConvex())
{
if(!BestEar.Degen()){
if(BestEar.Close(en0,en1,&*f))
if(BestEar.IsUpToDate() && !BestEar.IsDegen(nmBit))
{
if(BestEar.Close(ep0,ep1,&*f))
{
if(!en0.IsNull()){
H.push_back(en0);
if(!ep0.IsNull()){
H.push_back(EAR(ep0));
push_heap( H.begin(), H.end());
}
if(!en1.IsNull()){
H.push_back(en1);
if(!ep1.IsNull()){
H.push_back(EAR(ep1));
push_heap( H.begin(), H.end());
}
--cnt;
f->SetUserBit(UBIT);
if(vf != 0) (*vf).push_back(*f);
++f;
fitted = true;
}
}
//ultimo buco o unico buco.
if(cnt == 3 && !fitted)
{
if(BestEar.Close(en0,en1,&*f))
{
--cnt;
if(vf != 0)(*vf).push_back(*f);
++f;
}
}
}//is update()
fitted = false;
//non ho messo il triangolo quindi tolgo l'orecchio e continuo.
}//is update()
}//fine del while principale.
//tolgo le facce non utilizzate.
while(f!=m.face.end())
@ -600,7 +539,10 @@ template<class EAR>
++f;
m.fn--;
}
}
VertexType::DeleteBitFlag(nmBit); // non manifoldness bit
}
@ -648,35 +590,33 @@ template<class EAR>
typename std::vector<Info >::iterator ith;
Info app;
std::vector<FacePointer *> vfp;
// collect the face pointer that has to be updated by the various addfaces
std::vector<FacePointer *> vfp;
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
vfp.push_back( &(*ith).p.f );
EAR::AdjacencyRing().clear();
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
app=(Info)*ith;
vfp.push_back( &app.p.f );
}
if((*ith).size < sizeHole){
for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith)
{
app=(Info)*ith;
if(app.size < sizeHole){
//colleziono il ring intorno al buco per poi fare il test sul'intersezione
sp = app.p;
//Loops around the hole to collect the races .
PosType ip = (*ith).p;
do
{
ap = sp;
PosType inp = ip;
do
{
ap.FlipE();
ap.FlipF();
vf.push_back(*ap.f);
}while(!ap.IsBorder());
sp.NextB();
inp.FlipE();
inp.FlipF();
EAR::AdjacencyRing().push_back(*inp.f);
} while(!inp.IsBorder());
ip.NextB();
}while(sp != app.p);
}while(ip != app.p);
FillHoleEar<EAR >(m, app,UBIT,vfp,&vf);
vf.clear();
EAR::AdjacencyRing().clear();
}
}
FaceIterator fi;
@ -706,8 +646,6 @@ template<class EAR>
}
else
{
if( !(*fi).IsUserBit(UBIT) )
{
for(int j =0; j<3 ; ++j)
{
if( face::IsBorder(*fi,j) && !(*fi).IsUserBit(UBIT) )
@ -735,7 +673,6 @@ template<class EAR>
VHI.push_back( Info(sp,holesize,hbox) );
}
}//for sugli edge del triangolo
}//se e' gia stato visitato
}//S & !S
}//!IsD()
}//for principale!!!