This commit is contained in:
Marco Callieri 2018-06-04 14:16:08 +02:00
commit bb2d190b88
13 changed files with 1683 additions and 612 deletions

View File

@ -176,7 +176,7 @@ public:
/**
* @brief MarkFauxEdgeWithPolyLine marks the edges of basemesh as non-faux when they coincide with the polyline ones *
* @brief TagFaceEdgeSelWithPolyLine selects edges of basemesh when they coincide with the polyline ones *
* @param poly
* @return true if all the edges of the polyline are snapped onto the mesh.
*
@ -642,7 +642,7 @@ bool TagFaceEdgeSelWithPolyLine(MeshType &poly,bool markFlag=true)
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
printf("Simplify %5i -> %5i (total len %5.2f)\n",startEn,poly.en,hist.Sum());
// printf("Simplify %5i -> %5i (total len %5.2f)\n",startEn,poly.en,hist.Sum());
}
void EvaluateHausdorffDistance(MeshType &poly, Distribution<ScalarType> &dist)
@ -1007,7 +1007,7 @@ bool TagFaceEdgeSelWithPolyLine(MeshType &poly,bool markFlag=true)
}
}
// tri::Allocator<MeshType>::CompactEveryVector(poly);
printf("Refine %i -> %i\n",startEdgeSize,poly.en);fflush(stdout);
// printf("Refine %i -> %i\n",startEdgeSize,poly.en);fflush(stdout);
}
/**
@ -1068,7 +1068,7 @@ bool TagFaceEdgeSelWithPolyLine(MeshType &poly,bool markFlag=true)
{
tri::RequireCompactness(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
printf("SmoothProject: Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(poly));
// printf("SmoothProject: Selected vert num %i\n",tri::UpdateSelection<MeshType>::VertexCount(poly));
assert(poly.en>0 && base.fn>0);
for(int k=0;k<iterNum;++k)
{
@ -1117,7 +1117,7 @@ bool TagFaceEdgeSelWithPolyLine(MeshType &poly,bool markFlag=true)
tri::UpdateTopology<MeshType>::TestVertexEdge(poly);
int dupVertNum = Clean<MeshType>::RemoveDuplicateVertex(poly);
if(dupVertNum) {
printf("****REMOVED %i Duplicated\n",dupVertNum);
// printf("****REMOVED %i Duplicated\n",dupVertNum);
tri::Allocator<MeshType>::CompactEveryVector(poly);
tri::UpdateTopology<MeshType>::VertexEdge(poly);
}

View File

@ -217,26 +217,28 @@ class Smooth
//if we are applying to a tetrahedral mesh:
ForEachTetra(m, [&](TetraType &t) {
for (int i = 0; i < 4; ++i)
if (!t.IsB(i))
for (int i = 0; i < 6; ++i)
{
VertexPointer v0, v1, vo0, vo1;
v0 = t.V(Tetra::VofE(i, 0));
v1 = t.V(Tetra::VofE(i, 1));
if (cotangentFlag)
{
VertexPointer v0, v1, v2;
v0 = t.V(Tetra::VofF(i, 0));
v1 = t.V(Tetra::VofF(i, 1));
v2 = t.V(Tetra::VofF(i, 2));
vo0 = t.V(Tetra::VofE(5 - i, 0));
vo1 = t.V(Tetra::VofE(5 - i, 1));
TD[v0].sum += v1->P() * weight;
TD[v0].sum += v2->P() * weight;
TD[v0].cnt += 2 * weight;
ScalarType angle = Tetra::DihedralAngle(t, 5 - i);
ScalarType length = vcg::Distance(vo0->P(), vo1->P());
TD[v1].sum += v0->P() * weight;
TD[v1].sum += v2->P() * weight;
TD[v1].cnt += 2 * weight;
TD[v2].sum += v0->P() * weight;
TD[v2].sum += v1->P() * weight;
TD[v2].cnt += 2 * weight;
weight = (length / 6.) * (tan(M_PI / 2. - angle));
}
TD[v0].sum += v1->cP() * weight;
TD[v1].sum += v0->cP() * weight;
TD[v0].cnt += weight;
TD[v1].cnt += weight;
}
});
ForEachTetra(m, [&](TetraType &t) {
@ -258,28 +260,28 @@ class Smooth
}
});
ForEachTetra(m, [&](TetraType &t) {
for (int i = 0; i < 4; ++i)
if (t.IsB(i))
{
VertexPointer v0, v1, v2;
v0 = t.V(Tetra::VofF(i, 0));
v1 = t.V(Tetra::VofF(i, 1));
v2 = t.V(Tetra::VofF(i, 2));
// ForEachTetra(m, [&](TetraType &t) {
// for (int i = 0; i < 4; ++i)
// if (t.IsB(i))
// {
// VertexPointer v0, v1, v2;
// v0 = t.V(Tetra::VofF(i, 0));
// v1 = t.V(Tetra::VofF(i, 1));
// v2 = t.V(Tetra::VofF(i, 2));
TD[v0].sum += v1->P() * weight;
TD[v0].sum += v2->P() * weight;
TD[v0].cnt += 2 * weight;
// TD[v0].sum += v1->P();
// TD[v0].sum += v2->P();
// TD[v0].cnt += 2;
TD[v1].sum += v0->P() * weight;
TD[v1].sum += v2->P() * weight;
TD[v1].cnt += 2 * weight;
// TD[v1].sum += v0->P();
// TD[v1].sum += v2->P();
// TD[v1].cnt += 2;
TD[v2].sum += v0->P() * weight;
TD[v2].sum += v1->P() * weight;
TD[v2].cnt += 2 * weight;
}
});
// TD[v2].sum += v0->P();
// TD[v2].sum += v1->P();
// TD[v2].cnt += 2;
// }
// });
FaceIterator fi;
for (fi = m.face.begin(); fi != m.face.end(); ++fi)

View File

@ -31,6 +31,7 @@
#include <vcg/complex/algorithms/closest.h>
#include <vcg/space/index/grid_static_ptr.h>
#include <vcg/complex/algorithms/inertia.h>
#include <vcg/space/polygon3.h>
namespace vcg {
@ -264,6 +265,17 @@ public:
return area/ScalarType(2.0);
}
static ScalarType ComputePolyMeshArea(MeshType & m)
{
ScalarType area=0;
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi)
if(!(*fi).IsD())
area += PolyArea(*fi);
return area;
}
static ScalarType ComputeBorderLength(MeshType & m)
{
RequireFFAdjacency(m);

View File

@ -0,0 +1,495 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef __VCG_IMPLICIT_TETRA_SMOOTHER
#define __VCG_IMPLICIT_TETRA_SMOOTHER
#include <Eigen/Sparse>
#include <vcg/complex/algorithms/mesh_to_matrix.h>
#include <vcg/complex/algorithms/update/quality.h>
#include <vcg/complex/algorithms/smooth.h>
#define PENALTY 10000
namespace vcg
{
template <class MeshType>
class ImplicitTetraSmoother
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename Eigen::Matrix<ScalarType, Eigen::Dynamic, Eigen::Dynamic> MatrixXm;
public:
struct FaceConstraint
{
int numF;
std::vector<ScalarType> BarycentricW;
CoordType TargetPos;
FaceConstraint()
{
numF = -1;
}
FaceConstraint(int _numF,
const std::vector<ScalarType> &_BarycentricW,
const CoordType &_TargetPos)
{
numF = _numF;
BarycentricW = std::vector<ScalarType>(_BarycentricW.begin(), _BarycentricW.end());
TargetPos = _TargetPos;
}
};
struct Parameter
{
//the amount of smoothness, useful only if we set the mass matrix
ScalarType lambda;
//the use of mass matrix to keep the mesh close to its original position
//(weighted per area distributed on vertices)
bool useMassMatrix;
//this bool is used to fix the border vertices of the mesh or not
bool fixBorder;
//this bool is used to set if cotangent weight is used, this flag to false means uniform laplacian
bool useCotWeight;
//use this weight for the laplacian when the cotangent one is not used
ScalarType lapWeight;
//the set of fixed vertices
std::vector<int> FixedV;
//the set of faces for barycentric constraints
std::vector<FaceConstraint> ConstrainedF;
//the degree of laplacian
int degree;
//this is to say if we smooth the positions or the quality
bool SmoothQ;
Parameter()
{
degree = 2;
lambda = 0.05;
useMassMatrix = true;
fixBorder = true;
useCotWeight = false;
lapWeight = 1;
SmoothQ = false;
}
};
private:
static void InitSparse(const std::vector<std::pair<int, int>> &Index,
const std::vector<ScalarType> &Values,
const int m,
const int n,
Eigen::SparseMatrix<ScalarType> &X)
{
assert(Index.size() == Values.size());
std::vector<Eigen::Triplet<ScalarType>> IJV;
IJV.reserve(Index.size());
for (size_t i = 0; i < Index.size(); i++)
{
int row = Index[i].first;
int col = Index[i].second;
ScalarType val = Values[i];
assert(row < m);
assert(col < n);
IJV.push_back(Eigen::Triplet<ScalarType>(row, col, val));
}
X.resize(m, n);
X.setFromTriplets(IJV.begin(), IJV.end());
}
static void CollectHardConstraints(MeshType &mesh, const Parameter &SParam,
std::vector<std::pair<int, int>> &IndexC,
std::vector<ScalarType> &WeightC,
bool SmoothQ = false)
{
std::vector<int> To_Fix;
//collect fixed vert
if (SParam.fixBorder)
{
//add penalization constra
for (size_t i = 0; i < mesh.vert.size(); i++)
{
if (!mesh.vert[i].IsB())
continue;
To_Fix.push_back(i);
}
}
//add additional fixed vertices constraint
To_Fix.insert(To_Fix.end(), SParam.FixedV.begin(), SParam.FixedV.end());
//sort and make them unique
std::sort(To_Fix.begin(), To_Fix.end());
typename std::vector<int>::iterator it = std::unique(To_Fix.begin(), To_Fix.end());
To_Fix.resize(std::distance(To_Fix.begin(), it));
for (size_t i = 0; i < To_Fix.size(); i++)
{
if (!SmoothQ)
{
for (int j = 0; j < 3; j++)
{
int IndexV = (To_Fix[i] * 3) + j;
IndexC.push_back(std::pair<int, int>(IndexV, IndexV));
WeightC.push_back((ScalarType)PENALTY);
}
}
else
{
int IndexV = To_Fix[i];
IndexC.push_back(std::pair<int, int>(IndexV, IndexV));
WeightC.push_back((ScalarType)PENALTY);
}
}
}
static void CollectBarycentricConstraints(MeshType &mesh,
const Parameter &SParam,
std::vector<std::pair<int, int>> &IndexC,
std::vector<ScalarType> &WeightC,
std::vector<int> &IndexRhs,
std::vector<ScalarType> &ValueRhs)
{
ScalarType penalty;
int baseIndex = mesh.vert.size();
for (size_t i = 0; i < SParam.ConstrainedF.size(); i++)
{
//get the index of the current constraint
int IndexConstraint = baseIndex + i;
//add one hard constraint
int FaceN = SParam.ConstrainedF[i].numF;
assert(FaceN >= 0);
assert(FaceN < (int)mesh.face.size());
assert(mesh.face[FaceN].VN() == (int)SParam.ConstrainedF[i].BarycentricW.size());
penalty = ScalarType(1) - SParam.lapWeight;
assert(penalty > ScalarType(0) && penalty < ScalarType(1));
//then add all the weights to impose the constraint
for (int j = 0; j < mesh.face[FaceN].VN(); j++)
{
//get the current weight
ScalarType currW = SParam.ConstrainedF[i].BarycentricW[j];
//get the index of the current vertex
int FaceVert = vcg::tri::Index(mesh, mesh.face[FaceN].V(j));
//then add the constraints componentwise
for (int k = 0; k < 3; k++)
{
//multiply times 3 per component
int IndexV = (FaceVert * 3) + k;
//get the index of the current constraint
int ComponentConstraint = (IndexConstraint * 3) + k;
IndexC.push_back(std::pair<int, int>(ComponentConstraint, IndexV));
WeightC.push_back(currW * penalty);
IndexC.push_back(std::pair<int, int>(IndexV, ComponentConstraint));
WeightC.push_back(currW * penalty);
//this to avoid the 1 on diagonal last entry of mass matrix
IndexC.push_back(std::pair<int, int>(ComponentConstraint, ComponentConstraint));
WeightC.push_back(-1);
}
}
for (int j = 0; j < 3; j++)
{
//get the index of the current constraint
int ComponentConstraint = (IndexConstraint * 3) + j;
//get per component value
ScalarType ComponentV = SParam.ConstrainedF[i].TargetPos.V(j);
//add the diagonal value
IndexRhs.push_back(ComponentConstraint);
ValueRhs.push_back(ComponentV * penalty);
}
}
}
static void MassMatrixEntry(MeshType &m,
std::vector<std::pair<int, int>> &index,
std::vector<ScalarType> &entry,
bool vertexCoord = true)
{
tri::RequireCompactness(m);
typename MeshType::template PerVertexAttributeHandle<ScalarType> h =
tri::Allocator<MeshType>::template GetPerVertexAttribute<ScalarType>(m, "volume");
for (int i = 0; i < m.vn; ++i)
h[i] = 0;
ForEachTetra(m, [&](TetraType &t) {
ScalarType v = Tetra::ComputeVolume(t);
for (int i = 0; i < 4; ++i)
h[tri::Index(m, t.V(i))] += v;
});
ScalarType maxV = 0;
for (int i = 0; i < m.vn; ++i)
maxV = max(maxV, h[i]);
for (int i = 0; i < m.vn; ++i)
{
int currI = i;
index.push_back(std::pair<int, int>(currI, currI));
entry.push_back(h[i] / maxV);
}
tri::Allocator<MeshType>::template DeletePerVertexAttribute<ScalarType>(m, h);
}
static ScalarType ComputeCotangentWeight(TetraType &t, const int i)
{
//i is the edge in the tetra
tetra::Pos<TetraType> pp(&t, Tetra::FofE(i, 0), i, Tetra::VofE(i, 0));
tetra::Pos<TetraType> pt(&t, Tetra::FofE(i, 0), i, Tetra::VofE(i, 0));
ScalarType weight = 0;
do
{
CoordType po0 = t.V(Tetra::VofE(5 - pt.E(), 0))->cP();
CoordType po1 = t.V(Tetra::VofE(5 - pt.E(), 1))->cP();
ScalarType length = vcg::Distance(po0, po1);
ScalarType cot = std::tan((M_PI / 2.) - Tetra::DihedralAngle(*pt.T(), 5 - pt.E()));
weight = (length / 6.) * cot;
pt.FlipT();
pt.FlipF();
} while (pp != pt);
return weight;
}
static void GetLaplacianEntry(MeshType &mesh,
TetraType &t,
std::vector<std::pair<int, int>> &index,
std::vector<ScalarType> &entry,
bool cotangent,
ScalarType weight = 1,
bool vertexCoord = true)
{
// if (cotangent)
// vcg::tri::MeshAssert<MeshType>::OnlyT(mesh);
//iterate on edges
for (int i = 0; i < 6; ++i)
{
weight = 1;//ComputeCotangentWeight(t, i);
int indexV0 = Index(mesh, t.V(Tetra::VofE(i, 0)));
int indexV1 = Index(mesh, t.V(Tetra::VofE(i, 1)));
for (int j = 0; j < 3; j++)
{
//multiply by 3 and add the component
int currI0 = (indexV0 * 3) + j;
int currI1 = (indexV1 * 3) + j;
index.push_back(std::pair<int, int>(currI0, currI0));
entry.push_back(weight);
index.push_back(std::pair<int, int>(currI0, currI1));
entry.push_back(-weight);
index.push_back(std::pair<int, int>(currI1, currI1));
entry.push_back(weight);
index.push_back(std::pair<int, int>(currI1, currI0));
entry.push_back(-weight);
}
}
}
static void GetLaplacianMatrix(MeshType &mesh,
std::vector<std::pair<int, int>> &index,
std::vector<ScalarType> &entry,
bool cotangent,
ScalarType weight = 1,
bool vertexCoord = true)
{
//store the index and the scalar for the sparse matrix
ForEachTetra(mesh, [&](TetraType &t) {
GetLaplacianEntry(mesh, t, index, entry, cotangent, weight);
});
}
public:
static void Compute(MeshType &mesh, Parameter &SParam)
{
//calculate the size of the system
int matr_size = mesh.vert.size() + SParam.ConstrainedF.size();
//the laplacian and the mass matrix
Eigen::SparseMatrix<ScalarType> L, M, B;
//initialize the mass matrix
std::vector<std::pair<int, int>> IndexM;
std::vector<ScalarType> ValuesM;
//add the entries for mass matrix
if (SParam.useMassMatrix)
MassMatrixEntry(mesh, IndexM, ValuesM, !SParam.SmoothQ);
//then add entries for lagrange mult due to barycentric constraints
for (size_t i = 0; i < SParam.ConstrainedF.size(); i++)
{
int baseIndex = (mesh.vert.size() + i) * 3;
if (SParam.SmoothQ)
baseIndex = (mesh.vert.size() + i);
if (SParam.SmoothQ)
{
IndexM.push_back(std::pair<int, int>(baseIndex, baseIndex));
ValuesM.push_back(1);
}
else
{
for (int j = 0; j < 3; j++)
{
IndexM.push_back(std::pair<int, int>(baseIndex + j, baseIndex + j));
ValuesM.push_back(1);
}
}
}
//add the hard constraints
CollectHardConstraints(mesh, SParam, IndexM, ValuesM, SParam.SmoothQ);
//initialize sparse mass matrix
if (!SParam.SmoothQ)
InitSparse(IndexM, ValuesM, matr_size * 3, matr_size * 3, M);
else
InitSparse(IndexM, ValuesM, matr_size, matr_size, M);
//initialize the barycentric matrix
std::vector<std::pair<int, int>> IndexB;
std::vector<ScalarType> ValuesB;
std::vector<int> IndexRhs;
std::vector<ScalarType> ValuesRhs;
//then also collect hard constraints
if (!SParam.SmoothQ)
{
CollectBarycentricConstraints(mesh, SParam, IndexB, ValuesB, IndexRhs, ValuesRhs);
//initialize sparse constraint matrix
InitSparse(IndexB, ValuesB, matr_size * 3, matr_size * 3, B);
}
else
InitSparse(IndexB, ValuesB, matr_size, matr_size, B);
//get the entries for laplacian matrix
std::vector<std::pair<int, int>> IndexL;
std::vector<ScalarType> ValuesL;
GetLaplacianMatrix(mesh, IndexL, ValuesL, SParam.useCotWeight, SParam.lapWeight, !SParam.SmoothQ);
//initialize sparse laplacian matrix
if (!SParam.SmoothQ)
InitSparse(IndexL, ValuesL, matr_size * 3, matr_size * 3, L);
else
InitSparse(IndexL, ValuesL, matr_size, matr_size, L);
for (int i = 0; i < (SParam.degree - 1); i++)
L = L * L;
//then solve the system
Eigen::SparseMatrix<ScalarType> S = (M + B + SParam.lambda * L);
//SimplicialLDLT
Eigen::SimplicialCholesky<Eigen::SparseMatrix<ScalarType>> solver(S);
assert(solver.info() == Eigen::Success);
MatrixXm V;
if (!SParam.SmoothQ)
V = MatrixXm(matr_size * 3, 1);
else
V = MatrixXm(matr_size, 1);
//set the first part of the matrix with vertex values
if (!SParam.SmoothQ)
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i * 3;
V(index, 0) = mesh.vert[i].P().X();
V(index + 1, 0) = mesh.vert[i].P().Y();
V(index + 2, 0) = mesh.vert[i].P().Z();
}
}
else
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i;
V(index, 0) = mesh.vert[i].Q();
}
}
//then set the second part by considering RHS gien by barycentric constraint
for (size_t i = 0; i < IndexRhs.size(); i++)
{
int index = IndexRhs[i];
ScalarType val = ValuesRhs[i];
V(index, 0) = val;
}
//solve the system
V = solver.solve(M * V).eval();
//then copy back values
if (!SParam.SmoothQ)
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i * 3;
mesh.vert[i].P().X() = V(index, 0);
mesh.vert[i].P().Y() = V(index + 1, 0);
mesh.vert[i].P().Z() = V(index + 2, 0);
}
}
else
{
for (size_t i = 0; i < mesh.vert.size(); i++)
{
int index = i;
mesh.vert[i].Q() = V(index, 0);
}
}
}
};
} //end namespace vcg
#endif

View File

@ -40,466 +40,486 @@ class UpdateFlags
{
public:
typedef UpdateMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
typedef UpdateMeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgePointer EdgePointer;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::TetraPointer TetraPointer;
typedef typename MeshType::TetraIterator TetraIterator;
/// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags)
/// \brief Reset all the mesh flags (vertexes edge faces) setting everithing to zero (the default value for flags)
static void Clear(MeshType &m)
{
if(HasPerVertexFlags(m) )
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
(*vi).Flags() = 0;
if(HasPerEdgeFlags(m) )
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
(*ei).Flags() = 0;
if(HasPerFaceFlags(m) )
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
(*fi).Flags() = 0;
if(HasPerTetraFlags(m) )
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
(*ti).Flags() = 0;
}
static void Clear(MeshType &m)
{
if(HasPerVertexFlags(m) )
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
(*vi).Flags() = 0;
if(HasPerEdgeFlags(m) )
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
(*ei).Flags() = 0;
if(HasPerFaceFlags(m) )
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
(*fi).Flags() = 0;
if(HasPerTetraFlags(m) )
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
(*ti).Flags() = 0;
}
static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerVertexFlags(m);
int andMask = ~FlagMask;
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() &= andMask ;
}
static void VertexClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerVertexFlags(m);
int andMask = ~FlagMask;
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() &= andMask ;
}
static void EdgeClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerEdgeFlags(m);
int andMask = ~FlagMask;
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() &= andMask ;
}
static void EdgeClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerEdgeFlags(m);
int andMask = ~FlagMask;
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() &= andMask ;
}
static void FaceClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerFaceFlags(m);
int andMask = ~FlagMask;
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() &= andMask ;
}
static void FaceClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerFaceFlags(m);
int andMask = ~FlagMask;
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() &= andMask ;
}
static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerTetraFlags(m);
int andMask = ~FlagMask;
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() &= andMask ;
}
static void TetraClear(MeshType &m, unsigned int FlagMask = 0xffffffff)
{
RequirePerTetraFlags(m);
int andMask = ~FlagMask;
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() &= andMask ;
}
static void VertexSet(MeshType &m, unsigned int FlagMask)
{
RequirePerVertexFlags(m);
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() |= FlagMask ;
}
static void VertexSet(MeshType &m, unsigned int FlagMask)
{
RequirePerVertexFlags(m);
for(VertexIterator vi=m.vert.begin(); vi!=m.vert.end(); ++vi)
if(!(*vi).IsD()) (*vi).Flags() |= FlagMask ;
}
static void EdgeSet(MeshType &m, unsigned int FlagMask)
{
RequirePerEdgeFlags(m);
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() |= FlagMask ;
}
static void EdgeSet(MeshType &m, unsigned int FlagMask)
{
RequirePerEdgeFlags(m);
for(EdgeIterator ei=m.edge.begin(); ei!=m.edge.end(); ++ei)
if(!(*ei).IsD()) (*ei).Flags() |= FlagMask ;
}
static void FaceSet(MeshType &m, unsigned int FlagMask)
{
RequirePerFaceFlags(m);
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ;
}
static void FaceSet(MeshType &m, unsigned int FlagMask)
{
RequirePerFaceFlags(m);
for(FaceIterator fi=m.face.begin(); fi!=m.face.end(); ++fi)
if(!(*fi).IsD()) (*fi).Flags() |= FlagMask ;
}
static void TetraSet(MeshType &m, unsigned int FlagMask)
{
RequirePerTetraFlags(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ;
}
static void TetraSet(MeshType &m, unsigned int FlagMask)
{
RequirePerTetraFlags(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD()) (*ti).Flags() |= FlagMask ;
}
static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);}
static void VertexClearS(MeshType &m) { VertexClear(m,VertexType::SELECTED);}
static void VertexClearB(MeshType &m) { VertexClear(m,VertexType::BORDER);}
static void EdgeClearV(MeshType &m) { EdgeClear(m,EdgeType::VISITED);}
static void FaceClearV(MeshType &m) { FaceClear(m,FaceType::VISITED);}
static void FaceClearB(MeshType &m) { FaceClear(m,FaceType::BORDER012);}
static void FaceClearS(MeshType &m) {FaceClear(m,FaceType::SELECTED);}
static void FaceClearF(MeshType &m) { FaceClear(m,FaceType::FAUX012);}
static void FaceClearFaceEdgeS(MeshType &m) { FaceClear(m,FaceType::FACEEDGESEL012 ); }
static void VertexClearV(MeshType &m) { VertexClear(m,VertexType::VISITED);}
static void VertexClearS(MeshType &m) { VertexClear(m,VertexType::SELECTED);}
static void VertexClearB(MeshType &m) { VertexClear(m,VertexType::BORDER);}
static void EdgeClearV(MeshType &m) { EdgeClear(m,EdgeType::VISITED);}
static void FaceClearV(MeshType &m) { FaceClear(m,FaceType::VISITED);}
static void FaceClearB(MeshType &m) { FaceClear(m,FaceType::BORDER012);}
static void FaceClearS(MeshType &m) {FaceClear(m,FaceType::SELECTED);}
static void FaceClearF(MeshType &m) { FaceClear(m,FaceType::FAUX012);}
static void FaceClearFaceEdgeS(MeshType &m) { FaceClear(m,FaceType::FACEEDGESEL012 ); }
static void EdgeSetV(MeshType &m) { EdgeSet(m,EdgeType::VISITED);}
static void VertexSetV(MeshType &m) { VertexSet(m,VertexType::VISITED);}
static void VertexSetS(MeshType &m) { VertexSet(m,VertexType::SELECTED);}
static void VertexSetB(MeshType &m) { VertexSet(m,VertexType::BORDER);}
static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);}
static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);}
static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);}
static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); }
static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); }
static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); }
static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); }
static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); }
static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); }
/// \brief Compute the border flags for the faces using the Face-Face Topology.
/**
static void EdgeSetV(MeshType &m) { EdgeSet(m,EdgeType::VISITED);}
static void VertexSetV(MeshType &m) { VertexSet(m,VertexType::VISITED);}
static void VertexSetS(MeshType &m) { VertexSet(m,VertexType::SELECTED);}
static void VertexSetB(MeshType &m) { VertexSet(m,VertexType::BORDER);}
static void FaceSetV(MeshType &m) { FaceSet(m,FaceType::VISITED);}
static void FaceSetB(MeshType &m) { FaceSet(m,FaceType::BORDER);}
static void FaceSetF(MeshType &m) { FaceSet(m,FaceType::FAUX012);}
static void TetraClearV(MeshType &m) { TetraClear(m, TetraType::VISITED); }
static void TetraClearS(MeshType &m) { TetraClear(m, TetraType::SELECTED); }
static void TetraClearB(MeshType &m) { TetraClear(m, TetraType::BORDER0123); }
static void TetraSetV(MeshType &m) { TetraSet(m, TetraType::VISITED); }
static void TetraSetS(MeshType &m) { TetraSet(m, TetraType::SELECTED); }
static void TetraSetB(MeshType &m) { TetraSet(m, TetraType::BORDER0123); }
/// \brief Compute the border flags for the faces using the Face-Face Topology.
/**
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
*/
static void FaceBorderFromFF(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
static void FaceBorderFromFF(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<fi->VN();++j)
{
if(face::IsBorder(*fi,j)) (*fi).SetB(j);
else (*fi).ClearB(j);
}
}
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD())
for(int j=0;j<fi->VN();++j)
{
if(face::IsBorder(*fi,j)) (*fi).SetB(j);
else (*fi).ClearB(j);
}
}
/// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology.
/**
/// \brief Compute the border flags for the tetras using the Tetra-Tetra Topology.
/**
\warning Obviously it assumes that the topology has been correctly computed (see: UpdateTopology::FaceFace )
*/
static void TetraBorderFromTT(MeshType &m)
{
RequirePerTetraFlags(m);
RequireTTAdjacency(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (tetrahedron::IsBorder(*ti,j)) (*ti).SetB(j);
else (*ti).ClearB(j);
}
}
static void FaceBorderFromVF(MeshType &m)
{
RequirePerFaceFlags(m);
RequireVFAdjacency(m);
FaceClearB(m);
int visitedBit=VertexType::NewBitFlag();
// Calcolo dei bordi
// per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola
// (o meglio da un numero dispari di facce)
const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2};
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V1(vfi.z)->SetUserBit(visitedBit);
if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V2(vfi.z)->SetUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[vfi.z];
if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3];
}
}
VertexType::DeleteBitFlag(visitedBit);
}
class EdgeSorter
{
public:
VertexPointer v[2]; // Puntatore ai due vertici (Ordinati)
FacePointer f; // Puntatore alla faccia generatrice
int z; // Indice dell'edge nella faccia
EdgeSorter() {} // Nothing to do
void Set( const FacePointer pf, const int nz )
static void TetraBorderFromTT(MeshType &m)
{
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
RequirePerTetraFlags(m);
RequireTTAdjacency(m);
v[0] = pf->V(nz);
v[1] = pf->V((nz+1)%3);
assert(v[0] != v[1]);
if( v[0] > v[1] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (tetrahedron::IsBorder(*ti,j)) (*ti).SetB(j);
else (*ti).ClearB(j);
}
}
inline bool operator < ( const EdgeSorter & pe ) const {
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const EdgeSorter & pe ) const
static void VertexBorderFromTT(MeshType &m)
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
RequirePerVertexFlags(m);
RequireTTAdjacency(m);
VertexClearB(m);
for(TetraIterator ti=m.tetra.begin(); ti!=m.tetra.end(); ++ti)
if(!(*ti).IsD())
for(int j = 0; j < 4; ++j)
{
if (tetrahedron::IsBorder(*ti,j))
{
for (int i = 0; i < 3; ++i)
ti->V(Tetra::VofF(j, i))->SetB();
}
}
}
inline bool operator != ( const EdgeSorter & pe ) const
static void FaceBorderFromVF(MeshType &m)
{
return v[0]!=pe.v[0] || v[1]!=pe.v[1];
RequirePerFaceFlags(m);
RequireVFAdjacency(m);
FaceClearB(m);
int visitedBit=VertexType::NewBitFlag();
// Calcolo dei bordi
// per ogni vertice vi si cercano i vertici adiacenti che sono toccati da una faccia sola
// (o meglio da un numero dispari di facce)
const int BORDERFLAG[3]={FaceType::BORDER0, FaceType::BORDER1, FaceType::BORDER2};
for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if(!(*vi).IsD())
{
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V1(vfi.z)->IsUserBit(visitedBit)) vfi.f->V1(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V1(vfi.z)->SetUserBit(visitedBit);
if(vfi.f->V2(vfi.z)->IsUserBit(visitedBit)) vfi.f->V2(vfi.z)->ClearUserBit(visitedBit);
else vfi.f->V2(vfi.z)->SetUserBit(visitedBit);
}
for(face::VFIterator<FaceType> vfi(&*vi) ; !vfi.End(); ++vfi )
{
if(vfi.f->V(vfi.z)< vfi.f->V1(vfi.z) && vfi.f->V1(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[vfi.z];
if(vfi.f->V(vfi.z)< vfi.f->V2(vfi.z) && vfi.f->V2(vfi.z)->IsUserBit(visitedBit))
vfi.f->Flags() |= BORDERFLAG[(vfi.z+2)%3];
}
}
VertexType::DeleteBitFlag(visitedBit);
}
};
class EdgeSorter
{
public:
VertexPointer v[2]; // Puntatore ai due vertici (Ordinati)
FacePointer f; // Puntatore alla faccia generatrice
int z; // Indice dell'edge nella faccia
EdgeSorter() {} // Nothing to do
// versione minimale che non calcola i complex flag.
static void VertexBorderFromNone(MeshType &m)
{
RequirePerVertexFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
if( m.fn == 0 )
return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
void Set( const FacePointer pf, const int nz )
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
assert(pf!=0);
assert(nz>=0);
assert(nz<3);
typename std::vector<EdgeSorter>::iterator pe,ps;
for(ps = e.begin(), pe = e.begin(); pe < e.end(); ++pe) // Scansione vettore ausiliario
v[0] = pf->V(nz);
v[1] = pf->V((nz+1)%3);
assert(v[0] != v[1]);
if( v[0] > v[1] ) std::swap(v[0],v[1]);
f = pf;
z = nz;
}
inline bool operator < ( const EdgeSorter & pe ) const {
if( v[0]<pe.v[0] ) return true;
else if( v[0]>pe.v[0] ) return false;
else return v[1] < pe.v[1];
}
inline bool operator == ( const EdgeSorter & pe ) const
{
return v[0]==pe.v[0] && v[1]==pe.v[1];
}
inline bool operator != ( const EdgeSorter & pe ) const
{
return v[0]!=pe.v[0] || v[1]!=pe.v[1];
}
};
// versione minimale che non calcola i complex flag.
static void VertexBorderFromNone(MeshType &m)
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->v[0]->SetB();
ps->v[1]->SetB();
}/* else
RequirePerVertexFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
if( m.fn == 0 )
return;
e.resize(m.fn*3); // Alloco il vettore ausiliario
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<3;++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps;
for(ps = e.begin(), pe = e.begin(); pe < e.end(); ++pe) // Scansione vettore ausiliario
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->v[0]->SetB();
ps->v[1]->SetB();
}/* else
if(pe-ps!=2) { // not twomanyfold!
for(;ps!=pe;++ps) {
ps->v[0]->SetB(); // Si settano border anche i complex.
ps->v[1]->SetB();
}
}*/
ps = pe;
}
}
}
/// Computes per-face border flags without requiring any kind of topology
/// It has a O(fn log fn) complexity.
static void FaceBorderFromNone(MeshType &m)
{
RequirePerFaceFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
for(VertexIterator v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearB();
if( m.fn == 0 )
return;
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
ps = pe;
}
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
}
typename std::vector<EdgeSorter>::iterator pe,ps;
ps = e.begin();pe=e.begin();
do
/// Computes per-face border flags without requiring any kind of topology
/// It has a O(fn log fn) complexity.
static void FaceBorderFromNone(MeshType &m)
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->f->SetB(ps->z);
} /*else
RequirePerFaceFlags(m);
std::vector<EdgeSorter> e;
typename UpdateMeshType::FaceIterator pf;
typename std::vector<EdgeSorter>::iterator p;
for(VertexIterator v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearB();
if( m.fn == 0 )
return;
FaceIterator fi;
int n_edges = 0;
for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN();
e.resize(n_edges);
p = e.begin();
for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce
if( ! (*pf).IsD() )
for(int j=0;j<(*pf).VN();++j)
{
(*p).Set(&(*pf),j);
(*pf).ClearB(j);
++p;
}
assert(p==e.end());
sort(e.begin(), e.end()); // Lo ordino per vertici
typename std::vector<EdgeSorter>::iterator pe,ps;
ps = e.begin();pe=e.begin();
do
{
if( pe==e.end() || *pe != *ps ) // Trovo blocco di edge uguali
{
if(pe-ps==1) {
ps->f->SetB(ps->z);
} /*else
if(pe-ps!=2) { // Caso complex!!
for(;ps!=pe;++ps)
ps->f->SetB(ps->z); // Si settano border anche i complex.
}*/
ps = pe;
}
if(pe==e.end()) break;
++pe;
} while(true);
// TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne);
}
/// Compute the PerVertex Border flag deriving it from the face-face adjacency
static void VertexBorderFromFaceAdj(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
RequireFFAdjacency(m);
// MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( face::IsBorder(*fi,z))
{
(*fi).V0(z)->SetB();
(*fi).V1(z)->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the border flag of faces
static void VertexBorderFromFaceBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( (*fi).IsB(z) )
{
(*fi).V(z)->SetB();
(*fi).V((*fi).Next(z))->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the Edge-Edge adjacency (made for edgemeshes)
static void VertexBorderFromEdgeAdj(MeshType &m)
{
RequirePerVertexFlags(m);
RequireEEAdjacency(m);
VertexClearB(m);
for (EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if (!ei->IsD())
{
for (int z=0; z<2; ++z)
if (edge::IsEdgeBorder(*ei, z))
{
ei->V(z)->SetB();
}
}
}
/// \brief Marks feature edges according to two signed dihedral angles.
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the signed dihedral angle between the normal of two incident faces ,
/// is outside the two given thresholds.
/// In this way all the edges that are almost planar are marked as non selected (e.g. edges to be ignored)
/// Note that it uses the signed dihedral angle convention (negative for concave edges and positive for convex ones);
///
/// Optionally it can also mark as feature edges also the boundary edges.
///
static void FaceEdgeSelSignedCrease(MeshType &m, float AngleRadNeg, float AngleRadPos, bool MarkBorderFlag = false )
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is faux (e.g all crease)
FaceClearFaceEdgeS(m);
// Then mark faux only if the signed angle is the range.
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
{
if(!face::IsBorder(*fi,z) )
{
ScalarType angle = DihedralAngleRad(*fi,z);
if(angle<AngleRadNeg || angle>AngleRadPos)
(*fi).SetFaceEdgeS(z);
}
else
{
if(MarkBorderFlag) (*fi).SetFaceEdgeS(z);
}
}
ps = pe;
}
if(pe==e.end()) break;
++pe;
} while(true);
// TRACE("found %i border (%i complex) on %i edges\n",nborder,ncomplex,ne);
}
}
/// \brief Selects feature edges according to Face adjacency.
///
static void FaceEdgeSelBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is selected
FaceClearFaceEdgeS(m);
for (FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
{
for (int z=0; z<(*fi).VN(); ++z)
{
if (face::IsBorder(*fi,z))
fi->SetFaceEdgeS(z);
}
}
}
/// Compute the PerVertex Border flag deriving it from the face-face adjacency
static void VertexBorderFromFaceAdj(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
RequireFFAdjacency(m);
// MeshAssert<MeshType>::FFAdjacencyIsInitialized(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( face::IsBorder(*fi,z))
{
(*fi).V0(z)->SetB();
(*fi).V1(z)->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the border flag of faces
static void VertexBorderFromFaceBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequirePerVertexFlags(m);
VertexClearB(m);
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi)
if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
if( (*fi).IsB(z) )
{
(*fi).V(z)->SetB();
(*fi).V((*fi).Next(z))->SetB();
}
}
}
/// Compute the PerVertex Border flag deriving it from the Edge-Edge adjacency (made for edgemeshes)
static void VertexBorderFromEdgeAdj(MeshType &m)
{
RequirePerVertexFlags(m);
RequireEEAdjacency(m);
VertexClearB(m);
for (EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei)
if (!ei->IsD())
{
for (int z=0; z<2; ++z)
if (edge::IsEdgeBorder(*ei, z))
{
ei->V(z)->SetB();
}
}
}
/// \brief Marks feature edges according to two signed dihedral angles.
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the signed dihedral angle between the normal of two incident faces ,
/// is outside the two given thresholds.
/// In this way all the edges that are almost planar are marked as non selected (e.g. edges to be ignored)
/// Note that it uses the signed dihedral angle convention (negative for concave edges and positive for convex ones);
///
/// Optionally it can also mark as feature edges also the boundary edges.
///
static void FaceEdgeSelSignedCrease(MeshType &m, float AngleRadNeg, float AngleRadPos, bool MarkBorderFlag = false )
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is faux (e.g all crease)
FaceClearFaceEdgeS(m);
// Then mark faux only if the signed angle is the range.
for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD())
{
for(int z=0;z<(*fi).VN();++z)
{
if(!face::IsBorder(*fi,z) )
{
ScalarType angle = DihedralAngleRad(*fi,z);
if(angle<AngleRadNeg || angle>AngleRadPos)
(*fi).SetFaceEdgeS(z);
}
else
{
if(MarkBorderFlag) (*fi).SetFaceEdgeS(z);
}
}
}
}
/// \brief Selects feature edges according to Face adjacency.
///
static void FaceEdgeSelBorder(MeshType &m)
{
RequirePerFaceFlags(m);
RequireFFAdjacency(m);
//initially Nothing is selected
FaceClearFaceEdgeS(m);
for (FaceIterator fi=m.face.begin(); fi!=m.face.end();++fi)
if (!fi->IsD())
{
for (int z=0; z<(*fi).VN(); ++z)
{
if (face::IsBorder(*fi,z))
fi->SetFaceEdgeS(z);
}
}
}
/// \brief Marks feature edges according to a given angle
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the dihedral angle between the normal of two incident faces is larger than ,
/// the given thresholds.
/// In this way all the near planar edges are marked remains not selected (e.g. edges to be ignored)
static void FaceEdgeSelCrease(MeshType &m,float AngleRad)
{
FaceEdgeSelSignedCrease(m,-AngleRad,AngleRad);
}
/// \brief Marks feature edges according to a given angle
/// Actually it uses the face_edge selection bit on faces,
/// we select the edges where the dihedral angle between the normal of two incident faces is larger than ,
/// the given thresholds.
/// In this way all the near planar edges are marked remains not selected (e.g. edges to be ignored)
static void FaceEdgeSelCrease(MeshType &m,float AngleRad)
{
FaceEdgeSelSignedCrease(m,-AngleRad,AngleRad);
}
}; // end class
} // End namespace tri

View File

@ -413,6 +413,7 @@ public:
vert.clear();
face.clear();
edge.clear();
tetra.clear();
// textures.clear();
// normalmaps.clear();
vn = 0;

View File

@ -165,7 +165,7 @@ public:
return _e;
}
/// Return the index of face as seen from the tetrahedron
/// Return the index of edge as seen from the tetrahedron
inline const char & E() const
{
return _e;
@ -269,7 +269,7 @@ public:
//get the current vertex
VertexType *vcurr=T()->V(V());
//get new tetrahedron according to faceto face topology
//get new tetrahedron according to tetra to tetra topology
TetraType *nt=T()->TTp(F());
char nfa=T()->TTi(F());
if (nfa!=-1)

View File

@ -126,6 +126,9 @@ typename PolygonType::ScalarType PolyArea(const PolygonType &F)
typedef typename PolygonType::CoordType CoordType;
typedef typename PolygonType::ScalarType ScalarType;
if (F.VN() == 3)
return vcg::DoubleArea(F) / 2;
CoordType bary=PolyBarycenter(F);
ScalarType Area=0;
for (size_t i=0;i<(size_t)F.VN();i++)
@ -535,12 +538,12 @@ typename PolygonType::ScalarType PolyAspectRatio(const PolygonType &F,
template<class PolygonType>
typename PolygonType::ScalarType PolygonPointDistance(const PolygonType &F,
const vcg::Point3<typename PolygonType::ScalarType> &pos,
vcg::Point3<typename PolygonType::ScalarType> &ClosestP)
vcg::Point3<typename PolygonType::ScalarType> &ClosestP,
typename PolygonType::ScalarType minD = std::numeric_limits<typename PolygonType::ScalarType>::max())
{
typedef typename PolygonType::ScalarType ScalarType;
typedef typename PolygonType::CoordType CoordType;
ScalarType minD=std::numeric_limits<ScalarType>::max();
CoordType bary=vcg::PolyBarycenter(F);
for (size_t j=0;j<F.VN();j++)
{

View File

@ -43,78 +43,59 @@ public:
enum Hint {HShrinkFactor};
};
template <typename CONT_TETRA>
template <typename MeshType>
class GlTetramesh:public GLW{
public:
typedef typename CONT_TETRA::value_type TetraType;
typedef typename TetraType::VertexType VertexType;
typedef typename MeshType::TetraType TetraType;
typedef typename TetraType::VertexType VertexType;
typedef typename VertexType::ScalarType ScalarType;
typedef typename VertexType::CoordType Point3x;
typedef typename VertexType::CoordType CoordType;
//subclass for clipping planes
class ClipPlane
{
private:
Point3x D;
Point3x D0;
GLdouble eqn[4];
vcg::Matrix44<float> TR;
Point3x pp0;
Point3x pp1;
Point3x pp2;
Point3x pp3;
CoordType D, D0;
ScalarType dist;
GLdouble eqn[4];
public:
bool active;
Point3x P;
ClipPlane (){active=false;}
~ClipPlane (){}
ClipPlane(Point3x p0, Point3x p1,Point3x p2)
ClipPlane(CoordType & p0, CoordType & p1, CoordType & p2)
{
Point3x N=((p1-p0)^(p2-p0)).Normalize();
N.Normalize();
D=N;
D0=D;
P=(p0+p1+p2)/3.f;
CoordType N = ((p1-p0)^(p2-p0)).Normalize();
Point3x v0=N;
Point3x v1=(P-p0);
v1.Normalize();
Point3x v2=(v0^v1);
v2.Normalize();
v0=v0*2;
v1=v1*2;
v2=v2*2;
pp0=-v1-v2;
pp1=-v1+v2;
pp2=v1+v2;
pp3=v1-v2;
D = N;
D0 = D;
dist = vcg::Norm((p0 + p1 + p2) / 3.f);
}
//set normal of the clipping plane
void SetD(Point3x d)
void SetD(CoordType d)
{
D=d;
D = d;
D0 = d;
}
//set the point of the clipping plane
void SetP(Point3x p)
void SetDist(ScalarType d)
{
P=p;
dist = d;
}
bool IsClipped(Point3x p)
bool IsClipped(CoordType p)
{
return D.V(0) * p.X() + D.V(1) * p.Y() + D.V(2) * p.Z() - vcg::Norm(P) < 0;
return D.V(0) * p.X() + D.V(1) * p.Y() + D.V(2) * p.Z() - dist > 0;
}
void GlClip()
@ -132,55 +113,58 @@ public:
void GlDraw()
{
glPushMatrix();
glPushAttrib(0xffffffff);
glDisable(GL_CLIP_PLANE0);
const ScalarType w = 50;
glColor4f(1., 1., 0., 0.3);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_LIGHTING);
glEnable(GL_LIGHTING);
glEnable(GL_NORMALIZE);
glTranslate(P);
glMultMatrix(TR);
glLineWidth(0.5);
glColor3d(0.7,0,0.7);
glBegin(GL_LINE_LOOP);
glVertex(pp0);
glVertex(pp1);
glVertex(pp2);
glVertex(pp3);
glBegin(GL_LINES);
glVertex3f(0, 0, 0);
glVertex3f(dist, 0, 0);
glEnd();
glBegin(GL_TRIANGLES);
glVertex3f(dist, -w, w);
glVertex3f(dist, w, w);
glVertex3f(dist, -w, -w);
glVertex3f(dist, w, w);
glVertex3f(dist, w, -w);
glVertex3f(dist, -w, -w);
glEnd();
glPopAttrib();
glPopMatrix();
glDisable(GL_BLEND);
glEnable(GL_LIGHTING);
}
void Transform(vcg::Matrix44<float> Tr)
void Transform(vcg::Matrix44<float> & tr)
{
//thath's for casting in case of trackball using
//float to double and vice-versa
Point3f p=Point3f((float)D0.V(0),(float)D0.V(1),(float)D0.V(2));
TR=Tr;
p=TR*p;
D=Point3x((ScalarType) p.V(0),(ScalarType) p.V(1),(ScalarType) p.V(2));
D = (tr * D0).Normalize();
}
void Translate(float L)
void offsetDist(ScalarType off)
{
Point3x D1=D*L;
P+=D1;
dist = (off < -dist) ? 0.001f : dist + off;
}
bool IsActive()
{
return active;
}
bool switchActive()
{
return active ^= true;
}
};
GlTetramesh(CONT_TETRA * _t):tetra(_t){}
GlTetramesh(MeshType * m) : _m(m){}
GlTetramesh( ) {}
CONT_TETRA * tetra;
MeshType * _m;
ClipPlane section;
private:
ScalarType shrink_factor = 0.95f;
ScalarType shrink_factor = 0.98f;
public:
@ -191,7 +175,7 @@ public:
}
}
void AddClipSection(Point3x p0,Point3x p1,Point3x p2)
void AddClipSection(CoordType p0, CoordType p1, CoordType p2)
{
section=ClipPlane(p0,p1,p2);
section.active=true;
@ -206,49 +190,34 @@ public:
void Draw(){
switch (dm){
case DMNone: break;
case DMSmallTetra:_DrawSmallTetra<cm>();break;
case DMFlat:_DrawSurface<dm,nm,cm>();break;
case DMWire:_DrawSurface<dm,nm,cm>();break;
case DMHidden:_DrawSurface<dm,nm,cm>();break;
case DMFlatWire:_DrawFlatWire<nm,cm>(); break;
case DMTransparent:break;
case DMSmallTetra: _DrawSmallTetra<cm>();break;
case DMFlat: _DrawSurface<dm,nm,cm>();break;
case DMWire: _DrawSurface<dm,nm,cm>();break;
case DMHidden: _DrawSurface<dm,nm,cm>();break;
case DMFlatWire: _DrawFlatWire<nm,cm>(); break;
case DMTransparent: break;
}
}
private:
template <ColorMode cm >
void _DrawSmallTetra(){
typename CONT_TETRA::iterator it;
// glPushAttrib(0xffff);
// glEnable(GL_COLOR_MATERIAL);
// glEnable(GL_NORMALIZE);
// glPolygonMode(GL_FRONT, GL_FILL);
// glLight(GL_LIGHT0, GL_DIFFUSE, vcg::Color4b::White);
// glEnable(GL_LIGHT0);
// glEnable(GL_LIGHTING);
/*glBegin(GL_TRIANGLES);*/
for( it = tetra->begin(); it != tetra->end(); ++it)
if((!it->IsD())&&(!(it->IsS()))) //draw as normal
glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
ForEachTetra(*_m, [&] (TetraType & t) {
if (!t.IsD())
{
_DrawSmallTetra<cm>(*it);
if (!t.IsS()) //draw as normal
_DrawSmallTetra<cm>(t);
else //draw in selected mode
_DrawSelectedTetra(t);
}
else
if((!it->IsD())&&((it->IsS())))//draw in selection mode
{
_DrawSelectedTetra(*it);
}
//glEnd();
// glPopAttrib();
if (section.active)
{
// section.GlClip();
section.GlDraw();
}
});
}
template <NormalMode nm,ColorMode cm >
void _DrawFlatWire(){
void _DrawFlatWire(){
glPushAttrib(0xffff);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_DEPTH);
@ -264,7 +233,7 @@ private:
template <DrawMode dm,NormalMode nm,ColorMode cm >
void _DrawSurface(){
typename CONT_TETRA::iterator it;
glPushAttrib(0xffff);
glEnable(GL_COLOR_MATERIAL);
@ -281,10 +250,11 @@ private:
glEnable(GL_NORMALIZE);
glPolygonMode(GL_FRONT,GL_FILL);
}
//glBegin(GL_TRIANGLES);
for( it = tetra->begin(); it != tetra->end(); ++it)
_DrawTetra<dm,nm,cm>((*it));
//glEnd();
ForEachTetra(*_m, [&] (TetraType & t) {
_DrawTetra<dm,nm,cm>(t);
});
glPopAttrib();
}
@ -355,14 +325,14 @@ private:
}
if (cm == CMPerTetra)
vcg::glColor(t.C());
// else
// if(cm == CMPerTetraF)
// {
// Color4b c;
// c = color_tetra(t);
// GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3];
// glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic);
// }
// else
// if(cm == CMPerTetraF)
// {
// Color4b c;
// c = color_tetra(t);
// GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3];
// glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic);
// }
}
template <ColorMode cm >
@ -370,16 +340,16 @@ private:
{
if (cm!=CMNone)
{
// if(cm == CMPerVertexF)
// {
// Color4b c;
// c = color_vertex(v);
// GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3];
// glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic);
// }
// else
if(cm == CMPerVertex)
vcg::glColor(v.C());
// if(cm == CMPerVertexF)
// {
// Color4b c;
// c = color_vertex(v);
// GLint ic[4]; ic[0] = c[0];ic[1] = c[1];ic[2] = c[2];ic[3] = c[3];
// glMaterialiv(GL_FRONT,GL_DIFFUSE ,ic);
// }
// else
if(cm == CMPerVertex)
vcg::glColor(v.C());
}
}
@ -424,24 +394,29 @@ private:
template < ColorMode cm >
void _DrawSmallTetra(TetraType &t)
{
Point3x p[4], br;
CoordType p[4], br;
br = Tetra::Barycenter(t);
if (section.IsClipped(br))
return;
bool border = false;
bool clipBorder = false;
for (int i = 0; i < 4; ++i)
{
border = border || t.IsB(i);
Point3x br1 = Tetra::Barycenter(*t.TTp(i));
clipBorder = clipBorder || section.IsClipped(br1);
if (section.active)
{
if (section.IsClipped(br))
return;
bool border = false;
bool clipBorder = false;
for (int i = 0; i < 4; ++i)
{
border = border || t.IsB(i);
CoordType br1 = Tetra::Barycenter(*t.TTp(i));
clipBorder = clipBorder || section.IsClipped(br1);
}
if (!border && !clipBorder)
return;
}
if (!border && !clipBorder)
return;
for(int i = 0; i < 4; ++i)
// p[i] = t.V(i)->P();
p[i] = t.V(i)->P() * shrink_factor + br * (1 - shrink_factor);

View File

@ -106,7 +106,8 @@ public:
for (int j=0;j<3;j++)
{
//if (!trimesh.face[i].IsB(j))continue;
if (!trimesh.face[i].IsCrease(j))continue;
//if (!trimesh.face[i].IsCrease(j))continue;
if (!trimesh.face[i].IsFaceEdgeS(j))continue;
feature_lines.push_back(std::vector<int>());
feature_lines.back().push_back(i);
@ -316,7 +317,8 @@ public:
for (int j=0;j<mesh.face[i].VN();j++)
{
FaceType *f0=&mesh.face[i];
f0->ClearCrease(j);
//f0->ClearCrease(j);
f0->ClearFaceEdgeS(j);
}
@ -326,12 +328,14 @@ public:
FaceType *f0=&mesh.face[i];
FaceType *f1=f0->FFp(j);
if (f0==f1){f0->SetCrease(j);continue;}
//if (f0==f1){f0->SetCrease(j);continue;}
if (f0==f1){f0->SetFaceEdgeS(j);continue;}
CoordType N0=f0->N();
CoordType N1=f1->N();
if ((N0*N1)>thr)continue;
f0->SetCrease(j);
//f0->SetCrease(j);
f0->SetFaceEdgeS(j);
}
}

152
wrap/io_tetramesh/import.h Normal file
View File

@ -0,0 +1,152 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
****************************************************************************/
#ifndef __VCGLIB_TETRA_IMPORT
#define __VCGLIB_TETRA_IMPORT
#include <wrap/io_tetramesh/import_ply.h>
#include <wrap/io_tetramesh/import_msh.h>
#include <locale>
namespace vcg {
namespace tetra {
namespace io {
/**
This class encapsulate a filter for automatically importing meshes by guessing
the right filter according to the extension
*/
template <class OpenMeshType>
class Importer
{
private:
enum KnownTypes { KT_UNKNOWN, KT_PLY, KT_MSH };
static int &LastType()
{
static int lastType= KT_UNKNOWN;
return lastType;
}
public:
enum ImporterError {
E_NOERROR =0 // No error =0 is the standard for ALL the imported files.
};
// simple aux function that returns true if a given file has a given extesnion
static bool FileExtension(std::string filename, std::string extension)
{
std::transform(filename.begin(), filename.end(), filename.begin(), ::tolower);
std::transform(extension.begin(), extension.end(), extension.begin(), ::tolower);
std::string end=filename.substr(filename.length() - extension.length(), extension.length());
return end == extension;
}
// Open Mesh, returns 0 on success.
static int Open(OpenMeshType &m, const char *filename, CallBackPos *cb=0)
{
int dummymask = 0;
return Open(m, filename, dummymask, cb);
}
/// Open Mesh and fills the load mask (the load mask must be initialized first); returns 0 on success.
static int Open(OpenMeshType &m, const char *filename, int &loadmask, CallBackPos *cb=0)
{
int err;
if(FileExtension(filename,"ply"))
{
err = tetra::io::ImporterPLY<OpenMeshType>::Open(m, filename, loadmask, cb);
LastType()=KT_PLY;
}
else if(FileExtension(filename,"msh"))
{
err = tetra::io::ImporterMSH<OpenMeshType>::Open(m, filename, cb);
LastType()=KT_MSH;
}
else
{
err=1;
LastType()=KT_UNKNOWN;
}
return err;
}
static bool ErrorCritical(int error)
{
switch(LastType())
{
case KT_PLY : return (error > 0); break;
case KT_MSH : return (error > 0); break;
}
return true;
}
static const char *ErrorMsg(int error)
{
switch(LastType())
{
// case KT_PLY : return ImporterPLY<OpenMeshType>::ErrorMsg(error); break;
// case KT_STL : return ImporterSTL<OpenMeshType>::ErrorMsg(error); break;
// case KT_OFF : return ImporterOFF<OpenMeshType>::ErrorMsg(error); break;
// case KT_OBJ : return ImporterOBJ<OpenMeshType>::ErrorMsg(error); break;
// case KT_VMI : return ImporterVMI<OpenMeshType>::ErrorMsg(error); break;
}
return "Unknown type";
}
static bool LoadMask(const char * filename, int &mask)
{
bool err;
if(FileExtension(filename, "ply"))
{
err = tetra::io::ImporterPLY<OpenMeshType>::LoadMask(filename, mask);
LastType() = KT_PLY;
}
else if(FileExtension(filename, "msh"))
{
mask = Mask::IOM_VERTCOORD | Mask::IOM_TETRAINDEX;
err = true;
LastType() = KT_MSH;
}
else
{
err = false;
LastType()=KT_UNKNOWN;
}
return err;
}
}; // end class
} // end Namespace tetra
} // end Namespace io
} // end Namespace vcg
#endif

View File

@ -0,0 +1,402 @@
#ifndef __VCGLIB_IMPORTTETMSH_H
#define __VCGLIB_IMPORTTETMSH_H
#include <iostream>
namespace vcg
{
namespace tetra
{
namespace io
{
template <class MeshType>
class ImporterMSH
{
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::TetraType TetraType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::TetraIterator TetraIterator;
enum ErrorCodes
{
INVALID_FORMAT = 1,
INVALID_VERSION,
NOT_IMPLEMENTED,
IO_ERROR
};
static inline void parseWhiteSpace(std::ifstream &fin)
{
//we don't want to consume non whitespace bytes, just peek it..
char next = fin.peek();
while (next == '\n' || next == ' ' || next == '\t' || next == '\r')
{
fin.get();
next = fin.peek();
}
}
static int parseNodes(MeshType &m, std::ifstream &fin, bool binary)
{
int numOfNodes;
fin >> numOfNodes;
if (numOfNodes < 0)
return INVALID_FORMAT;
VertexIterator vi = vcg::tri::Allocator<MeshType>::AddVertices(m, numOfNodes);
if (binary)
{
size_t lineBytes = (4 + 3 * 8); //int index + 3 * double coords
size_t bytes = numOfNodes * lineBytes;
char *data = new char[bytes];
parseWhiteSpace(fin);
fin.read(data, bytes);
for (int i = 0; i < numOfNodes; ++i)
{
int index = *reinterpret_cast<int *>(&data[i * lineBytes]) - 1;
if (index < 0)
return INVALID_FORMAT;
m.vert[index].P().X() = *reinterpret_cast<double *>(&data[i * lineBytes + 4]);
m.vert[index].P().Y() = *reinterpret_cast<double *>(&data[i * lineBytes + 4 + 8]);
m.vert[index].P().Z() = *reinterpret_cast<double *>(&data[i * lineBytes + 4 + 2 * 8]);
}
delete[] data;
}
else
{
for (int i = 0; i < numOfNodes; ++i)
{
int index;
fin >> index;
--index;
if (index < 0)
return INVALID_FORMAT;
fin >> m.vert[index].P().X();
fin >> m.vert[index].P().Y();
fin >> m.vert[index].P().Z();
}
}
return 0;
}
static int parseElements(MeshType &m, std::ifstream &fin, bool binary)
{
int numOfElements;
fin >> numOfElements;
if (numOfElements < 0)
return INVALID_FORMAT;
TetraIterator ti = vcg::tri::Allocator<MeshType>::AddTetras(m, numOfElements);
if (binary)
{
parseWhiteSpace(fin);
size_t parsedElems = 0;
while (parsedElems < numOfElements)
{
//MSH in binary format has a elem-header 3*4 bytes: {elems_type, numElems, tagsPerElem}
//followed by the list of elems under this header and eventually a new header and list.
int type, elements, tags;
fin.read((char *)&type, sizeof(int));
fin.read((char *)&elements, sizeof(int));
fin.read((char *)&tags, sizeof(int));
//check for tetra type
if (type != 4)
return NOT_IMPLEMENTED;
//read tags and throw them
for (size_t j = 0; j < tags; ++j)
{
int tag;
fin.read((char *)&tag, sizeof(int));
}
//foreach element
for (int i = 0; i < elements; ++i)
{
int index;
fin.read((char *)&index, sizeof(int));
--index;
//check index validity
if (index < 0)
return INVALID_FORMAT;
//read element nodes
TetraType * t = &m.tetra[index];
for (int i = 0; i < 4; ++i)
{
int nodeIndex;
fin.read((char *)&nodeIndex, sizeof(int));
--nodeIndex;
if (nodeIndex < 0 || nodeIndex >= m.VN())
return INVALID_FORMAT;
t->V(i) = &m.vert[nodeIndex];
}
++parsedElems;
}
}
}
else
{
for (int i = 0; i < numOfElements; ++i)
{
int index, type, tags;
fin >> index >> type >> tags;
--index;
//check for tetra type
if (type != 4)
return NOT_IMPLEMENTED;
//check index validity
if (index < 0)
return INVALID_FORMAT;
//read tags and throw them
for (size_t j = 0; j < tags; ++j)
{
int tag;
fin >> tag;
}
TetraType *t = &m.tetra[index];
for (int i = 0; i < 4; ++i)
{
int nodeIndex;
fin >> nodeIndex;
--nodeIndex;
if (nodeIndex < 0 || nodeIndex > m.VN())
return INVALID_FORMAT;
t->V(i) = &m.vert[nodeIndex];
}
}
}
return 0;
}
static int parseDataField(MeshType &m, std::ifstream &fin, bool binary)
{
int numString, numReal, numInteger;
fin >> numString;
std::string *strTags = new std::string[numString];
for (int i = 0; i < numString; ++i)
{
parseWhiteSpace(fin);
fin >> strTags[i];
}
fin >> numReal;
double *doubleTags = new double[numReal];
for (int i = 0; i < numReal; ++i)
fin >> doubleTags[i];
fin >> numInteger;
if (numString <= 0 || numInteger < 3)
return INVALID_FORMAT;
int *integerTags = new int[numInteger];
for (int i = 0; i < numInteger; ++i)
fin >> integerTags[i];
std::string fieldName = strTags[0];
int fieldComponents = integerTags[1];
int fieldSize = integerTags[2];
double *fieldVec = new double[fieldComponents * fieldSize];
delete[] strTags;
delete[] doubleTags;
delete[] integerTags;
if (binary)
{
size_t totalBytes = (4 + 8 * fieldComponents) * fieldSize;
char *data = new char[totalBytes];
parseWhiteSpace(fin);
fin.read(data, totalBytes);
for (int i = 0; i < fieldSize; ++i)
{
int index = *reinterpret_cast<int *>(&data[i * (4 + fieldComponents * 8)]);
--index;
if (index < 0)
return INVALID_FORMAT;
//values
int baseIndex = i * (4 + fieldComponents * 8) + 4;
for (int j = 0; j < fieldComponents; ++j)
fieldVec[index * fieldComponents + j] = *reinterpret_cast<float *>(&data[baseIndex + j * 8]);
}
}
else
{
for (int i = 0; i < fieldSize; ++i)
{
int index;
fin >> index;
--index;
if (index < 0)
return INVALID_FORMAT;
for (int j = 0; j < fieldComponents; ++j)
fin >> fieldVec[index * fieldComponents + j];
}
}
}
static int parseNodeData(MeshType &m, std::ifstream &fin, bool binary)
{
return parseDataField(m, fin, binary);
}
static int parseElementData(MeshType &m, std::ifstream &fin, bool binary)
{
return parseDataField(m, fin, binary);
}
static int parseUnsupportedTag(std::ifstream &fin, std::string &tag)
{
std::cerr << "found unsupported tag" << std::endl;
std::string tagName = tag.substr(1, tag.size() - 1);
std::string tagEnd = tag.substr(0, 1) + "End" + tagName;
std::string buf;
while (buf != tagEnd && !fin.eof())
fin >> buf;
}
static int parseMshMesh(MeshType &m, std::string &filename)
{
std::ifstream fin(filename.c_str(), std::ios::in | std::ios::binary);
if (!fin.is_open())
return IO_ERROR;
std::string lookAhead;
fin >> lookAhead;
if (lookAhead != "$MeshFormat")
return INVALID_FORMAT;
double version;
int type, dataSize;
fin >> version >> type >> dataSize;
if (version != 2.2)
return INVALID_VERSION;
bool binary = (type == 1);
if (dataSize != 8)
return INVALID_FORMAT;
// Read endiannes info in binary header...it's a 1 used to detect endiannes.
if (binary)
{
int one;
parseWhiteSpace(fin);
fin.read(reinterpret_cast<char *>(&one), sizeof(int));
if (one != 1)
{
std::cerr << "Warning: binary msh file " << filename
<< " is saved with different endianness than this machine."
<< std::endl;
throw NOT_IMPLEMENTED;
}
}
lookAhead.clear();
fin >> lookAhead;
if (lookAhead != "$EndMeshFormat")
return INVALID_FORMAT;
while (!fin.eof())
{
lookAhead.clear();
fin >> lookAhead;
if (lookAhead == "$Nodes")
{
int res = parseNodes(m, fin, binary);
if (res != 0)
return res;
fin >> lookAhead;
if (lookAhead != "$EndNodes")
return INVALID_FORMAT;
}
else if (lookAhead == "$Elements")
{
int res = parseElements(m, fin, binary);
if (res != 0)
return res;
fin >> lookAhead;
if (lookAhead != "$EndElements")
return INVALID_FORMAT;
}
else if (lookAhead == "$NodeData")
{
parseNodeData(m, fin, binary);
fin >> lookAhead;
if (lookAhead != "$EndNodeData")
return INVALID_FORMAT;
}
else if (lookAhead == "$ElementData")
{
parseElementData(m, fin, binary);
fin >> lookAhead;
if (lookAhead != "$EndElementData")
return INVALID_FORMAT;
}
else if (fin.eof())
{
break;
}
else
{
parseUnsupportedTag(fin, lookAhead);
}
}
fin.close();
return 0;
}
public:
static int Open(MeshType &m, const char *filename, CallBackPos *cb = 0)
{
std::string name(filename);
return parseMshMesh(m, name);
}
};
} // namespace io
} // namespace tetra
} // namespace vcg
#endif

View File

@ -141,16 +141,21 @@ public:
static const PropDescriptor &VertDesc(int i)
{
const static PropDescriptor pv[9]={
{"vertex", "x", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p),0,0,0,0,0},
{"vertex", "y", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p) + sizeof(ScalarType),0,0,0,0,0},
{"vertex", "z", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p) + 2 * sizeof(ScalarType),0,0,0,0,0},
{"vertex", "flags", ply::T_INT, ply::T_INT, offsetof(LoadPly_VertAux<ScalarType>,flags),0,0,0,0,0},
{"vertex", "quality", ply::T_FLOAT, ply::T_FLOAT, offsetof(LoadPly_VertAux<ScalarType>,q),0,0,0,0,0},
{"vertex", "red" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,r),0,0,0,0,0},
{"vertex", "green", ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,g),0,0,0,0,0},
{"vertex", "blue" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,b),0,0,0,0,0},
{"vertex", "alpha" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,a),0,0,0,0,0},
const static PropDescriptor pv[13]={
/*00*/ {"vertex", "x", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p),0,0,0,0,0},
/*01*/ {"vertex", "y", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p) + sizeof(ScalarType),0,0,0,0,0},
/*02*/ {"vertex", "z", ply::T_FLOAT, PlyType<ScalarType>(), offsetof(LoadPly_VertAux<ScalarType>,p) + 2 * sizeof(ScalarType),0,0,0,0,0},
/*03*/ {"vertex", "flags", ply::T_INT, ply::T_INT, offsetof(LoadPly_VertAux<ScalarType>,flags),0,0,0,0,0},
/*04*/ {"vertex", "quality", ply::T_FLOAT, ply::T_FLOAT, offsetof(LoadPly_VertAux<ScalarType>,q),0,0,0,0,0},
/*05*/ {"vertex", "red" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,r),0,0,0,0,0},
/*06*/ {"vertex", "green", ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,g),0,0,0,0,0},
/*07*/ {"vertex", "blue" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,b),0,0,0,0,0},
/*08*/ {"vertex", "alpha" , ply::T_UCHAR, ply::T_UCHAR, offsetof(LoadPly_VertAux<ScalarType>,a),0,0,0,0,0},
// DOUBLE
/*09*/ {"vertex", "x", ply::T_DOUBLE, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,p),0,0,0,0,0 ,0},
/*10*/ {"vertex", "y", ply::T_DOUBLE, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,p) + sizeof(ScalarType) ,0,0,0,0,0 ,0},
/*11*/ {"vertex", "z", ply::T_DOUBLE, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,p) + 2*sizeof(ScalarType),0,0,0,0,0 ,0},
/*12*/ {"vertex", "quality", ply::T_DOUBLE, PlyType<ScalarType>(),offsetof(LoadPly_VertAux<ScalarType>,q),0,0,0,0,0 ,0}
};
return pv[i];
}
@ -224,18 +229,18 @@ public:
pi.header = pf.GetHeader();
// Descrittori dati standard (vertex coord e faces)
if( pf.AddToRead(VertDesc(0)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(VertDesc(1)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(VertDesc(2)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(TetraDesc(0))== -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return -1; }
if( pf.AddToRead(VertDesc(0)) == -1 && pf.AddToRead(VertDesc(9)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return pi.status; }
if( pf.AddToRead(VertDesc(1)) == -1 && pf.AddToRead(VertDesc(10)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return pi.status; }
if( pf.AddToRead(VertDesc(2)) == -1 && pf.AddToRead(VertDesc(11)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return pi.status; }
if( pf.AddToRead(TetraDesc(0)) == -1 ) { pi.status = PlyInfo::E_NO_VERTEX; return pi.status; }
// Descrittori facoltativi dei flags
if( pf.AddToRead(VertDesc(3))!=-1 )
if( pf.AddToRead(VertDesc(3)) != -1 )
pi.mask |= vcg::tetra::io::Mask::IOM_VERTFLAGS;
if( VertexType::HasQuality() )
{
if( pf.AddToRead(VertDesc(4))!=-1 ||
pf.AddToRead(VertDesc(9))!=-1 )
if( pf.AddToRead(VertDesc(4)) != -1 ||
pf.AddToRead(VertDesc(9)) != -1 )
pi.mask |= vcg::tetra::io::Mask::IOM_VERTQUALITY;
}
if( VertexType::HasColor() )