optimized Closest iterator

added possibility to pass a point p that is outside the bbox of the indexing structure
This commit is contained in:
Nico Pietroni 2005-10-03 10:06:53 +00:00
parent 418bf58a24
commit bccc1ad129
1 changed files with 410 additions and 473 deletions

View File

@ -13,530 +13,467 @@
namespace vcg{
template <class Spatial_Idexing,class INTFUNCTOR,class TMARKER>
class RayIterator
{
protected:
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename vcg::Ray3<ScalarType> RayType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
///control right bonding current cell index (only on initialization)
void _ControlLimits()
template <class Spatial_Idexing,class INTFUNCTOR,class TMARKER>
class RayIterator
{
for (int i=0;i<3;i++)
protected:
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename vcg::Ray3<ScalarType> RayType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
///control right bonding current cell index (only on initialization)
void _ControlLimits()
{
vcg::Point3i dim=Si.siz;
if (CurrentCell.V(i)<0)
CurrentCell.V(i) = 0;
else
if (CurrentCell.V(i)>=dim.V(i))
CurrentCell.V(i)=dim.V(i)-1;
}
}
///find initial line parameters
void _FindLinePar()
{
/* Punti goal */
///da verificare se vanno oltre ai limiti
vcg::Point3i ip;
Si.PToIP(start,ip);
Si.IPToP(ip,goal);
for (int i=0;i<3;i++)
if(r.Direction().V(i)>0.0)
goal.V(i)+=Si.voxel.V(i);
ScalarType gx=goal.X();
ScalarType gy=goal.Y();
ScalarType gz=goal.Z();
dist=(r.Origin()-goal).Norm();
const float MAXFLOAT = FLT_MAX;
const float EPSILON = 1e-50f;
/* Parametri della linea */
ScalarType tx,ty,tz;
if( fabs(r.Direction().X())>EPSILON )
tx = (gx-r.Origin().X())/r.Direction().X();
else
tx =MAXFLOAT;
if( fabs(r.Direction().Y())>EPSILON )
ty = (gy-r.Origin().Y())/r.Direction().Y();
else
ty =MAXFLOAT;
if( fabs(r.Direction().Z())>EPSILON )
tz = (gz-r.Origin().Z())/r.Direction().Z();
else
tz =MAXFLOAT;
t=CoordType(tx,ty,tz);
}
bool _controlEnd()
{
return (((CurrentCell.X()<0)||(CurrentCell.Y()<0)||(CurrentCell.Z()<0))||
((CurrentCell.X()>=Si.siz.X())||(CurrentCell.Y()>=Si.siz.Y())||(CurrentCell.Z()>=Si.siz.Z())));
}
void _NextCell()
{
assert(!end);
if( t.X()<t.Y() && t.X()<t.Z() )
{
if(r.Direction().X()<0.0)
{goal.X() -= Si.voxel.X(); --CurrentCell.X();}
else
{goal.X() += Si.voxel.X(); ++CurrentCell.X();}
t.X() = (goal.X()-r.Origin().X())/r.Direction().X();
}
else if( t.Y()<t.Z() ){
if(r.Direction().Y()<0.0)
{goal.Y() -= Si.voxel.Y(); --CurrentCell.Y();}
else
{goal.Y() += Si.voxel.Y(); ++CurrentCell.Y();}
t.Y() = (goal.Y()-r.Origin().Y())/r.Direction().Y();
} else {
if(r.Direction().Z()<0.0)
{ goal.Z() -= Si.voxel.Z(); --CurrentCell.Z();}
else
{ goal.Z() += Si.voxel.Z(); ++CurrentCell.Z();}
t.Z() = (goal.Z()-r.Origin().Z())/r.Direction().Z();
}
dist=(r.Origin()-goal).Norm();
end=_controlEnd();
}
public:
///contructor
RayIterator(Spatial_Idexing &_Si,INTFUNCTOR _int_funct):Si(_Si),int_funct(_int_funct){
};
void SetMarker(TMARKER _tm)
{
tm=_tm;
}
void Init(const RayType _r)
{
r=_r;
end=false;
tm.UnMarkAll();
Elems.clear();
//CoordType ip;
//control if intersect the bounding box of the mesh
if(vcg::Intersection_Ray_Box<ScalarType>(Si.bbox,r,start))
{
Si.PToIP(start,CurrentCell);
_ControlLimits();
_FindLinePar();
//go to first intersection
while ((!End())&& Refresh())
_NextCell();
}
else
end=true;
}
bool End()
{return end;}
///refresh current cell intersection , return true if there are
///at lest 1 intersection
bool Refresh()
{
//Elems.clear();
Spatial_Idexing::CellIterator first,last,l;
///take first, last iterators to elements in the cell
Si.Grid(CurrentCell.X(),CurrentCell.Y(),CurrentCell.Z(),first,last);
for(l=first;l!=last;++l)
{
ObjType* elem=&(*(*l));
ScalarType t;
CoordType Int;
if((!tm.IsMarked(elem))&&(int_funct((**l),r,t)))
for (int i=0;i<3;i++)
{
Int=r.Origin()+r.Direction()*t;
Elems.push_back(Entry_Type(elem,t,Int));
tm.Mark(elem);
vcg::Point3i dim=Si.siz;
if (CurrentCell.V(i)<0)
CurrentCell.V(i) = 0;
else
if (CurrentCell.V(i)>=dim.V(i))
CurrentCell.V(i)=dim.V(i)-1;
}
}
////then control if there are more than 1 element
if (Elems.size()>1)
std::sort(Elems.begin(),Elems.end());
CurrentElem=Elems.end();
CurrentElem--;
return((Elems.size()==0)||(Dist()>dist));
}
void operator ++()
{
//if (CurrentElem!=Elems.end())
if (Elems.size()>0)
///find initial line parameters
void _FindLinePar()
{
CurrentElem--;
//std::pop_heap<ElemIterator>(Elems.begin(),Elems.end());
Elems.pop_back();
/* Punti goal */
///da verificare se vanno oltre ai limiti
vcg::Point3i ip;
Si.PToIP(start,ip);
Si.IPToP(ip,goal);
for (int i=0;i<3;i++)
if(r.Direction().V(i)>0.0)
goal.V(i)+=Si.voxel.V(i);
ScalarType gx=goal.X();
ScalarType gy=goal.Y();
ScalarType gz=goal.Z();
dist=(r.Origin()-goal).Norm();
const float MAXFLOAT = FLT_MAX;
const float EPSILON = 1e-50f;
/* Parametri della linea */
ScalarType tx,ty,tz;
if( fabs(r.Direction().X())>EPSILON )
tx = (gx-r.Origin().X())/r.Direction().X();
else
tx =MAXFLOAT;
if( fabs(r.Direction().Y())>EPSILON )
ty = (gy-r.Origin().Y())/r.Direction().Y();
else
ty =MAXFLOAT;
if( fabs(r.Direction().Z())>EPSILON )
tz = (gz-r.Origin().Z())/r.Direction().Z();
else
tz =MAXFLOAT;
t=CoordType(tx,ty,tz);
}
/*if (CurrentElem==Elems.end())
{*/
if (Dist()>dist)
bool _controlEnd()
{
if (!End())
return (((CurrentCell.X()<0)||(CurrentCell.Y()<0)||(CurrentCell.Z()<0))||
((CurrentCell.X()>=Si.siz.X())||(CurrentCell.Y()>=Si.siz.Y())||(CurrentCell.Z()>=Si.siz.Z())));
}
void _NextCell()
{
assert(!end);
if( t.X()<t.Y() && t.X()<t.Z() )
{
_NextCell();
while ((!End())&&Refresh())
_NextCell();
if(r.Direction().X()<0.0)
{goal.X() -= Si.voxel.X(); --CurrentCell.X();}
else
{goal.X() += Si.voxel.X(); ++CurrentCell.X();}
t.X() = (goal.X()-r.Origin().X())/r.Direction().X();
}
else if( t.Y()<t.Z() ){
if(r.Direction().Y()<0.0)
{goal.Y() -= Si.voxel.Y(); --CurrentCell.Y();}
else
{goal.Y() += Si.voxel.Y(); ++CurrentCell.Y();}
t.Y() = (goal.Y()-r.Origin().Y())/r.Direction().Y();
} else {
if(r.Direction().Z()<0.0)
{ goal.Z() -= Si.voxel.Z(); --CurrentCell.Z();}
else
{ goal.Z() += Si.voxel.Z(); ++CurrentCell.Z();}
t.Z() = (goal.Z()-r.Origin().Z())/r.Direction().Z();
}
dist=(r.Origin()-goal).Norm();
end=_controlEnd();
}
}
ObjType &operator *(){return *((*CurrentElem).elem);}
CoordType IntPoint()
{return ((*CurrentElem).intersection);}
ScalarType Dist()
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
}
//{return ((*CurrentElem).dist);}
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
protected:
///structure that mantain for the current cell pre-calculated data
typedef struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
///contructor
RayIterator(Spatial_Idexing &_Si,INTFUNCTOR _int_funct):Si(_Si),int_funct(_int_funct){
};
void SetMarker(TMARKER _tm)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
tm=_tm;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
ObjType* elem;
void Init(const RayType _r)
{
r=_r;
end=false;
tm.UnMarkAll();
Elems.clear();
//CoordType ip;
//control if intersect the bounding box of the mesh
if(vcg::Intersection_Ray_Box<ScalarType>(Si.bbox,r,start))
{
Si.PToIP(start,CurrentCell);
_ControlLimits();
_FindLinePar();
//go to first intersection
while ((!End())&& Refresh())
_NextCell();
}
else
end=true;
}
bool End()
{return end;}
///refresh current cell intersection , return true if there are
///at lest 1 intersection
bool Refresh()
{
//Elems.clear();
Spatial_Idexing::CellIterator first,last,l;
///take first, last iterators to elements in the cell
Si.Grid(CurrentCell.X(),CurrentCell.Y(),CurrentCell.Z(),first,last);
for(l=first;l!=last;++l)
{
ObjType* elem=&(*(*l));
ScalarType t;
CoordType Int;
if((!tm.IsMarked(elem))&&(int_funct((**l),r,t)))
{
Int=r.Origin()+r.Direction()*t;
Elems.push_back(Entry_Type(elem,t,Int));
tm.Mark(elem);
}
}
////then control if there are more than 1 element
if (Elems.size()>1)
std::sort(Elems.begin(),Elems.end());
CurrentElem=Elems.end();
CurrentElem--;
return((Elems.size()==0)||(Dist()>dist));
}
void operator ++()
{
//if (CurrentElem!=Elems.end())
if (Elems.size()>0)
{
CurrentElem--;
//std::pop_heap<ElemIterator>(Elems.begin(),Elems.end());
Elems.pop_back();
}
/*if (CurrentElem==Elems.end())
{*/
if (Dist()>dist)
{
if (!End())
{
_NextCell();
while ((!End())&&Refresh())
_NextCell();
}
}
}
ObjType &operator *(){return *((*CurrentElem).elem);}
CoordType IntPoint()
{return ((*CurrentElem).intersection);}
ScalarType Dist()
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
}
//{return ((*CurrentElem).dist);}
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
protected:
///structure that mantain for the current cell pre-calculated data
typedef struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
RayType r; //ray to find intersections
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
INTFUNCTOR &int_funct;
TMARKER tm;
std::vector<Entry_Type> Elems; //element loaded from curren cell
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
vcg::Point3i CurrentCell; //current cell
//used for raterization
CoordType start;
CoordType goal;
ScalarType dist;
CoordType intersection;
CoordType t;
};
RayType r; //ray to find intersections
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
INTFUNCTOR &int_funct;
TMARKER tm;
std::vector<Entry_Type> Elems; //element loaded from curren cell
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
vcg::Point3i CurrentCell; //current cell
//used for raterization
CoordType start;
CoordType goal;
ScalarType dist;
CoordType t;
};
template <class Spatial_Idexing,class DISTFUNCTOR,class TMARKER>
class ClosestIterator
{
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
///find the radius of curren sphere
///considering more nearest cell to current radius
void _FindSphereRadius()
template <class Spatial_Idexing,class DISTFUNCTOR,class TMARKER>
class ClosestIterator
{
//find diffence between the initial point
//and the cell narest to the sphere
CoordType min;
CoordType max;
Si.IPToP(explored.min,min);
Si.IPToP(explored.max,max);
CoordType diff_min=p-min;
CoordType diff_max=p-max;
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
ScalarType diffx=std::min<ScalarType>(fabs(diff_min.X()),fabs(diff_max.X()));
ScalarType diffy=std::min<ScalarType>(fabs(diff_min.Y()),fabs(diff_max.Y()));
ScalarType diffz=std::min<ScalarType>(fabs(diff_min.Z()),fabs(diff_max.Z()));
ScalarType diff=std::min<ScalarType>(diffx,std::min<ScalarType>(diffy,diffz));
//radius_min=0;
radius=diff;
//radius+=diff;
if (radius>max_dist)
radius=max_dist;
}
///control right cell value of current bounding box
/// of explored cells
void _ControlLimits()
{
vcg::Point3i dim=Si.siz;
for (int i=0;i<3;i++)
///control the end of scanning
bool _EndGrid()
{
if (explored.min.V(i)<-1)
explored.min.V(i) = -1;
if (explored.max.V(i)>Si.siz.V(i))
explored.max.V(i) =Si.siz.V(i);
}
}
bool _OutOfLimits(vcg::Point3i p)
{
for (int i=0;i<3;i++)
if ((p.V(i)==-1)||(p.V(i)>=Si.siz.V(i)))
return true ;
return false;
}
///control the end of scanning
void _ControlEnd()
{
if ((explored.min==vcg::Point3i(-1,-1,-1))&&(explored.max==Si.siz)&&(Elems.size()==0))
if ((explored.min<=vcg::Point3i(0,0,0))&&(explored.max>=Si.siz-vcg::Point3i(1,1,1)))
end =true;
}
return end;
}
///add cell to the curren set of explored cells
void _NextShell()
{
void _UpdateRadius()
{
if (radius>=max_dist)
end=true;
radius+=voxel_min;
radius+=step_size;
//control bounds
if (radius>max_dist)
radius=max_dist;
//expand the box
explored.min-=vcg::Point3i(1,1,1);
explored.max+=vcg::Point3i(1,1,1);
//control right limits of the bound
_ControlLimits();
}
public:
///contructor
ClosestIterator(Spatial_Idexing &_Si,DISTFUNCTOR _dist_funct):Si(_Si),dist_funct(_dist_funct){}
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
void SetMarker(TMARKER _tm)
{
tm=_tm;
}
///initialize the Itarator
void Init(CoordType _p,const ScalarType &_max_dist)
{
//CoordType vox=Si.Voxel();
CoordType vox=Si.voxel;
voxel_min=std::min<ScalarType>(vox.V(0),std::min<ScalarType>(vox.V(1),vox.V(2)));
p=_p;
max_dist=_max_dist;
//initialize the explored region
//finding cell coordinate of initial point
vcg::Point3i c;
Si.PToIP(p,c);
assert( c.X()>=0 && c.X()<Si.siz.X() && c.Y()>=0 && c.Y()<Si.siz.Y() && c.Z()>=0 && c.Z()<Si.siz.Z() );
//explored=vcg::Box3i(c,c+vcg::Point3i(1,1,1));
explored=vcg::Box3i(c,c);
radius=0;
//radius_min=0;
Elems.clear();
end=false;
tm.UnMarkAll();
_FindSphereRadius();
Refresh();
///until don't find an element
///that is inside the radius
while ((!End())&&(Dist()>radius))
{
if (radius>=max_dist)
end=true;
_NextShell();
Refresh();
_ControlEnd();
}
//set to the last element ..the nearest
CurrentElem=Elems.end();
CurrentElem--;
}
//return true if the scan is complete
bool End()
{return end;}
///refresh Object found also considering current shere radius,
//and object comes from previos that are already in the stack
void Refresh()
{
int x,y,z;
for( z = explored.min.Z(); z <= explored.max.Z(); ++z)
for(y = explored.min.Y(); y <=explored.max.Y(); ++y)
for(x = explored.min.X(); x <= explored.max.X();)
{
/*vcg::Point3i CurrentCell=vcg::Point3i(x,y,z);*/
Spatial_Idexing::CellIterator first,last,l;
///take first, last iterators to elements in the cell
if (!_OutOfLimits(vcg::Point3i(x,y,z)))
{
Si.Grid(x,y,z,first,last);
for(l=first;l!=last;++l)
{
ObjType *elem=&(**l);
if (!tm.IsMarked(elem))
{
CoordType nearest;
ScalarType dist=Si.bbox.Diag();
dist_funct((**l),p,dist,nearest);
Elems.push_back(Entry_Type(elem,fabs(dist),nearest));
tm.Mark(elem);
}
}
}
if( ( ( y == explored.min.Y()) || ( y == explored.max.Y())) ||
( ( z == explored.min.Z()) || ( z == explored.max.Z())) ||
( x == explored.max.X()))
++x;
else
x=explored.max.X();
}
std::sort(Elems.begin(),Elems.end());
//std::unique(Elems.begin(),Elems.end());
CurrentElem=Elems.end();
CurrentElem--;
}
void operator ++()
{
if (Elems.size()>0)
///add cell to the curren set of explored cells
bool _NextShell()
{
CurrentElem--;
Elems.pop_back();
}
if (Dist()>radius)
{
_NextShell();
Refresh();
//continue to scan until finish the scanning or the
//first element (the nearest for ordering of the structure)
//is at distance<radius
while ((!End())&&(Dist()>radius))
//then expand the box
explored=to_explore;
_UpdateRadius();
Box3<ScalarType> b3d(p,radius);
Si.BoxToIBox(b3d,to_explore);
Box3i ibox(Point3i(0,0,0),Si.siz-Point3i(1,1,1));
to_explore.Intersect(ibox);
if (!to_explore.IsNull())
{
if (radius>=max_dist)
end=true;
_NextShell();
Refresh();
_ControlEnd();
assert(!( to_explore.min.X()<0 || to_explore.max.X()>=Si.siz[0] ||
to_explore.min.Y()<0 || to_explore.max.Y()>=Si.siz[1] || to_explore.min.Z()<0
|| to_explore.max.Z()>=Si.siz[2] ));
return true;
}
return false;
}
}
ObjType &operator *(){return *((*CurrentElem).elem);}
//return distance of the element form the point if no element
//are in the vector then return max dinstance
ScalarType Dist()
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
}
CoordType NearestPoint()
{return ((*CurrentElem).intersection);}
protected:
///structure that mantain for the current cell pre-calculated data
typedef struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
///contructor
ClosestIterator(Spatial_Idexing &_Si,DISTFUNCTOR _dist_funct):Si(_Si),dist_funct(_dist_funct){}
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
void SetMarker(TMARKER _tm)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
tm=_tm;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
///initialize the Itarator
void Init(CoordType _p,const ScalarType &_max_dist)
{
p=_p;
max_dist=_max_dist;
Elems.clear();
end=false;
tm.UnMarkAll();
step_size=Si.voxel.Norm();
radius=0;
inline bool operator == ( const Entry_Type & l ) const{return (elem == l.elem); }
///inflate the bbox until find a valid bbox
while ((!_NextShell())&&(!End()));
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
if (!_EndGrid())
Refresh();///load elements form currect cell
CoordType p; //initial point
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
ScalarType max_dist; //max distance when the scan terminate
vcg::Box3i explored; //current bounding box explored
ScalarType radius; //curret radius for sphere expansion
//ScalarType radius_min; //curret radius of explored simplexes
ScalarType voxel_min; //minimum value of the voxel
std::vector<Entry_Type> Elems; //element loaded from the current sphere
///until don't find an element
///that is inside the radius
while ((!End())&&(Dist()>radius))
{
if ((_NextShell())&&(!_EndGrid()))
Refresh();
}
DISTFUNCTOR &dist_funct;
TMARKER tm;
//set to the last element ..the nearest
CurrentElem=Elems.end();
CurrentElem--;
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
}
//return true if the scan is complete
bool End()
{return end;}
///refresh Object found also considering current shere radius,
//and object comes from previos that are already in the stack
void Refresh()
{
int ix,iy,iz;
for( iz = to_explore.min.Z();iz <= to_explore.max.Z(); ++iz)
for(iy = to_explore.min.Y(); iy <=to_explore.max.Y(); ++iy)
for(ix = to_explore.min.X(); ix <= to_explore.max.X();++ix)
{
if(ix<explored.min[0] || ix>explored.max[0] || // this test is to avoid to re-process already analyzed cells.
iy<explored.min[1] || iy>explored.max[1] ||
iz<explored.min[2] || iz>explored.max[2] )
{
Spatial_Idexing::CellIterator first,last,l;
Si.Grid(ix,iy,iz,first,last);
for(l=first;l!=last;++l)
{
ObjType *elem=&(**l);
if (!tm.IsMarked(elem))
{
CoordType nearest;
ScalarType dist=max_dist;
if (dist_funct((**l),p,dist,nearest))
Elems.push_back(Entry_Type(elem,fabs(dist),nearest));
tm.Mark(elem);
}
}
}
}
std::sort(Elems.begin(),Elems.end());
CurrentElem=Elems.end();
CurrentElem--;
}
void operator ++()
{
if (Elems.size()>0)
{
CurrentElem--;
Elems.pop_back();
}
while ((!End())&&(Dist()>radius))
{
if (_NextShell()&&!_EndGrid())
Refresh();
}
}
ObjType &operator *(){return *((*CurrentElem).elem);}
//return distance of the element form the point if no element
//are in the vector then return max dinstance
ScalarType Dist()
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
}
CoordType NearestPoint()
{return ((*CurrentElem).intersection);}
protected:
///structure that mantain for the current cell pre-calculated data
typedef struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
inline bool operator == ( const Entry_Type & l ) const{return (elem == l.elem); }
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
CoordType p; //initial point
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
ScalarType max_dist; //max distance when the scan terminate
vcg::Box3i explored; //current bounding box explored
vcg::Box3i to_explore; //current bounding box explored
ScalarType radius; //curret radius for sphere expansion
ScalarType step_size; //radius step
std::vector<Entry_Type> Elems; //element loaded from the current sphere
DISTFUNCTOR &dist_funct;
TMARKER tm;
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
};
}