Updated the some of the importers to the double/float managmaent. Now by default ascii files are read as double and if necessary downcasted to float.

This commit is contained in:
Paolo Cignoni 2014-06-27 08:51:31 +00:00
parent 87e2599d27
commit c02fd854f7
3 changed files with 456 additions and 450 deletions

View File

@ -56,7 +56,8 @@ class ImporterNVM
public:
typedef typename OpenMeshType::VertexPointer VertexPointer;
typedef typename OpenMeshType::ScalarType ScalarType;
typedef typename OpenMeshType::ScalarType ScalarType;
typedef typename OpenMeshType::CoordType CoordType;
typedef typename OpenMeshType::VertexType VertexType;
typedef typename OpenMeshType::FaceType FaceType;
typedef typename OpenMeshType::VertexIterator VertexIterator;
@ -76,20 +77,20 @@ static void readline(FILE *fp, char *line, int max=1000){
static bool ReadHeader(FILE *fp,unsigned int &num_cams){
char line[1000];
readline(fp, line);
if( (line[0]=='\0') || (0!=strcmp("NVM_V3 ", line)) ) return false;
readline(fp, line);
readline(fp, line);
if( (line[0]=='\0') || (0!=strcmp("NVM_V3 ", line)) ) return false;
readline(fp, line);
readline(fp, line); if(line[0]=='\0') return false;
sscanf(line, "%d", &num_cams);
return true;
}
static bool ReadHeader(const char * filename,unsigned int &/*num_cams*/, unsigned int &/*num_points*/){
FILE *fp = fopen(filename, "r");
if(!fp) return false;
ReadHeader(fp);
fclose(fp);
return true;
FILE *fp = fopen(filename, "r");
if(!fp) return false;
ReadHeader(fp);
fclose(fp);
return true;
}
@ -115,12 +116,12 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
vcg::Point4f R;
vcg::Point3f t;
readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%s %f %f %f %f %f %f %f %f %f", name, &f, &(R[0]), &(R[1]), &(R[2]), &(R[3]), &(t[0]), &(t[1]), &(t[2]), &k1);
readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%s %f %f %f %f %f %f %f %f %f", name, &f, &(R[0]), &(R[1]), &(R[2]), &(R[3]), &(t[0]), &(t[1]), &(t[2]), &k1);
std::string n(name);
image_filenames.push_back(n);
std::string n(name);
image_filenames.push_back(n);
/*readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%f %f %f", &f, &k1, &k2);
/*readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%f %f %f", &f, &k1, &k2);
readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%f %f %f", &(R[0]), &(R[1]), &(R[2])); R[3] = 0;
readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%f %f %f", &(R[4]), &(R[5]), &(R[6])); R[7] = 0;
@ -130,35 +131,35 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
//vcg::Matrix44f mat = vcg::Matrix44<vcg::Shotf::ScalarType>::Construct<float>(R);
vcg::Quaternion<float> qfrom; qfrom.Import(R);
vcg::Quaternion<ScalarType> qfrom; qfrom.Import(R);
vcg::Matrix44f mat; qfrom.ToMatrix(mat);
vcg::Matrix44<ScalarType> mat; qfrom.ToMatrix(mat);
/*vcg::Matrix33f Rt = vcg::Matrix33f( vcg::Matrix44f(mat), 3);
Rt.Transpose();
vcg::Point3f pos = Rt * vcg::Point3f(t[0], t[1], t[2]);*/
mat[1][0]=-mat[1][0];
mat[1][1]=-mat[1][1];
mat[1][2]=-mat[1][2];
mat[1][0]=-mat[1][0];
mat[1][1]=-mat[1][1];
mat[1][2]=-mat[1][2];
mat[2][0]=-mat[2][0];
mat[2][1]=-mat[2][1];
mat[2][2]=-mat[2][2];
mat[2][0]=-mat[2][0];
mat[2][1]=-mat[2][1];
mat[2][2]=-mat[2][2];
shots[i].Extrinsics.SetTra(vcg::Point3<vcg::Shotf::ScalarType>::Construct<float>(t[0],t[1],t[2]));
shots[i].Extrinsics.SetTra(CoordType(t[0],t[1],t[2]));
shots[i].Extrinsics.SetRot(mat);
shots[i].Intrinsics.FocalMm = f/100.0f;
shots[i].Intrinsics.k[0] = 0.0;//k1; To be uncommented when distortion is taken into account reliably
shots[i].Intrinsics.k[1] = 0.0;//k2;
shots[i].Intrinsics.PixelSizeMm = vcg::Point2f(0.01,0.01);
QImageReader sizeImg(QString::fromStdString(image_filenames[i]));
QSize size=sizeImg.size();
shots[i].Intrinsics.ViewportPx = vcg::Point2i(size.width(),size.height());
shots[i].Intrinsics.CenterPx[0] = (int)((double)shots[i].Intrinsics.ViewportPx[0]/2.0f);
shots[i].Intrinsics.CenterPx[1] = (int)((double)shots[i].Intrinsics.ViewportPx[1]/2.0f);
shots[i].Intrinsics.PixelSizeMm = vcg::Point2<ScalarType>(0.01,0.01);
QImageReader sizeImg(QString::fromStdString(image_filenames[i]));
QSize size=sizeImg.size();
shots[i].Intrinsics.ViewportPx = vcg::Point2i(size.width(),size.height());
shots[i].Intrinsics.CenterPx[0] = (int)((double)shots[i].Intrinsics.ViewportPx[0]/2.0f);
shots[i].Intrinsics.CenterPx[1] = (int)((double)shots[i].Intrinsics.ViewportPx[1]/2.0f);
}
readline(fp, line);
readline(fp, line); if(line[0]=='\0') return false;
@ -192,21 +193,21 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
static bool ReadImagesFilenames(const char * filename,std::vector<std::string> &image_filenames)
{
FILE * fp = fopen(filename,"r");
if (!fp) return false;
else
{
char line[1000], name[1000];
while(!feof(fp)){
readline(fp, line, 1000);
if(line[0] == '\0') continue; //ignore empty lines (in theory, might happen only at end of file)
sscanf(line, "%s", name);
std::string n(name);
image_filenames.push_back(n);
}
}
fclose(fp);
return true;
FILE * fp = fopen(filename,"r");
if (!fp) return false;
else
{
char line[1000], name[1000];
while(!feof(fp)){
readline(fp, line, 1000);
if(line[0] == '\0') continue; //ignore empty lines (in theory, might happen only at end of file)
sscanf(line, "%s", name);
std::string n(name);
image_filenames.push_back(n);
}
}
fclose(fp);
return true;
}
}; // end class

View File

@ -62,6 +62,7 @@ public:
typedef typename OpenMeshType::VertexPointer VertexPointer;
typedef typename OpenMeshType::ScalarType ScalarType;
typedef typename OpenMeshType::CoordType CoordType;
typedef typename OpenMeshType::VertexType VertexType;
typedef typename OpenMeshType::FaceType FaceType;
typedef typename OpenMeshType::VertexIterator VertexIterator;
@ -85,11 +86,11 @@ static bool ReadHeader(FILE *fp,unsigned int &num_cams, unsigned int &num_points
}
static bool ReadHeader(const char * filename,unsigned int &/*num_cams*/, unsigned int &/*num_points*/){
FILE *fp = fopen(filename, "r");
if(!fp) return false;
ReadHeader(fp);
fclose(fp);
return true;
FILE *fp = fopen(filename, "r");
if(!fp) return false;
ReadHeader(fp);
fclose(fp);
return true;
}
@ -98,7 +99,8 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
const char * filename,const char * filename_images, CallBackPos *cb=0)
{
unsigned int num_cams,num_points;
typedef typename vcg::Matrix44<ScalarType> Matrix44x;
typedef typename vcg::Matrix33<ScalarType> Matrix33x;
FILE *fp = fopen(filename,"r");
if(!fp) return false;
ReadHeader(fp, num_cams, num_points);
@ -123,32 +125,32 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
readline(fp, line); if(line[0]=='\0') return false; sscanf(line, "%f %f %f", &(t[0]), &(t[1]), &(t[2]));
vcg::Matrix44f mat = vcg::Matrix44<vcg::Shotf::ScalarType>::Construct<float>(R);
Matrix44x mat = Matrix44x::Construct(Matrix44f(R));
vcg::Matrix33f Rt = vcg::Matrix33f( vcg::Matrix44f(mat), 3);
Matrix33x Rt = Matrix33x( Matrix44x(mat), 3);
Rt.Transpose();
vcg::Point3f pos = Rt * vcg::Point3f(t[0], t[1], t[2]);
CoordType pos = Rt * CoordType(t[0], t[1], t[2]);
shots[i].Extrinsics.SetTra(vcg::Point3<vcg::Shotf::ScalarType>::Construct<float>(-pos[0],-pos[1],-pos[2]));
shots[i].Extrinsics.SetTra(CoordType(-pos[0],-pos[1],-pos[2]));
shots[i].Extrinsics.SetRot(mat);
shots[i].Intrinsics.FocalMm = f;
shots[i].Intrinsics.k[0] = 0.0;//k1; To be uncommented when distortion is taken into account reliably
shots[i].Intrinsics.k[1] = 0.0;//k2;
shots[i].Intrinsics.PixelSizeMm = vcg::Point2f(1,1);
QSize size;
QImageReader sizeImg(QString::fromStdString(image_filenames[i]));
if(sizeImg.size()==QSize(-1,-1))
{
QImageReader sizeImg(QString::fromStdString(qPrintable(path_im)+image_filenames[i]));
size=sizeImg.size();
}
else
size=sizeImg.size();
shots[i].Intrinsics.ViewportPx = vcg::Point2i(size.width(),size.height());
shots[i].Intrinsics.CenterPx[0] = (int)((double)shots[i].Intrinsics.ViewportPx[0]/2.0f);
shots[i].Intrinsics.CenterPx[1] = (int)((double)shots[i].Intrinsics.ViewportPx[1]/2.0f);
shots[i].Intrinsics.PixelSizeMm = vcg::Point2<ScalarType>(1,1);
QSize size;
QImageReader sizeImg(QString::fromStdString(image_filenames[i]));
if(sizeImg.size()==QSize(-1,-1))
{
QImageReader sizeImg(QString::fromStdString(qPrintable(path_im)+image_filenames[i]));
size=sizeImg.size();
}
else
size=sizeImg.size();
shots[i].Intrinsics.ViewportPx = vcg::Point2i(size.width(),size.height());
shots[i].Intrinsics.CenterPx[0] = (int)((double)shots[i].Intrinsics.ViewportPx[0]/2.0f);
shots[i].Intrinsics.CenterPx[1] = (int)((double)shots[i].Intrinsics.ViewportPx[1]/2.0f);
//AddIntrinsics(shots[i], std::string(filename_images_path).append(image_filenames[i]).c_str());
}
@ -157,9 +159,9 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
typename OpenMeshType::VertexIterator vi = vcg::tri::Allocator<OpenMeshType>::AddVertices(m,num_points);
for(uint i = 0; i < num_points;++i,++vi){
float x,y,z;
double x,y,z;
unsigned int r,g,b,i_cam, key_sift,n_corr;
fscanf(fp,"%f %f %f ",&x,&y,&z);
fscanf(fp,"%lf %lf %lf ",&x,&y,&z);
(*vi).P() = vcg::Point3<typename OpenMeshType::ScalarType>(x,y,z);
fscanf(fp,"%d %d %d ",&r,&g,&b);
(*vi).C() = vcg::Color4b(r,g,b,255);
@ -180,34 +182,34 @@ static int Open( OpenMeshType &m, std::vector<Shot<ScalarType> > & shots,
static bool ReadImagesFilenames(const char * filename,std::vector<std::string> &image_filenames)
{
FILE * fp = fopen(filename,"r");
if (!fp) return false;
else
{
char line[1000], name[1000];
while(!feof(fp)){
readline(fp, line, 1000);
if(line[0] == '\0') continue; //ignore empty lines (in theory, might happen only at end of file)
sscanf(line, "%s", name);
std::string n(name);
image_filenames.push_back(n);
}
}
fclose(fp);
return true;
FILE * fp = fopen(filename,"r");
if (!fp) return false;
else
{
char line[1000], name[1000];
while(!feof(fp)){
readline(fp, line, 1000);
if(line[0] == '\0') continue; //ignore empty lines (in theory, might happen only at end of file)
sscanf(line, "%s", name);
std::string n(name);
image_filenames.push_back(n);
}
}
fclose(fp);
return true;
}
static bool AddIntrinsics(vcg::Shotf &shot, const char * image_file)
{
::ResetJpgfile();
FILE * pFile = fopen(image_file, "rb");
int ret = ::ReadJpegSections (pFile, READ_METADATA);
fclose(pFile);
if(ret==0) return false;
shot.Intrinsics.ViewportPx = vcg::Point2i(ImageInfo.Width, ImageInfo.Height);
shot.Intrinsics.CenterPx = vcg::Point2f(float(ImageInfo.Width/2.0), float(ImageInfo.Height/2.0));
::ResetJpgfile();
FILE * pFile = fopen(image_file, "rb");
int ret = ::ReadJpegSections (pFile, READ_METADATA);
fclose(pFile);
if(ret==0) return false;
shot.Intrinsics.ViewportPx = vcg::Point2i(ImageInfo.Width, ImageInfo.Height);
shot.Intrinsics.CenterPx = vcg::Point2f(float(ImageInfo.Width/2.0), float(ImageInfo.Height/2.0));
return true;
return true;
}
}; // end class

View File

@ -8,7 +8,7 @@
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
@ -34,412 +34,415 @@
namespace vcg {
namespace tri {
namespace io {
/**
This class encapsulate a filter for importing ptx meshes.
*/
template <class OpenMeshType>
class ImporterPTX
{
public:
typedef typename OpenMeshType::VertexPointer VertexPointer;
typedef typename OpenMeshType::ScalarType ScalarType;
typedef typename OpenMeshType::VertexType VertexType;
typedef typename OpenMeshType::FaceType FaceType;
typedef typename OpenMeshType::VertexIterator VertexIterator;
typedef typename OpenMeshType::FaceIterator FaceIterator;
class Info //ptx file info
{
public:
/**
This class encapsulate a filter for importing ptx meshes.
*/
Info()
{
mask = 0;
meshnum = 0;
anglecull = true;
angle = 89;
savecolor = true;
pointcull = true;
pointsonly = false;
switchside = false;
flipfaces = false;
}
template <class OpenMeshType>
class ImporterPTX
{
public:
typedef typename OpenMeshType::VertexPointer VertexPointer;
typedef typename OpenMeshType::ScalarType ScalarType;
typedef typename OpenMeshType::VertexType VertexType;
typedef typename OpenMeshType::FaceType FaceType;
typedef typename OpenMeshType::VertexIterator VertexIterator;
typedef typename OpenMeshType::FaceIterator FaceIterator;
typedef typename OpenMeshType::CoordType CoordType;
typedef typename vcg::Matrix44<ScalarType> Matrix44x;
/// a bit mask describing the field preesnt in the ply file
int mask;
class Info //ptx file info
{
public:
/// index of mesh to be imported
int meshnum;
Info()
{
mask = 0;
meshnum = 0;
anglecull = true;
angle = 89;
savecolor = true;
pointcull = true;
pointsonly = false;
switchside = false;
flipfaces = false;
}
/// if true use angle cull
bool anglecull;
/// culling angle, if angle culling is selected
float angle;
/// a bit mask describing the field preesnt in the ply file
int mask;
/// if true, remove invalid points
bool pointcull;
/// index of mesh to be imported
int meshnum;
/// if true, only keeps points
bool pointsonly;
/// if true use angle cull
bool anglecull;
/// culling angle, if angle culling is selected
float angle;
/// if true, color if saved. if no color is present, reflectancy is used instead
bool savecolor;
/// if true, remove invalid points
bool pointcull;
/// switch row-columns
bool switchside;
/// flip faces
bool flipfaces;
/// if true, only keeps points
bool pointsonly;
}; // end ptx file info class
/// if true, color if saved. if no color is present, reflectancy is used instead
bool savecolor;
/// switch row-columns
bool switchside;
/// flip faces
bool flipfaces;
}; // end ptx file info class
/// Standard call for knowing the meaning of an error code
static const char *ErrorMsg(int error)
{
static const char * ptx_error_msg[] =
{
"No errors",
"Can't open file",
"Header not found",
"Eof in header",
"Format not found",
"Syntax error on header",
};
if(error>6 || error<0) return "Unknown error";
else return ptx_error_msg[error];
};
/// Standard call for knowing the meaning of an error code
static const char *ErrorMsg(int error)
{
static const char * ptx_error_msg[] =
{
"No errors",
"Can't open file",
"Header not found",
"Eof in header",
"Format not found",
"Syntax error on header",
};
if(error>6 || error<0) return "Unknown error";
else return ptx_error_msg[error];
};
/// skip ONE range map inside the ptx file, starting from current position
/// returns true if skipped, false if failed/eof
static bool skipmesh(FILE* fp, CallBackPos *cb=NULL)
{
int colnum;
int rownum;
int skiplines;
char linebuf;
/// skip ONE range map inside the ptx file, starting from current position
/// returns true if skipped, false if failed/eof
static bool skipmesh(FILE* fp, CallBackPos *cb=NULL)
{
int colnum;
int rownum;
int skiplines;
char linebuf;
if(feof(fp)) return false;
if(feof(fp)) return false;
// getting mesh size;
fscanf(fp,"%i\n",&colnum);
fscanf(fp,"%i\n",&rownum);
// getting mesh size;
fscanf(fp,"%i\n",&colnum);
fscanf(fp,"%i\n",&rownum);
if ( ( colnum <=0 ) || ( rownum <=0 ) ) return false;
if(feof(fp)) return false;
if ( ( colnum <=0 ) || ( rownum <=0 ) ) return false;
if(feof(fp)) return false;
// have to skip (col * row) lines plus 8 lines for the header
skiplines = (colnum * rownum) + 8;
for(int ii=0; ii<skiplines; ii++)
{
fread(&linebuf,1,1,fp);
while(linebuf != '\n') fread(&linebuf,1,1,fp);
}
// have to skip (col * row) lines plus 8 lines for the header
skiplines = (colnum * rownum) + 8;
for(int ii=0; ii<skiplines; ii++)
{
fread(&linebuf,1,1,fp);
while(linebuf != '\n') fread(&linebuf,1,1,fp);
}
if(cb) cb( 100, "Skipped preamble");
return true;
}
if(cb) cb( 100, "Skipped preamble");
return true;
}
///Standard call that reading a mesh
static int Open( OpenMeshType &m, const char * filename, Info importparams, CallBackPos *cb=NULL)
{
FILE *fp;
fp = fopen(filename, "rb");
if(fp == NULL) return false;
m.Clear();
m.vn=0;
m.fn=0;
///Standard call that reading a mesh
static int Open( OpenMeshType &m, const char * filename, Info importparams, CallBackPos *cb=NULL)
{
FILE *fp;
fp = fopen(filename, "rb");
if(fp == NULL) return false;
m.Clear();
m.vn=0;
m.fn=0;
// if not exporting first one, skip meshes until desired one
if (importparams.meshnum>0)
for (int i=0; i!=importparams.meshnum; ++i)
if(!skipmesh(fp, cb))
return 1;
// if not exporting first one, skip meshes until desired one
if (importparams.meshnum>0)
for (int i=0; i!=importparams.meshnum; ++i)
if(!skipmesh(fp, cb))
return 1;
if (!readPTX( m, fp, importparams, cb))
{
m.Clear();
return 1;
}
if (!readPTX( m, fp, importparams, cb))
{
m.Clear();
return 1;
}
return 0;
}
return 0;
}
///Call that load a mesh
static bool readPTX( OpenMeshType &m, FILE *fp, Info importparams, CallBackPos *cb=NULL)
{
int numtokens;
int colnum;
int rownum;
float xx,yy,zz; // position
float rr,gg,bb; // color
float rf; // reflectance
Matrix44f currtrasf;
///Call that load a mesh
static bool readPTX( OpenMeshType &m, FILE *fp, Info importparams, CallBackPos *cb=NULL)
{
int numtokens;
int colnum;
int rownum;
double xx,yy,zz; // position
float rr,gg,bb; // color
float rf; // reflectance
Matrix44d currtrasf;
bool hascolor;
bool savecolor = importparams.savecolor && VertexType::HasColor();
bool switchside = importparams.switchside;
bool hascolor;
bool savecolor = importparams.savecolor && VertexType::HasColor();
bool switchside = importparams.switchside;
int total = 50;
if (importparams.pointsonly) total = 100;
char linebuf[256];
fscanf(fp,"%i\n",&colnum);
fscanf(fp,"%i\n",&rownum);
if ( ( colnum <=0 ) || ( rownum <=0 ) ) return false;
// initial 4 lines [still don't know what is this :) :)]
if ( !fscanf(fp,"%f %f %f\n", &xx, &yy, &zz) ) return false;
if ( !fscanf(fp,"%f %f %f\n", &xx, &yy, &zz) ) return false;
if ( !fscanf(fp,"%f %f %f\n", &xx, &yy, &zz) ) return false;
if ( !fscanf(fp,"%f %f %f\n", &xx, &yy, &zz) ) return false;
// now the transformation matrix
if ( !fscanf(fp,"%f %f %f %f\n", &(currtrasf.ElementAt(0,0)), &(currtrasf.ElementAt(0,1)), &(currtrasf.ElementAt(0,2)), &(currtrasf.ElementAt(0,3))) )return false;
if ( !fscanf(fp,"%f %f %f %f\n", &(currtrasf.ElementAt(1,0)), &(currtrasf.ElementAt(1,1)), &(currtrasf.ElementAt(1,2)), &(currtrasf.ElementAt(1,3))) )return false;
if ( !fscanf(fp,"%f %f %f %f\n", &(currtrasf.ElementAt(2,0)), &(currtrasf.ElementAt(2,1)), &(currtrasf.ElementAt(2,2)), &(currtrasf.ElementAt(2,3))) )return false;
if ( !fscanf(fp,"%f %f %f %f\n", &(currtrasf.ElementAt(3,0)), &(currtrasf.ElementAt(3,1)), &(currtrasf.ElementAt(3,2)), &(currtrasf.ElementAt(3,3))) )return false;
//now the real data begins
// first line, we should know if the format is
// XX YY ZZ RF
// or it is
// XX YY ZZ RF RR GG BB
// read the entire first line and then count the spaces. it's rude but it works :)
int ii=0;
fread(&(linebuf[ii++]),1,1,fp);
while(linebuf[ii-1] != '\n') if ( fread(&(linebuf[ii++]),1,1,fp)==0 ) return false;
linebuf[ii-1] = '\0'; // terminate the string
numtokens=1;
for(ii=0; ii<(int)strlen(linebuf); ii++) if(linebuf[ii] == ' ') numtokens++;
if(numtokens == 4) hascolor = false;
else if(numtokens == 7) hascolor = true;
else return false;
// PTX transformation matrix is transposed
currtrasf.transposeInPlace();
// allocating vertex space
int vn = rownum*colnum;
VertexIterator vi = Allocator<OpenMeshType>::AddVertices(m,vn);
m.vn = vn;
m.bbox.SetNull();
int total = 50;
if (importparams.pointsonly) total = 100;
char linebuf[256];
// parse the first line....
if(hascolor)
{
printf("\n hascolor ");
sscanf(linebuf,"%f %f %f %f %f %f %f", &xx, &yy, &zz, &rf, &rr, &gg, &bb);
}
else
{
printf("\n no color ");
sscanf(linebuf,"%f %f %f %f", &xx, &yy, &zz, &rf);
}
//addthefirstpoint
(*vi).P()[0]=xx;
(*vi).P()[1]=yy;
(*vi).P()[2]=zz;
fscanf(fp,"%i\n",&colnum);
fscanf(fp,"%i\n",&rownum);
if(VertexType::HasQuality())
{
(*vi).Q()=rf;
}
if ( ( colnum <=0 ) || ( rownum <=0 ) ) return false;
// initial 4 lines [still don't know what is this :) :)]
if ( !fscanf(fp,"%lf %lf %lf\n", &xx, &yy, &zz) ) return false;
if ( !fscanf(fp,"%lf %lf %lf\n", &xx, &yy, &zz) ) return false;
if ( !fscanf(fp,"%lf %lf %lf\n", &xx, &yy, &zz) ) return false;
if ( !fscanf(fp,"%lf %lf %lf\n", &xx, &yy, &zz) ) return false;
// now the transformation matrix
if ( !fscanf(fp,"%lf %lf %lf %lf\n", &(currtrasf.ElementAt(0,0)), &(currtrasf.ElementAt(0,1)), &(currtrasf.ElementAt(0,2)), &(currtrasf.ElementAt(0,3))) )return false;
if ( !fscanf(fp,"%lf %lf %lf %lf\n", &(currtrasf.ElementAt(1,0)), &(currtrasf.ElementAt(1,1)), &(currtrasf.ElementAt(1,2)), &(currtrasf.ElementAt(1,3))) )return false;
if ( !fscanf(fp,"%lf %lf %lf %lf\n", &(currtrasf.ElementAt(2,0)), &(currtrasf.ElementAt(2,1)), &(currtrasf.ElementAt(2,2)), &(currtrasf.ElementAt(2,3))) )return false;
if ( !fscanf(fp,"%lf %lf %lf %lf\n", &(currtrasf.ElementAt(3,0)), &(currtrasf.ElementAt(3,1)), &(currtrasf.ElementAt(3,2)), &(currtrasf.ElementAt(3,3))) )return false;
if(savecolor)
//now the real data begins
// first line, we should know if the format is
// XX YY ZZ RF
// or it is
// XX YY ZZ RF RR GG BB
// read the entire first line and then count the spaces. it's rude but it works :)
int ii=0;
fread(&(linebuf[ii++]),1,1,fp);
while(linebuf[ii-1] != '\n') if ( fread(&(linebuf[ii++]),1,1,fp)==0 ) return false;
linebuf[ii-1] = '\0'; // terminate the string
numtokens=1;
for(ii=0; ii<(int)strlen(linebuf); ii++) if(linebuf[ii] == ' ') numtokens++;
if(numtokens == 4) hascolor = false;
else if(numtokens == 7) hascolor = true;
else return false;
// PTX transformation matrix is transposed
currtrasf.transposeInPlace();
// allocating vertex space
int vn = rownum*colnum;
VertexIterator vi = Allocator<OpenMeshType>::AddVertices(m,vn);
m.vn = vn;
m.bbox.SetNull();
// parse the first line....
if(hascolor)
{
printf("\n hascolor ");
sscanf(linebuf,"%lf %lf %lf %f %f %f %f", &xx, &yy, &zz, &rf, &rr, &gg, &bb);
}
else
{
printf("\n no color ");
sscanf(linebuf,"%lf %lf %lf %f", &xx, &yy, &zz, &rf);
}
//addthefirstpoint
(*vi).P()[0]=xx;
(*vi).P()[1]=yy;
(*vi).P()[2]=zz;
if(VertexType::HasQuality())
{
(*vi).Q()=rf;
}
if(savecolor)
{
if(hascolor)
{
if(hascolor)
{
(*vi).C()[0]=rr;
(*vi).C()[1]=gg;
(*vi).C()[2]=bb;
} else {
(*vi).C()[0]=rf*255;
(*vi).C()[1]=rf*255;
(*vi).C()[2]=rf*255;
}
}
vi++;
(*vi).C()[0]=rr;
(*vi).C()[1]=gg;
(*vi).C()[2]=bb;
} else {
(*vi).C()[0]=rf*255;
(*vi).C()[1]=rf*255;
(*vi).C()[2]=rf*255;
}
}
vi++;
if(switchside) std::swap(rownum,colnum);
if(switchside) std::swap(rownum,colnum);
// now for each line until end of mesh (row*col)-1
for(ii=0; ii<((rownum*colnum)-1); ii++)
{
if(cb && (ii%100)==0) cb((ii*total)/vn, "Vertex Loading");
// now for each line until end of mesh (row*col)-1
for(ii=0; ii<((rownum*colnum)-1); ii++)
{
if(cb && (ii%100)==0) cb((ii*total)/vn, "Vertex Loading");
// read the stream
if(hascolor)
fscanf(fp,"%f %f %f %f %f %f %f", &xx, &yy, &zz, &rf, &rr, &gg, &bb);
else
fscanf(fp,"%f %f %f %f", &xx, &yy, &zz, &rf);
// read the stream
if(hascolor)
fscanf(fp,"%f %f %f %f %f %f %f", &xx, &yy, &zz, &rf, &rr, &gg, &bb);
else
fscanf(fp,"%f %f %f %f", &xx, &yy, &zz, &rf);
// add the point
(*vi).P()[0]=xx;
(*vi).P()[1]=yy;
(*vi).P()[2]=zz;
// add the point
(*vi).P()[0]=xx;
(*vi).P()[1]=yy;
(*vi).P()[2]=zz;
if(tri::HasPerVertexQuality(m)) (*vi).Q()=rf;
if(hascolor && savecolor)
{
(*vi).C()[0]=rr;
(*vi).C()[1]=gg;
(*vi).C()[2]=bb;
}
else if(!hascolor && savecolor)
{
(*vi).C()[0]=rf*255;
(*vi).C()[1]=rf*255;
(*vi).C()[2]=rf*255;
}
if(tri::HasPerVertexQuality(m)) (*vi).Q()=rf;
vi++;
}
if(hascolor && savecolor)
{
(*vi).C()[0]=rr;
(*vi).C()[1]=gg;
(*vi).C()[2]=bb;
}
else if(!hascolor && savecolor)
{
(*vi).C()[0]=rf*255;
(*vi).C()[1]=rf*255;
(*vi).C()[2]=rf*255;
}
vi++;
}
if(! importparams.pointsonly)
{
// now i can triangulate
int trinum = (rownum-1) * (colnum-1) * 2;
typename OpenMeshType::FaceIterator fi= Allocator<OpenMeshType>::AddFaces(m,trinum);
int v0i,v1i,v2i, t;
t=0;
for(int rit=0; rit<rownum-1; rit++)
for(int cit=0; cit<colnum-1; cit++)
{
t++;
if(cb) cb(50 + (t*50)/(rownum*colnum),"PTX Mesh Loading");
v0i = (rit ) + ((cit ) * rownum);
v1i = (rit+1) + ((cit ) * rownum);
v2i = (rit ) + ((cit+1) * rownum);
// upper tri
(*fi).V(2) = &(m.vert[v0i]);
(*fi).V(1) = &(m.vert[v1i]);
(*fi).V(0) = &(m.vert[v2i]);
fi++;
v0i = (rit+1) + ((cit ) * rownum);
v1i = (rit+1) + ((cit+1) * rownum);
v2i = (rit ) + ((cit+1) * rownum);
// lower tri
(*fi).V(2) = &(m.vert[v0i]);
(*fi).V(1) = &(m.vert[v1i]);
(*fi).V(0) = &(m.vert[v2i]);
fi++;
}
}
printf("Loaded %i vert\n",m.vn);
// remove unsampled points
if(importparams.pointcull)
{
if(cb) cb(40,"PTX Mesh Loading - remove invalid vertices");
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); vi++)
{
if((*vi).P() == CoordType(0.0, 0.0, 0.0))
Allocator<OpenMeshType>::DeleteVertex(m,*vi);
}
if(! importparams.pointsonly)
{
// now i can triangulate
int trinum = (rownum-1) * (colnum-1) * 2;
typename OpenMeshType::FaceIterator fi= Allocator<OpenMeshType>::AddFaces(m,trinum);
int v0i,v1i,v2i, t;
t=0;
for(int rit=0; rit<rownum-1; rit++)
for(int cit=0; cit<colnum-1; cit++)
{
t++;
if(cb) cb(50 + (t*50)/(rownum*colnum),"PTX Mesh Loading");
v0i = (rit ) + ((cit ) * rownum);
v1i = (rit+1) + ((cit ) * rownum);
v2i = (rit ) + ((cit+1) * rownum);
// upper tri
(*fi).V(2) = &(m.vert[v0i]);
(*fi).V(1) = &(m.vert[v1i]);
(*fi).V(0) = &(m.vert[v2i]);
fi++;
v0i = (rit+1) + ((cit ) * rownum);
v1i = (rit+1) + ((cit+1) * rownum);
v2i = (rit ) + ((cit+1) * rownum);
// lower tri
(*fi).V(2) = &(m.vert[v0i]);
(*fi).V(1) = &(m.vert[v1i]);
(*fi).V(0) = &(m.vert[v2i]);
fi++;
}
}
printf("Loaded %i vert\n",m.vn);
// remove unsampled points
if(importparams.pointcull)
{
if(cb) cb(40,"PTX Mesh Loading - remove invalid vertices");
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); vi++)
{
if((*vi).P() == Point3f(0.0, 0.0, 0.0))
Allocator<OpenMeshType>::DeleteVertex(m,*vi);
}
if(! importparams.pointsonly)
{
if(cb) cb(60,"PTX Mesh Loading - remove invalid faces");
for(typename OpenMeshType::FaceIterator fi = m.face.begin(); fi != m.face.end(); fi++)
{
if( ((*fi).V(0)->IsD()) || ((*fi).V(1)->IsD()) || ((*fi).V(2)->IsD()) )
Allocator<OpenMeshType>::DeleteFace(m,*fi);
}
}
}
float limitCos = cos( math::ToRad(importparams.angle) );
printf("Loaded %i vert\n",m.vn);
if(importparams.pointsonly)
{ // Compute Normals and radius for points
// Compute the four edges around each point
// Some edges can be null (boundary and invalid samples)
if(cb) cb(85,"PTX Mesh Loading - computing vert normals");
for(int rit=0; rit<rownum; rit++)
{
if(cb) cb(60,"PTX Mesh Loading - remove invalid faces");
for(typename OpenMeshType::FaceIterator fi = m.face.begin(); fi != m.face.end(); fi++)
{
int ritL = std::max(rit-1,0);
int ritR = std::min(rit+1,rownum-1);
for(int cit=0; cit<colnum; cit++)
{
int citT = std::max(cit-1,0);
int citB = std::min(cit+1,colnum-1);
int v0 = (rit ) + ((cit ) * rownum);
if(m.vert[v0].IsD()) continue;
int vL = (ritL) + ((cit ) * rownum);
int vR = (ritR) + ((cit) * rownum);
int vT = (rit ) + ((citT ) * rownum);
int vB = (rit ) + ((citB) * rownum);
Point3f v0p=m.vert[v0].P();
Point3f vLp(0,0,0),vRp(0,0,0),vTp(0,0,0),vBp(0,0,0); // Compute the 4 edges around the vertex.
if(!m.vert[vL].IsD()) vLp=(m.vert[vL].P()-v0p).Normalize();
if(!m.vert[vR].IsD()) vRp=(m.vert[vR].P()-v0p).Normalize();
if(!m.vert[vT].IsD()) vTp=(m.vert[vT].P()-v0p).Normalize();
if(!m.vert[vB].IsD()) vBp=(m.vert[vB].P()-v0p).Normalize();
float r=0;
int rc=0; Point3f v0pn = Normalize(v0p);
// Skip edges that are too steep
// Compute the four normalized vector orthogonal to each pair of consecutive edges.
Point3f vLTn = (vLp ^ vTp).Normalize();
Point3f vTRn = (vTp ^ vRp).Normalize();
Point3f vRBn = (vRp ^ vBp).Normalize();
Point3f vBLn = (vBp ^ vLp).Normalize();
// Compute an average Normal skipping null normals and normals that are too steep.
// Compute also the sum of non null edge lenght to compute the radius
Point3f N(0,0,0);
if((vLTn*v0pn)>limitCos) { N+=vLTn; r += Distance(m.vert[vL].P(),v0p)+Distance(m.vert[vT].P(),v0p); rc++; }
if((vTRn*v0pn)>limitCos) { N+=vTRn; r += Distance(m.vert[vT].P(),v0p)+Distance(m.vert[vR].P(),v0p); rc++; }
if((vRBn*v0pn)>limitCos) { N+=vRBn; r += Distance(m.vert[vR].P(),v0p)+Distance(m.vert[vB].P(),v0p); rc++; }
if((vBLn*v0pn)>limitCos) { N+=vBLn; r += Distance(m.vert[vB].P(),v0p)+Distance(m.vert[vL].P(),v0p); rc++; }
m.vert[v0].N()=-N;
if(tri::HasPerVertexRadius(m)) m.vert[v0].R() = r/(rc*2.0f);
// Isolated points has null normal. Delete them please.
if(m.vert[v0].N() == Point3f(0,0,0)) Allocator<OpenMeshType>::DeleteVertex(m,m.vert[v0]);
}
if( ((*fi).V(0)->IsD()) || ((*fi).V(1)->IsD()) || ((*fi).V(2)->IsD()) )
Allocator<OpenMeshType>::DeleteFace(m,*fi);
}
}
else
// eliminate high angle triangles
}
float limitCos = cos( math::ToRad(importparams.angle) );
printf("Loaded %i vert\n",m.vn);
if(importparams.pointsonly)
{ // Compute Normals and radius for points
// Compute the four edges around each point
// Some edges can be null (boundary and invalid samples)
if(cb) cb(85,"PTX Mesh Loading - computing vert normals");
for(int rit=0; rit<rownum; rit++)
{
if(importparams.flipfaces)
tri::Clean<OpenMeshType>::FlipMesh(m);
if(importparams.anglecull)
int ritL = std::max(rit-1,0);
int ritR = std::min(rit+1,rownum-1);
for(int cit=0; cit<colnum; cit++)
{
if(cb) cb(85,"PTX Mesh Loading - remove steep faces");
tri::UpdateNormal<OpenMeshType>::PerFaceNormalized(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
Point3f raggio = -((*fi).P(0) + (*fi).P(1) + (*fi).P(2)) / 3.0;
int citT = std::max(cit-1,0);
int citB = std::min(cit+1,colnum-1);
int v0 = (rit ) + ((cit ) * rownum);
if(m.vert[v0].IsD()) continue;
int vL = (ritL) + ((cit ) * rownum);
int vR = (ritR) + ((cit) * rownum);
int vT = (rit ) + ((citT ) * rownum);
int vB = (rit ) + ((citB) * rownum);
CoordType v0p=m.vert[v0].P();
CoordType vLp(0,0,0),vRp(0,0,0),vTp(0,0,0),vBp(0,0,0); // Compute the 4 edges around the vertex.
if(!m.vert[vL].IsD()) vLp=(m.vert[vL].P()-v0p).Normalize();
if(!m.vert[vR].IsD()) vRp=(m.vert[vR].P()-v0p).Normalize();
if(!m.vert[vT].IsD()) vTp=(m.vert[vT].P()-v0p).Normalize();
if(!m.vert[vB].IsD()) vBp=(m.vert[vB].P()-v0p).Normalize();
float r=0;
int rc=0; CoordType v0pn = Normalize(v0p);
// Skip edges that are too steep
// Compute the four normalized vector orthogonal to each pair of consecutive edges.
CoordType vLTn = (vLp ^ vTp).Normalize();
CoordType vTRn = (vTp ^ vRp).Normalize();
CoordType vRBn = (vRp ^ vBp).Normalize();
CoordType vBLn = (vBp ^ vLp).Normalize();
// Compute an average Normal skipping null normals and normals that are too steep.
// Compute also the sum of non null edge lenght to compute the radius
CoordType N(0,0,0);
if((vLTn*v0pn)>limitCos) { N+=vLTn; r += Distance(m.vert[vL].P(),v0p)+Distance(m.vert[vT].P(),v0p); rc++; }
if((vTRn*v0pn)>limitCos) { N+=vTRn; r += Distance(m.vert[vT].P(),v0p)+Distance(m.vert[vR].P(),v0p); rc++; }
if((vRBn*v0pn)>limitCos) { N+=vRBn; r += Distance(m.vert[vR].P(),v0p)+Distance(m.vert[vB].P(),v0p); rc++; }
if((vBLn*v0pn)>limitCos) { N+=vBLn; r += Distance(m.vert[vB].P(),v0p)+Distance(m.vert[vL].P(),v0p); rc++; }
m.vert[v0].N()=-N;
if(tri::HasPerVertexRadius(m)) m.vert[v0].R() = r/(rc*2.0f);
// Isolated points has null normal. Delete them please.
if(m.vert[v0].N() == CoordType(0,0,0)) Allocator<OpenMeshType>::DeleteVertex(m,m.vert[v0]);
}
}
}
else
// eliminate high angle triangles
{
if(importparams.flipfaces)
tri::Clean<OpenMeshType>::FlipMesh(m);
if(importparams.anglecull)
{
if(cb) cb(85,"PTX Mesh Loading - remove steep faces");
tri::UpdateNormal<OpenMeshType>::PerFaceNormalized(m);
for(FaceIterator fi = m.face.begin(); fi != m.face.end(); fi++)
if(!(*fi).IsD())
{
CoordType raggio = -((*fi).P(0) + (*fi).P(1) + (*fi).P(2)) / 3.0;
raggio.Normalize();
if((raggio.dot((*fi).N())) < limitCos)
Allocator<OpenMeshType>::DeleteFace(m,*fi);
}
// deleting unreferenced vertices only if we are interested in faces...
tri::Clean<OpenMeshType>::RemoveUnreferencedVertex(m);
}
// deleting unreferenced vertices only if we are interested in faces...
tri::Clean<OpenMeshType>::RemoveUnreferencedVertex(m);
}
}
Matrix44x tr; tr.Import(currtrasf);
tri::UpdatePosition<OpenMeshType>::Matrix(m,currtrasf,true);
tri::Allocator<OpenMeshType>::CompactVertexVector(m);
tri::UpdateBounding<OpenMeshType>::Box(m);
if(cb) cb(100,"PTX Mesh Loading finished!");
return true;
}
tri::UpdatePosition<OpenMeshType>::Matrix(m,currtrasf,true);
tri::Allocator<OpenMeshType>::CompactVertexVector(m);
tri::UpdateBounding<OpenMeshType>::Box(m);
if(cb) cb(100,"PTX Mesh Loading finish!");
return true;
}
}; // end class
}; // end class
} // end Namespace tri
} // end Namespace io