make Point derive Eigen's Matrix and some cleanning

This commit is contained in:
Paolo Cignoni 2008-10-28 11:47:37 +00:00
parent 949637c795
commit c1551eddfd
10 changed files with 1328 additions and 977 deletions

View File

@ -1152,7 +1152,7 @@ static bool TestIntersection(FaceType *f0,FaceType *f1)
//no adiacent faces
if ( (f0!=f1) && (!ShareEdge(f0,f1))
&& (!ShareVertex(f0,f1)) )
return (vcg::Intersection_<FaceType>((*f0),(*f1)));
return (vcg::Intersection<FaceType>((*f0),(*f1)));
return false;
}

View File

@ -28,12 +28,18 @@
#define EIGEN_DONT_VECTORIZE
#define EIGEN_MATRIXBASE_PLUGIN <vcg/math/eigen_vcgaddons.h>
// forward declarations
namespace Eigen {
template<typename Derived1, typename Derived2, int Size> struct ei_lexi_comparison;
}
#include "../Eigen/LU"
#include "../Eigen/Geometry"
#include "../Eigen/Array"
#include "../Eigen/Core"
#include "base.h"
// add support for unsigned char and short int
namespace Eigen {
template<> struct NumTraits<unsigned char>
{
@ -61,6 +67,94 @@ template<> struct NumTraits<short int>
};
};
// WARNING this is a default version provided so that Intersection() stuff can compile.
// Indeed, the compiler try to instanciate all versions of Intersection() leading to
// the instanciation of Eigen::Matrix<Face,...> !!!
template<typename T> struct NumTraits
{
struct wrong_type
{
wrong_type() { assert(0 && "Eigen: you are using a wrong scalar type" ); }
};
typedef wrong_type Real;
typedef wrong_type FloatingPoint;
enum {
IsComplex = 0,
HasFloatingPoint = 0,
ReadCost = 0,
AddCost = 0,
MulCost = 0
};
};
// implementation of Lexicographic order comparison
// TODO should use meta unrollers
template<typename Derived1, typename Derived2> struct ei_lexi_comparison<Derived1,Derived2,2>
{
inline static bool less(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<b.coeff(0));
}
inline static bool greater(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>b.coeff(0));
}
inline static bool lessEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<=b.coeff(0));
}
inline static bool greaterEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>=b.coeff(0));
}
};
template<typename Derived1, typename Derived2> struct ei_lexi_comparison<Derived1,Derived2,3>
{
inline static bool less(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<b.coeff(0));
}
inline static bool greater(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>b.coeff(0));
}
inline static bool lessEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<=b.coeff(0));
}
inline static bool greaterEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>=b.coeff(0));
}
};
template<typename Derived1, typename Derived2> struct ei_lexi_comparison<Derived1,Derived2,4>
{
inline static bool less(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)< b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<b.coeff(0));
}
inline static bool greater(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)> b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>b.coeff(0));
}
inline static bool lessEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)< b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)< b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)< b.coeff(1)) : (a.coeff(0)<=b.coeff(0));
}
inline static bool greaterEqual(const Derived1& a, const Derived2& b) {
return (a.coeff(3)!=b.coeff(3))?(a.coeff(3)> b.coeff(3)) : (a.coeff(2)!=b.coeff(2))?(a.coeff(2)> b.coeff(2)):
(a.coeff(1)!=b.coeff(1))?(a.coeff(1)> b.coeff(1)) : (a.coeff(0)>=b.coeff(0));
}
};
}
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
@ -110,6 +204,23 @@ Angle(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> &
return vcg::math::Acos(t);
}
template<typename Derived1, typename Derived2>
typename Eigen::ei_traits<Derived1>::Scalar
AngleN(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived1)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived2)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived1)
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived2)
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived1,Derived2)
typedef typename Eigen::ei_traits<Derived1>::Scalar Scalar;
Scalar t = (p1.dot(p2));
if(t>1) t = 1;
else if(t<-1) t = -1;
return vcg::math::Acos(t);
}
template<typename Derived1>
inline typename Eigen::ei_traits<Derived1>::Scalar Norm( const Eigen::MatrixBase<Derived1>& p)
{ return p.norm(); }

View File

@ -40,8 +40,10 @@ EIGEN_DEPRECATED inline unsigned int RowsNumber() const { return rows(); };
* \param j the column index
* \return the element
*/
EIGEN_DEPRECATED inline Scalar ElementAt(unsigned int i, unsigned int j) const { return (*this)(i,j); }
EIGEN_DEPRECATED inline Scalar& ElementAt(unsigned int i, unsigned int j) { return (*this)(i,j); }
EIGEN_DEPRECATED inline Scalar ElementAt(unsigned int i, unsigned int j) const { return (*this)(i,j); };
EIGEN_DEPRECATED inline Scalar& ElementAt(unsigned int i, unsigned int j) { return (*this)(i,j); };
EIGEN_DEPRECATED inline Scalar V(int i) const { return (*this)[i]; };
EIGEN_DEPRECATED inline Scalar& V(int i) { return (*this)[i]; };
/*!
* \deprecated use *this.determinant() (or *this.lu().determinant() for large matrices)
@ -188,12 +190,110 @@ EIGEN_DEPRECATED void Dump()
}
/** \deprecated use norm() */
EIGEN_DEPRECATED inline Scalar Norm() const { return norm(); }
EIGEN_DEPRECATED inline Scalar Norm() const { return norm(); };
/** \deprecated use squaredNorm() */
EIGEN_DEPRECATED inline Scalar SquaredNorm() const { return norm2(); }
EIGEN_DEPRECATED inline Scalar SquaredNorm() const { return norm2(); };
/** \deprecated use normalize() or normalized() */
EIGEN_DEPRECATED inline Derived& Normalize() { normalize(); return derived(); }
EIGEN_DEPRECATED inline Derived& Normalize() { normalize(); return derived(); };
/** \deprecated use normalized() */
EIGEN_DEPRECATED inline const EvalType Normalize() const { return normalized(); };
/** \deprecated use .cross(p) */
EIGEN_DEPRECATED inline EvalType operator ^ (const Derived& p ) const { return this->cross(p); }
/// Homogeneous normalization (division by W)
inline Derived& HomoNormalize()
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
enum {
SubRows = (int(Flags)&RowMajorBit) ? 1 : (RowsAtCompileTime==Dynamic ? Dynamic : RowsAtCompileTime-1),
SubCols = (int(Flags)&RowMajorBit) ? (ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime-1) : 1,
};
Scalar& last = coeffRef(size()-2);
if (last!=Scalar(0))
{
Block<Derived,SubRows,SubCols>(derived(),0,0,
(int(Flags)&RowMajorBit) ? size()-1 : 1,
(int(Flags)&RowMajorBit) ? 1 : (size()-1)) / last;
last = Scalar(1.0);
}
return *this;
}
inline const EvalType HomoNormalize() const
{
EvalType res = derived();
return res.HomoNormalize();
}
/// norm infinity: largest absolute value of compoenet
EIGEN_DEPRECATED inline Scalar NormInfinity() const { return derived().cwise().abs().maxCoeff(); }
/// norm 1: sum of absolute values of components
EIGEN_DEPRECATED inline Scalar NormOne() const { return derived().cwise().abs().sum(); }
/// the sum of the components
EIGEN_DEPRECATED inline Scalar Sum() const { return sum(); }
/// returns the biggest component
EIGEN_DEPRECATED inline Scalar Max() const { return maxCoeff(); }
/// returns the smallest component
EIGEN_DEPRECATED inline Scalar Min() const { return minCoeff(); }
/// returns the index of the biggest component
EIGEN_DEPRECATED inline int MaxI() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); int i; maxCoeff(&i,0); return i; }
/// returns the index of the smallest component
EIGEN_DEPRECATED inline int MinI() const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); int i; minCoeff(&i,0); return i; }
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline Scalar Ext( const int i ) const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived);
if(i>=0 && i<SizeAtCompileTime)
return coeff(i);
else
return Scalar(0);
}
/// Per component scaling
template<typename OtherDerived>
EIGEN_DEPRECATED inline Derived& Scale(const MatrixBase<OtherDerived>& other)
{ this->cwise() *= other; return derived; }
template<typename OtherDerived>
EIGEN_DEPRECATED inline
CwiseBinaryOp<ei_scalar_product_op<Scalar>, Derived, OtherDerived>
Scale(const MatrixBase<OtherDerived>& other) const
{ return this->cwise() * other; }
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator < (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::less(derived(),other.derived());
}
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator > (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::geater(derived(),other.derived());
}
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator <= (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::lessEqual(derived(),other.derived());
}
template<typename OtherDerived>
EIGEN_DEPRECATED inline bool operator >= (const MatrixBase<OtherDerived>& other) const {
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived);
return ei_lexi_comparison<Derived,OtherDerived,SizeAtCompileTime>::greaterEqual(derived(),other.derived());
}

View File

@ -50,6 +50,7 @@ namespace ndim{
/* @{ */
/*!
* \deprecated use Matrix<Scalar,Rows,Cols> or Matrix<Scalar,Dynamic,Dynamic>
* This class represent a generic <I>m</I><EFBFBD><I>n</I> matrix. The class is templated over the scalar type field.
* @param Scalar (Templete Parameter) Specifies the ScalarType field.
*/
@ -135,6 +136,7 @@ public:
* \param reference to the matrix to multiply by
* \return the matrix product
*/
// FIXME what the hell is that !
/*template <int N,int M>
void DotProduct(Point<N,Scalar> &m,Point<M,Scalar> &result)
{
@ -147,7 +149,7 @@ public:
};*/
/*!
* \deprecated use *this.resize()
* \deprecated use *this.resize(); *this.setZero();
* Resize the current matrix.
* \param m the number of matrix rows.
* \param n the number of matrix columns.
@ -159,11 +161,6 @@ public:
Base::resize(m,n);
memset(Base::data(), 0, m*n*sizeof(Scalar));
};
// EIGEN_DEPRECATED void Transpose()
// {
// assert(0 && "dangerous use of deprecated Transpose function, please use: m = m.transpose();");
// }
};
typedef vcg::ndim::Matrix<double> MatrixMNd;

View File

@ -0,0 +1,980 @@
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.9 2006/12/20 15:23:52 ganovelli
using of locally defined variable removed
Revision 1.8 2006/04/11 08:10:05 zifnab1974
changes necessary for gcc 3.4.5 on linux 64bit.
Revision 1.7 2005/12/12 11:22:32 ganovelli
compiled with gcc
Revision 1.6 2005/01/12 11:25:52 ganovelli
corrected Point<3
Revision 1.5 2004/10/20 16:45:21 ganovelli
first compiling version (MC,INtel,gcc)
Revision 1.4 2004/04/29 10:47:06 ganovelli
some siyntax error corrected
Revision 1.3 2004/04/05 12:36:43 tarini
unified version: PointBase version, with no guards "(N==3)"
Revision 1.1 2004/03/16 03:07:38 tarini
"dimensionally unified" version: first commit
****************************************************************************/
#ifndef __VCGLIB_POINT
#define __VCGLIB_POINT
#include <assert.h>
#include <vcg/math/base.h>
#include <vcg/space/space.h>
namespace vcg {
namespace ndim{
//template <int N, class S>
//class Point;
/** \addtogroup space */
/*@{*/
/**
The templated class for representing a point in R^N space.
The class is templated over the ScalarType class that is used to represent coordinates.
PointBase provides the interface and the common operators for points
of any dimensionality.
*/
template <int N, class S>
class Point
{
public:
typedef S ScalarType;
typedef VoidType ParamType;
typedef Point<N,S> PointType;
enum {Dimension=N};
protected:
/// The only data member. Hidden to user.
S _v[N];
public:
//@{
/** @name Standard Constructors and Initializers
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different PointType types
**/
inline Point () { };
// inline Point ( const S nv[N] );
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline S Ext( const int i ) const
{
if(i>=0 && i<=N) return _v[i];
else return 0;
}
/// importer for points with different scalar type and-or dimensionality
template <int N2, class S2>
inline void Import( const Point<N2,S2> & b )
{
_v[0] = ScalarType(b[0]);
_v[1] = ScalarType(b[1]);
if (N>2) { if (N2>2) _v[2] = ScalarType(b[2]); else _v[2] = 0;};
if (N>3) { if (N2>3) _v[3] = ScalarType(b[3]); else _v[3] = 0;};
}
/// constructor for points with different scalar type and-or dimensionality
template <int N2, class S2>
static inline PointType Construct( const Point<N2,S2> & b )
{
PointType p; p.Import(b);
return p;
}
/// importer for homogeneous points
template <class S2>
inline void ImportHomo( const Point<N-1,S2> & b )
{
_v[0] = ScalarType(b[0]);
_v[1] = ScalarType(b[1]);
if (N>2) { _v[2] = ScalarType(_v[2]); };
_v[N-1] = 1.0;
}
/// constructor for homogeneus point.
template <int N2, class S2>
static inline PointType Construct( const Point<N-1,S2> & b )
{
PointType p; p.ImportHomo(b);
return p;
}
//@}
//@{
/** @name Data Access.
access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/
inline S & operator [] ( const int i )
{
assert(i>=0 && i<N);
return _v[i];
}
inline const S & operator [] ( const int i ) const
{
assert(i>=0 && i<N);
return _v[i];
}
inline const S &X() const { return _v[0]; }
inline const S &Y() const { return _v[1]; }
inline const S &Z() const { static_assert(N>2); return _v[2]; }
/// W is in any case the last coordinate.
/// (in a 2D point, W() == Y(). In a 3D point, W()==Z()
/// in a 4D point, W() is a separate component)
inline const S &W() const { return _v[N-1]; }
inline S &X() { return _v[0]; }
inline S &Y() { return _v[1]; }
inline S &Z() { static_assert(N>2); return _v[2]; }
inline S &W() { return _v[N-1]; }
inline const S * V() const
{
return _v;
}
inline S & V( const int i )
{
assert(i>=0 && i<N);
return _v[i];
}
inline const S & V( const int i ) const
{
assert(i>=0 && i<N);
return _v[i];
}
//@}
//@{
/** @name Linearity for points
**/
/// sets a PointType to Zero
inline void SetZero()
{
for(unsigned int ii = 0; ii < Dimension;++ii)
V(ii) = S();
}
inline PointType operator + ( PointType const & p) const
{
PointType res;
for(unsigned int ii = 0; ii < Dimension;++ii)
res[ii] = V(ii) + p[ii];
return res;
}
inline PointType operator - ( PointType const & p) const
{
PointType res;
for(unsigned int ii = 0; ii < Dimension;++ii)
res[ii] = V(ii) - p[ii];
return res;
}
inline PointType operator * ( const S s ) const
{
PointType res;
for(unsigned int ii = 0; ii < Dimension;++ii)
res[ii] = V(ii) * s;
return res;
}
inline PointType operator / ( const S s ) const
{
PointType res;
for(unsigned int ii = 0; ii < Dimension;++ii)
res[ii] = V(ii) / s;
return res;
}
inline PointType & operator += ( PointType const & p)
{
for(unsigned int ii = 0; ii < Dimension;++ii)
V(ii) += p[ii];
return *this;
}
inline PointType & operator -= ( PointType const & p)
{
for(unsigned int ii = 0; ii < Dimension;++ii)
V(ii) -= p[ii];
return *this;
}
inline PointType & operator *= ( const S s )
{
for(unsigned int ii = 0; ii < Dimension;++ii)
V(ii) *= s;
return *this;
}
inline PointType & operator /= ( const S s )
{
for(unsigned int ii = 0; ii < Dimension;++ii)
V(ii) *= s;
return *this;
}
inline PointType operator - () const
{
PointType res;
for(unsigned int ii = 0; ii < Dimension;++ii)
res[ii] = - V(ii);
return res;
}
//@}
//@{
/** @name Dot products (cross product "%" is defined olny for 3D points)
**/
/// Dot product
inline S operator * ( PointType const & p ) const;
/// slower version, more stable (double precision only)
inline S StableDot ( const PointType & p ) const;
//@}
//@{
/** @name Norms
**/
/// Euclidean norm
inline S Norm() const;
/// Euclidean norm, static version
template <class PT> static S Norm(const PT &p );
/// Squared Euclidean norm
inline S SquaredNorm() const;
/// Squared Euclidean norm, static version
template <class PT> static S SquaredNorm(const PT &p );
/// Normalization (division by norm)
inline PointType & Normalize();
/// Normalization (division by norm), static version
template <class PT> static PointType & Normalize(const PT &p);
/// Homogeneous normalization (division by W)
inline PointType & HomoNormalize();
/// norm infinity: largest absolute value of compoenet
inline S NormInfinity() const;
/// norm 1: sum of absolute values of components
inline S NormOne() const;
//@}
/// Signed area operator
/// a % b returns the signed area of the parallelogram inside a and b
inline S operator % ( PointType const & p ) const;
/// the sum of the components
inline S Sum() const;
/// returns the biggest component
inline S Max() const;
/// returns the smallest component
inline S Min() const;
/// returns the index of the biggest component
inline int MaxI() const;
/// returns the index of the smallest component
inline int MinI() const;
/// Per component scaling
inline PointType & Scale( const PointType & p );
/// Convert to polar coordinates
void ToPolar( S & ro, S & tetha, S & fi ) const
{
ro = Norm();
tetha = (S)atan2( _v[1], _v[0] );
fi = (S)acos( _v[2]/ro );
}
//@{
/** @name Comparison Operators.
Lexicographic order.
**/
inline bool operator == ( PointType const & p ) const;
inline bool operator != ( PointType const & p ) const;
inline bool operator < ( PointType const & p ) const;
inline bool operator > ( PointType const & p ) const;
inline bool operator <= ( PointType const & p ) const;
inline bool operator >= ( PointType const & p ) const;
//@}
//@{
/** @name
Glocal to Local and viceversa
(provided for uniformity with other spatial classes. trivial for points)
**/
inline PointType LocalToGlobal(ParamType p) const{
return *this; }
inline ParamType GlobalToLocal(PointType p) const{
ParamType p(); return p; }
//@}
}; // end class definition
template <class S>
class Point2 : public Point<2,S> {
public:
typedef S ScalarType;
typedef Point2 PointType;
using Point<2,S>::_v;
using Point<2,S>::V;
using Point<2,S>::W;
//@{
/** @name Special members for 2D points. **/
/// default
inline Point2 (){}
/// yx constructor
inline Point2 ( const S a, const S b){
_v[0]=a; _v[1]=b; };
/// unary orthogonal operator (2D equivalent of cross product)
/// returns orthogonal vector (90 deg left)
inline Point2 operator ~ () const {
return Point2 ( -_v[2], _v[1] );
}
/// returns the angle with X axis (radiants, in [-PI, +PI] )
inline ScalarType &Angle(){
return math::Atan2(_v[1],_v[0]);}
/// transform the point in cartesian coords into polar coords
inline Point2 & ToPolar(){
ScalarType t = Angle();
_v[0] = Norm();
_v[1] = t;
return *this;}
/// transform the point in polar coords into cartesian coords
inline Point2 & ToCartesian() {
ScalarType l = _v[0];
_v[0] = (ScalarType)(l*math::Cos(_v[1]));
_v[1] = (ScalarType)(l*math::Sin(_v[1]));
return *this;}
/// rotates the point of an angle (radiants, counterclockwise)
inline Point2 & Rotate( const ScalarType rad ){
ScalarType t = _v[0];
ScalarType s = math::Sin(rad);
ScalarType c = math::Cos(rad);
_v[0] = _v[0]*c - _v[1]*s;
_v[1] = t *s + _v[1]*c;
return *this;}
//@}
//@{
/** @name Implementation of standard functions for 3D points **/
inline void Zero(){
_v[0]=0; _v[1]=0; };
inline Point2 ( const S nv[2] ){
_v[0]=nv[0]; _v[1]=nv[1]; };
inline Point2 operator + ( Point2 const & p) const {
return Point2( _v[0]+p._v[0], _v[1]+p._v[1]); }
inline Point2 operator - ( Point2 const & p) const {
return Point2( _v[0]-p._v[0], _v[1]-p._v[1]); }
inline Point2 operator * ( const S s ) const {
return Point2( _v[0]*s, _v[1]*s ); }
inline Point2 operator / ( const S s ) const {
S t=1.0/s;
return Point2( _v[0]*t, _v[1]*t ); }
inline Point2 operator - () const {
return Point2 ( -_v[0], -_v[1] ); }
inline Point2 & operator += ( Point2 const & p ) {
_v[0] += p._v[0]; _v[1] += p._v[1]; return *this; }
inline Point2 & operator -= ( Point2 const & p ) {
_v[0] -= p._v[0]; _v[1] -= p._v[1]; return *this; }
inline Point2 & operator *= ( const S s ) {
_v[0] *= s; _v[1] *= s; return *this; }
inline Point2 & operator /= ( const S s ) {
S t=1.0/s; _v[0] *= t; _v[1] *= t; return *this; }
inline S Norm() const {
return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] );}
template <class PT> static S Norm(const PT &p ) {
return math::Sqrt( p.V(0)*p.V(0) + p.V(1)*p.V(1) );}
inline S SquaredNorm() const {
return ( _v[0]*_v[0] + _v[1]*_v[1] );}
template <class PT> static S SquaredNorm(const PT &p ) {
return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) );}
inline S operator * ( Point2 const & p ) const {
return ( _v[0]*p._v[0] + _v[1]*p._v[1]) ; }
inline bool operator == ( Point2 const & p ) const {
return _v[0]==p._v[0] && _v[1]==p._v[1] ;}
inline bool operator != ( Point2 const & p ) const {
return _v[0]!=p._v[0] || _v[1]!=p._v[1] ;}
inline bool operator < ( Point2 const & p ) const{
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<p._v[0]); }
inline bool operator > ( Point2 const & p ) const {
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); }
inline bool operator <= ( Point2 const & p ) {
return (_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); }
inline bool operator >= ( Point2 const & p ) const {
return (_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
inline Point2 & Normalize() {
PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n;} return *this;};
template <class PT> Point2 & Normalize(const PT &p){
PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; }
return *this;};
inline Point2 & HomoNormalize(){
if (_v[2]!=0.0) { _v[0] /= W(); W()=1.0; } return *this;};
inline S NormInfinity() const {
return math::Max( math::Abs(_v[0]), math::Abs(_v[1]) ); }
inline S NormOne() const {
return math::Abs(_v[0])+ math::Abs(_v[1]);}
inline S operator % ( Point2 const & p ) const {
return _v[0] * p._v[1] - _v[1] * p._v[0]; }
inline S Sum() const {
return _v[0]+_v[1];}
inline S Max() const {
return math::Max( _v[0], _v[1] ); }
inline S Min() const {
return math::Min( _v[0], _v[1] ); }
inline int MaxI() const {
return (_v[0] < _v[1]) ? 1:0; };
inline int MinI() const {
return (_v[0] > _v[1]) ? 1:0; };
inline PointType & Scale( const PointType & p ) {
_v[0] *= p._v[0]; _v[1] *= p._v[1]; return *this; }
inline S StableDot ( const PointType & p ) const {
return _v[0]*p._v[0] +_v[1]*p._v[1]; }
//@}
};
template <typename S>
class Point3 : public Point<3,S> {
public:
typedef S ScalarType;
typedef Point3<S> PointType;
using Point<3,S>::_v;
using Point<3,S>::V;
using Point<3,S>::W;
//@{
/** @name Special members for 3D points. **/
/// default
inline Point3 ():Point<3,S>(){}
/// yxz constructor
inline Point3 ( const S a, const S b, const S c){
_v[0]=a; _v[1]=b; _v[2]=c; };
/// Cross product for 3D points
inline PointType operator ^ ( PointType const & p ) const {
return Point3 (
_v[1]*p._v[2] - _v[2]*p._v[1],
_v[2]*p._v[0] - _v[0]*p._v[2],
_v[0]*p._v[1] - _v[1]*p._v[0] );
}
//@}
//@{
/** @name Implementation of standard functions for 3D points **/
inline void Zero(){
_v[0]=0; _v[1]=0; _v[2]=0; };
inline Point3 ( const S nv[3] ){
_v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; };
inline Point3 operator + ( Point3 const & p) const{
return Point3( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2]); }
inline Point3 operator - ( Point3 const & p) const {
return Point3( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2]); }
inline Point3 operator * ( const S s ) const {
return Point3( _v[0]*s, _v[1]*s , _v[2]*s ); }
inline Point3 operator / ( const S s ) const {
S t=1.0/s;
return Point3( _v[0]*t, _v[1]*t , _v[2]*t ); }
inline Point3 operator - () const {
return Point3 ( -_v[0], -_v[1] , -_v[2] ); }
inline Point3 & operator += ( Point3 const & p ) {
_v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; return *this; }
inline Point3 & operator -= ( Point3 const & p ) {
_v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; return *this; }
inline Point3 & operator *= ( const S s ) {
_v[0] *= s; _v[1] *= s; _v[2] *= s; return *this; }
inline Point3 & operator /= ( const S s ) {
S t=1.0/s; _v[0] *= t; _v[1] *= t; _v[2] *= t; return *this; }
inline S Norm() const {
return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );}
template <class PT> static S Norm(const PT &p ) {
return math::Sqrt( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) );}
inline S SquaredNorm() const {
return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );}
template <class PT> static S SquaredNorm(const PT &p ) {
return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) );}
inline S operator * ( PointType const & p ) const {
return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2]) ; }
inline bool operator == ( PointType const & p ) const {
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] ;}
inline bool operator != ( PointType const & p ) const {
return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] ;}
inline bool operator < ( PointType const & p ) const{
return (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
(_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<p._v[0]); }
inline bool operator > ( PointType const & p ) const {
return (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); }
inline bool operator <= ( PointType const & p ) {
return (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
(_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); }
inline bool operator >= ( PointType const & p ) const {
return (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
inline PointType & Normalize() {
S n = Norm();
if(n!=0.0) {
n=S(1.0)/n;
_v[0]*=n; _v[1]*=n; _v[2]*=n; }
return *this;};
template <class PT> PointType & Normalize(const PT &p){
S n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; }
return *this;};
inline PointType & HomoNormalize(){
if (_v[2]!=0.0) { _v[0] /= W(); _v[1] /= W(); W()=1.0; }
return *this;};
inline S NormInfinity() const {
return math::Max( math::Max( math::Abs(_v[0]), math::Abs(_v[1]) ),
math::Abs(_v[3]) ); }
inline S NormOne() const {
return math::Abs(_v[0])+ math::Abs(_v[1])+math::Max(math::Abs(_v[2]));}
inline S operator % ( PointType const & p ) const {
S t = (*this)*p; /* Area, general formula */
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );};
inline S Sum() const {
return _v[0]+_v[1]+_v[2];}
inline S Max() const {
return math::Max( math::Max( _v[0], _v[1] ), _v[2] ); }
inline S Min() const {
return math::Min( math::Min( _v[0], _v[1] ), _v[2] ); }
inline int MaxI() const {
int i= (_v[0] < _v[1]) ? 1:0; if (_v[i] < _v[2]) i=2; return i;};
inline int MinI() const {
int i= (_v[0] > _v[1]) ? 1:0; if (_v[i] > _v[2]) i=2; return i;};
inline PointType & Scale( const PointType & p ) {
_v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; return *this; }
inline S StableDot ( const PointType & p ) const {
S k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2];
int exp0,exp1,exp2;
frexp( double(k0), &exp0 );
frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );
if( exp0<exp1 )
if(exp0<exp2) return (k1+k2)+k0; else return (k0+k1)+k2;
else
if(exp1<exp2) return (k0+k2)+k1; else return (k0+k1)+k2;
}
//@}
};
template <typename S>
class Point4 : public Point<4,S> {
public:
typedef S ScalarType;
typedef Point4<S> PointType;
using Point<3,S>::_v;
using Point<3,S>::V;
using Point<3,S>::W;
//@{
/** @name Special members for 4D points. **/
/// default
inline Point4 (){}
/// xyzw constructor
//@}
inline Point4 ( const S a, const S b, const S c, const S d){
_v[0]=a; _v[1]=b; _v[2]=c; _v[3]=d; };
//@{
/** @name Implementation of standard functions for 3D points **/
inline void Zero(){
_v[0]=0; _v[1]=0; _v[2]=0; _v[3]=0; };
inline Point4 ( const S nv[4] ){
_v[0]=nv[0]; _v[1]=nv[1]; _v[2]=nv[2]; _v[3]=nv[3]; };
inline Point4 operator + ( Point4 const & p) const {
return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] ); }
inline Point4 operator - ( Point4 const & p) const {
return Point4( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] ); }
inline Point4 operator * ( const S s ) const {
return Point4( _v[0]*s, _v[1]*s , _v[2]*s , _v[3]*s ); }
inline PointType operator ^ ( PointType const & p ) const {
assert(0);
return *this;
}
inline Point4 operator / ( const S s ) const {
S t=1.0/s;
return Point4( _v[0]*t, _v[1]*t , _v[2]*t , _v[3]*t ); }
inline Point4 operator - () const {
return Point4 ( -_v[0], -_v[1] , -_v[2] , -_v[3] ); }
inline Point4 & operator += ( Point4 const & p ) {
_v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3]; return *this; }
inline Point4 & operator -= ( Point4 const & p ) {
_v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; _v[3] -= p._v[3]; return *this; }
inline Point4 & operator *= ( const S s ) {
_v[0] *= s; _v[1] *= s; _v[2] *= s; _v[3] *= s; return *this; }
inline Point4 & operator /= ( const S s ) {
S t=1.0/s; _v[0] *= t; _v[1] *= t; _v[2] *= t; _v[3] *= t; return *this; }
inline S Norm() const {
return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );}
template <class PT> static S Norm(const PT &p ) {
return math::Sqrt( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) + p.V(3)*p.V(3) );}
inline S SquaredNorm() const {
return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] );}
template <class PT> static S SquaredNorm(const PT &p ) {
return ( p.V(0)*p.V(0) + p.V(1)*p.V(1) + p.V(2)*p.V(2) + p.V(3)*p.V(3) );}
inline S operator * ( PointType const & p ) const {
return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3] ); }
inline bool operator == ( PointType const & p ) const {
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3];}
inline bool operator != ( PointType const & p ) const {
return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3];}
inline bool operator < ( PointType const & p ) const{
return (_v[3]!=p._v[3])?(_v[3]< p._v[3]) : (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
(_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<p._v[0]); }
inline bool operator > ( PointType const & p ) const {
return (_v[3]!=p._v[3])?(_v[3]> p._v[3]) : (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>p._v[0]); }
inline bool operator <= ( PointType const & p ) {
return (_v[3]!=p._v[3])?(_v[3]< p._v[3]) : (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
(_v[1]!=p._v[1])?(_v[1]< p._v[1]) : (_v[0]<=p._v[0]); }
inline bool operator >= ( PointType const & p ) const {
return (_v[3]!=p._v[3])?(_v[3]> p._v[3]) : (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
(_v[1]!=p._v[1])?(_v[1]> p._v[1]) : (_v[0]>=p._v[0]); }
inline PointType & Normalize() {
PointType n = Norm(); if(n!=0.0) { n=1.0/n; _v[0]*=n; _v[1]*=n; _v[2]*=n; _v[3]*=n; }
return *this;};
template <class PT> PointType & Normalize(const PT &p){
PointType n = Norm(); if(n!=0.0) { n=1.0/n; V(0)*=n; V(1)*=n; V(2)*=n; V(3)*=n; }
return *this;};
inline PointType & HomoNormalize(){
if (_v[3]!=0.0) { _v[0] /= W(); _v[1] /= W(); _v[2] /= W(); W()=1.0; }
return *this;};
inline S NormInfinity() const {
return math::Max( math::Max( math::Abs(_v[0]), math::Abs(_v[1]) ),
math::Max( math::Abs(_v[2]), math::Abs(_v[3]) ) ); }
inline S NormOne() const {
return math::Abs(_v[0])+ math::Abs(_v[1])+math::Max(math::Abs(_v[2]),math::Abs(_v[3]));}
inline S operator % ( PointType const & p ) const {
S t = (*this)*p; /* Area, general formula */
return math::Sqrt( SquaredNorm() * p.SquaredNorm() - (t*t) );};
inline S Sum() const {
return _v[0]+_v[1]+_v[2]+_v[3];}
inline S Max() const {
return math::Max( math::Max( _v[0], _v[1] ), math::Max( _v[2], _v[3] )); }
inline S Min() const {
return math::Min( math::Min( _v[0], _v[1] ), math::Min( _v[2], _v[3] )); }
inline int MaxI() const {
int i= (_v[0] < _v[1]) ? 1:0; if (_v[i] < _v[2]) i=2; if (_v[i] < _v[3]) i=3;
return i;};
inline int MinI() const {
int i= (_v[0] > _v[1]) ? 1:0; if (_v[i] > _v[2]) i=2; if (_v[i] > _v[3]) i=3;
return i;};
inline PointType & Scale( const PointType & p ) {
_v[0] *= p._v[0]; _v[1] *= p._v[1]; _v[2] *= p._v[2]; _v[3] *= p._v[3]; return *this; }
inline S StableDot ( const PointType & p ) const {
S k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3];
int exp0,exp1,exp2,exp3;
frexp( double(k0), &exp0 );frexp( double(k1), &exp1 );
frexp( double(k2), &exp2 );frexp( double(k3), &exp3 );
if (exp0>exp1) { math::Swap(k0,k1); math::Swap(exp0,exp1); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
if (exp0>exp2) { math::Swap(k0,k2); math::Swap(exp0,exp2); }
if (exp1>exp3) { math::Swap(k1,k3); math::Swap(exp1,exp3); }
if (exp2>exp3) { math::Swap(k2,k3); math::Swap(exp2,exp3); }
return ( (k0 + k1) + k2 ) +k3; }
//@}
};
template <class S>
inline S Angle( Point3<S> const & p1, Point3<S> const & p2 )
{
S w = p1.Norm()*p2.Norm();
if(w==0) return -1;
S t = (p1*p2)/w;
if(t>1) t = 1;
else if(t<-1) t = -1;
return (S) acos(t);
}
// versione uguale alla precedente ma che assume che i due vettori siano unitari
template <class S>
inline S AngleN( Point3<S> const & p1, Point3<S> const & p2 )
{
S w = p1*p2;
if(w>1)
w = 1;
else if(w<-1)
w=-1;
return (S) acos(w);
}
template <int N,class S>
inline S Norm( Point<N,S> const & p )
{
return p.Norm();
}
template <int N,class S>
inline S SquaredNorm( Point<N,S> const & p )
{
return p.SquaredNorm();
}
template <int N,class S>
inline Point<N,S> & Normalize( Point<N,S> & p )
{
p.Normalize();
return p;
}
template <int N, class S>
inline S Distance( Point<N,S> const & p1,Point<N,S> const & p2 )
{
return (p1-p2).Norm();
}
template <int N, class S>
inline S SquaredDistance( Point<N,S> const & p1,Point<N,S> const & p2 )
{
return (p1-p2).SquaredNorm();
}
//template <typename S>
//struct Point2:public Point<2,S>{
// inline Point2(){};
// inline Point2(Point<2,S> const & p):Point<2,S>(p){} ;
// inline Point2( const S a, const S b):Point<2,S>(a,b){};
//};
//
//template <typename S>
//struct Point3:public Point3<S> {
// inline Point3(){};
// inline Point3(Point3<S> const & p):Point3<S> (p){}
// inline Point3( const S a, const S b, const S c):Point3<S> (a,b,c){};
//};
//
//
//template <typename S>
//struct Point4:public Point4<S>{
// inline Point4(){};
// inline Point4(Point4<S> const & p):Point4<S>(p){}
// inline Point4( const S a, const S b, const S c, const S d):Point4<S>(a,b,c,d){};
//};
typedef Point2<short> Point2s;
typedef Point2<int> Point2i;
typedef Point2<float> Point2f;
typedef Point2<double> Point2d;
typedef Point2<short> Vector2s;
typedef Point2<int> Vector2i;
typedef Point2<float> Vector2f;
typedef Point2<double> Vector2d;
typedef Point3<short> Point3s;
typedef Point3<int> Point3i;
typedef Point3<float> Point3f;
typedef Point3<double> Point3d;
typedef Point3<short> Vector3s;
typedef Point3<int> Vector3i;
typedef Point3<float> Vector3f;
typedef Point3<double> Vector3d;
typedef Point4<short> Point4s;
typedef Point4<int> Point4i;
typedef Point4<float> Point4f;
typedef Point4<double> Point4d;
typedef Point4<short> Vector4s;
typedef Point4<int> Vector4i;
typedef Point4<float> Vector4f;
typedef Point4<double> Vector4d;
/*@}*/
//added only for backward compatibility
template<unsigned int N,typename S>
struct PointBase : Point<N,S>
{
PointBase()
:Point<N,S>()
{
}
};
} // end namespace ndim
} // end namespace vcg
#endif

View File

@ -404,16 +404,17 @@ namespace vcg {
/// intersection between two triangles
template<typename TRIANGLETYPE>
inline bool Intersection_(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1){
inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1){
return NoDivTriTriIsect(t0.P0(0),t0.P0(1),t0.P0(2),
t1.P0(0),t1.P0(1),t1.P0(2));
}
template<class T>
inline bool Intersection(Point3<T> V0,Point3<T> V1,Point3<T> V2,
Point3<T> U0,Point3<T> U1,Point3<T> U2){
return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2);
}
#if 0
template<class T>
inline bool Intersection(Point3<T> V0,Point3<T> V1,Point3<T> V2,
Point3<T> U0,Point3<T> U1,Point3<T> U2,int *coplanar,
@ -528,7 +529,8 @@ bool Intersection( const Ray3<T> & ray, const Point3<T> & vert0,
return true;
}
#endif
#if 0
// ray-triangle, gives intersection 3d point and distance along ray
template<class T>
bool Intersection( const Line3<T> & ray, const Point3<T> & vert0,
@ -577,7 +579,7 @@ bool Intersection( const Line3<T> & ray, const Point3<T> & vert0,
inte = vert0 + edge1*a + edge2*b;
return true;
}
#endif
// line-box
template<class T>
bool Intersection_Line_Box( const Box3<T> & box, const Line3<T> & r, Point3<T> & coord )

File diff suppressed because it is too large Load Diff

View File

@ -76,11 +76,7 @@ public:
inline Scalar &X() {return data()[0];}
inline Scalar &Y() {return data()[1];}
inline Scalar & V( const int i )
{
assert(i>=0 && i<2);
return data()[i];
}
// overloaded to return a const reference
inline const Scalar & V( const int i ) const
{
assert(i>=0 && i<2);
@ -98,45 +94,15 @@ public:
inline Point2(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
/// cross product
// hm.. this is not really a cross product
inline Scalar operator ^ ( Point2 const & p ) const
{
return data()[0]*p.data()[1] - data()[1]*p.data()[0];
}
inline Point2 & Scale( const Scalar sx, const Scalar sy )
{
data()[0] *= sx;
data()[1] *= sy;
return * this;
}
/// lexical ordering
inline bool operator < ( Point2 const & p ) const
{
return (data()[1]!=p.data()[1])?(data()[1]<p.data()[1]):
(data()[0]<p.data()[0]);
}
/// lexical ordering
inline bool operator > ( Point2 const & p ) const
{
return (data()[1]!=p.data()[1])?(data()[1]>p.data()[1]):
(data()[0]>p.data()[0]);
}
/// lexical ordering
inline bool operator <= ( Point2 const & p ) const
{
return (data()[1]!=p.data()[1])?(data()[1]< p.data()[1]):
(data()[0]<=p.data()[0]);
}
/// lexical ordering
inline bool operator >= ( Point2 const & p ) const
{
return (data()[1]!=p.data()[1])?(data()[1]> p.data()[1]):
(data()[0]>=p.data()[0]);
}
/// returns the angle with X axis (radiants, in [-PI, +PI] )
inline Scalar Angle() const {
inline Scalar Angle() const
{
return math::Atan2(data()[1],data()[0]);
}
/// transform the point in cartesian coords into polar coords
@ -168,13 +134,6 @@ public:
return *this;
}
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
/// paddando gli elementi estesi con zeri
inline Scalar Ext( const int i ) const
{
if(i>=0 && i<2) return data()[i];
else return 0;
}
/// imports from 2D points of different types
template <class T>
inline void Import( const Point2<T> & b )
@ -189,13 +148,6 @@ public:
}
}; // end class definition
template <class T>
inline T Angle( Point2<T> const & p0, Point2<T> const & p1 )
{
return p1.Angle() - p0.Angle();
}
typedef Point2<short> Point2s;
typedef Point2<int> Point2i;
typedef Point2<float> Point2f;

View File

@ -94,13 +94,6 @@ public:
template<typename OtherDerived>
inline Point3(const Eigen::MatrixBase<OtherDerived>& other) : Base(other) {}
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline Scalar Ext( const int i ) const
{
if(i>=0 && i<=2) return data()[i];
else return 0;
}
template<class OtherDerived>
inline void Import( const Eigen::MatrixBase<OtherDerived>& b )
@ -141,11 +134,7 @@ public:
inline Scalar &X() { return data()[0]; }
inline Scalar &Y() { return data()[1]; }
inline Scalar &Z() { return data()[2]; }
inline Scalar & V( const int i )
{
assert(i>=0 && i<3);
return data()[i];
}
// overloaded to return a const reference
inline const Scalar & V( const int i ) const
{
assert(i>=0 && i<3);
@ -210,37 +199,6 @@ public:
Box3<_Scalar> GetBBox(Box3<_Scalar> &bb) const;
//@}
//@{
/** @name Comparison Operators.
Note that the reverse z prioritized ordering, useful in many situations.
**/
inline bool operator < ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]<p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]<p.data()[1]):
(data()[0]<p.data()[0]);
}
inline bool operator > ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]>p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]>p.data()[1]):
(data()[0]>p.data()[0]);
}
inline bool operator <= ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]< p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]< p.data()[1]):
(data()[0]<=p.data()[0]);
}
inline bool operator >= ( Point3 const & p ) const
{
return (data()[2]!=p.data()[2])?(data()[2]> p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]> p.data()[1]):
(data()[0]>=p.data()[0]);
}
//@}
}; // end class definition

View File

@ -89,24 +89,13 @@ public:
inline T &Z() {return Base::z();}
inline T &W() {return Base::w();}
inline const T & V ( const int i ) const
// overloaded to return a const reference
inline const T & V (int i) const
{
assert(i>=0 && i<4);
return data()[i];
}
inline T & V ( const int i )
{
assert(i>=0 && i<4);
return data()[i];
}
/// Padding function: give a default 0 value to all the elements that are not in the [0..2] range.
/// Useful for managing in a consistent way object that could have point2 / point3 / point4
inline T Ext( const int i ) const
{
if(i>=0 && i<=3) return data()[i];
else return 0;
}
//@}
inline Point4 VectProd ( const Point4 &x, const Point4 &z ) const
@ -125,45 +114,6 @@ public:
return res;
}
/// Homogeneous normalization (division by W)
inline Point4 & HomoNormalize() {
if (data()[3]!=0.0) { Base::template start<3>() /= coeff(3); coeffRef(3) = 1.0; }
return *this;
}
//@{
/** @name Comparison operators (lexicographical order)
**/
inline bool operator < ( Point4 const & p ) const
{
return (data()[3]!=p.data()[3])?(data()[3]<p.data()[3]):
(data()[2]!=p.data()[2])?(data()[2]<p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]<p.data()[1]):
(data()[0]<p.data()[0]);
}
inline bool operator > ( const Point4 & p ) const
{
return (data()[3]!=p.data()[3])?(data()[3]>p.data()[3]):
(data()[2]!=p.data()[2])?(data()[2]>p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]>p.data()[1]):
(data()[0]>p.data()[0]);
}
inline bool operator <= ( const Point4 & p ) const
{
return (data()[3]!=p.data()[3])?(data()[3]< p.data()[3]):
(data()[2]!=p.data()[2])?(data()[2]< p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]< p.data()[1]):
(data()[0]<=p.data()[0]);
}
inline bool operator >= ( const Point4 & p ) const
{
return (data()[3]!=p.data()[3])?(data()[3]> p.data()[3]):
(data()[2]!=p.data()[2])?(data()[2]> p.data()[2]):
(data()[1]!=p.data()[1])?(data()[1]> p.data()[1]):
(data()[0]>=p.data()[0]);
}
//@}
//@{
/** @name Dot products
**/
@ -205,7 +155,7 @@ double StableDot ( Point4<T> const & p0, Point4<T> const & p1 )
}
typedef Point4<short> Point4s;
typedef Point4<int> Point4i;
typedef Point4<int> Point4i;
typedef Point4<float> Point4f;
typedef Point4<double> Point4d;