- added call of FarthestVertex with returning vertices within a specified interval
- added initial #define to avoid multiple inclusion
This commit is contained in:
parent
95713e5723
commit
c4cc235b52
|
@ -35,331 +35,375 @@
|
|||
class for computing approximated geodesic distances on a mesh.
|
||||
|
||||
basic example: farthest vertex from a specified one
|
||||
MyMesh m;
|
||||
MyMesh::VertexPointer seed,far;
|
||||
MyMesh::ScalarType dist;
|
||||
MyMesh m;
|
||||
MyMesh::VertexPointer seed,far;
|
||||
MyMesh::ScalarType dist;
|
||||
|
||||
vcg::Geo<MyMesh> g;
|
||||
g.FarthestVertex(m,seed,far,d);
|
||||
vcg::Geo<MyMesh> g;
|
||||
g.FarthestVertex(m,seed,far,d);
|
||||
|
||||
*/
|
||||
#ifndef __VCGLIB_GEODESIC
|
||||
#define __VCGLIB_GEODESIC
|
||||
|
||||
namespace vcg{
|
||||
namespace tri{
|
||||
namespace tri{
|
||||
|
||||
template <class MeshType>
|
||||
struct EuclideanDistance{
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
EuclideanDistance(){}
|
||||
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
|
||||
{return vcg::Distance(v0->cP(),v1->cP());}
|
||||
};
|
||||
|
||||
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
|
||||
class Geo{
|
||||
|
||||
public:
|
||||
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
|
||||
|
||||
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance
|
||||
*/
|
||||
struct VertDist{
|
||||
VertDist(){}
|
||||
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
||||
VertexPointer v;
|
||||
ScalarType d;
|
||||
};
|
||||
|
||||
|
||||
/* Temporary data to associate to all the vertices: estimated distance and boolean flag
|
||||
*/
|
||||
struct TempData{
|
||||
TempData(){}
|
||||
TempData(const ScalarType & d_){d=d_;source = NULL;}
|
||||
ScalarType d;
|
||||
VertexPointer source;//closest source
|
||||
template <class MeshType>
|
||||
struct EuclideanDistance{
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
EuclideanDistance(){}
|
||||
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
|
||||
{return vcg::Distance(v0->cP(),v1->cP());}
|
||||
};
|
||||
|
||||
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
|
||||
//TempDataType * TD;
|
||||
|
||||
|
||||
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
|
||||
class Geo{
|
||||
|
||||
public:
|
||||
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
|
||||
|
||||
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance
|
||||
*/
|
||||
struct VertDist{
|
||||
VertDist(){}
|
||||
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
||||
VertexPointer v;
|
||||
ScalarType d;
|
||||
};
|
||||
|
||||
|
||||
/* Temporary data to associate to all the vertices: estimated distance and boolean flag
|
||||
*/
|
||||
struct TempData{
|
||||
TempData(){}
|
||||
TempData(const ScalarType & d_){d=d_;source = NULL;}
|
||||
ScalarType d;
|
||||
VertexPointer source;//closest source
|
||||
|
||||
};
|
||||
|
||||
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
|
||||
//TempDataType * TD;
|
||||
|
||||
|
||||
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.d > v1.d);}
|
||||
};
|
||||
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred_addr(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
};
|
||||
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred_addr(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.v > v1.v);}
|
||||
};
|
||||
};
|
||||
|
||||
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
||||
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
||||
//************** (vedi figura in file distance.gif)
|
||||
static ScalarType Distance(const VertexPointer &pw,
|
||||
const VertexPointer &pw1,
|
||||
const VertexPointer &curr,
|
||||
const ScalarType &d_pw1,
|
||||
const ScalarType &d_curr)
|
||||
{
|
||||
ScalarType curr_d=0;
|
||||
|
||||
ScalarType ew_c = DistanceFunctor()(pw,curr);
|
||||
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
|
||||
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
|
||||
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
|
||||
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
|
||||
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
|
||||
|
||||
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
||||
|
||||
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
|
||||
s = (d_curr + d_pw1+ec_w1)/2;
|
||||
a = s/ec_w1;
|
||||
b = a*s;
|
||||
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
||||
|
||||
if ( alpha+alpha_ > M_PI){
|
||||
curr_d = d_curr + ew_c;
|
||||
}else
|
||||
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
||||
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
||||
//************** (vedi figura in file distance.gif)
|
||||
static ScalarType Distance(const VertexPointer &pw,
|
||||
const VertexPointer &pw1,
|
||||
const VertexPointer &curr,
|
||||
const ScalarType &d_pw1,
|
||||
const ScalarType &d_curr)
|
||||
{
|
||||
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
||||
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
|
||||
ScalarType curr_d=0;
|
||||
|
||||
if ( beta+beta_ > M_PI)
|
||||
curr_d = d_pw1 + ew_w1;
|
||||
else
|
||||
ScalarType ew_c = DistanceFunctor()(pw,curr);
|
||||
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
|
||||
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
|
||||
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
|
||||
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
|
||||
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
|
||||
|
||||
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
||||
|
||||
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
|
||||
s = (d_curr + d_pw1+ec_w1)/2;
|
||||
a = s/ec_w1;
|
||||
b = a*s;
|
||||
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
||||
|
||||
if ( alpha+alpha_ > M_PI){
|
||||
curr_d = d_curr + ew_c;
|
||||
}else
|
||||
{
|
||||
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
||||
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
|
||||
|
||||
if ( beta+beta_ > M_PI)
|
||||
curr_d = d_pw1 + ew_w1;
|
||||
else
|
||||
{
|
||||
theta = ScalarType(M_PI)-alpha-alpha_;
|
||||
delta = cos(theta)* ew_c;
|
||||
h = sin(theta)* ew_c;
|
||||
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
||||
theta = ScalarType(M_PI)-alpha-alpha_;
|
||||
delta = cos(theta)* ew_c;
|
||||
h = sin(theta)* ew_c;
|
||||
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
||||
}
|
||||
}
|
||||
return (curr_d);
|
||||
}
|
||||
return (curr_d);
|
||||
}
|
||||
|
||||
/*
|
||||
starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
||||
approximated geodesic distance to the closest seeds.
|
||||
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
||||
wrapping function.
|
||||
*/
|
||||
static VertexPointer Visit(
|
||||
MeshType & m,
|
||||
std::vector<VertDist> & seedVec,
|
||||
ScalarType & max_distance,
|
||||
bool farthestOnBorder = false,
|
||||
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
)
|
||||
{
|
||||
bool isLeaf;
|
||||
std::vector<VertDist> frontier;
|
||||
VertexPointer curr,farthest=0,pw1;
|
||||
ScalarType unreached = std::numeric_limits<ScalarType>::max();
|
||||
/*
|
||||
starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
||||
approximated geodesic distance to the closest seeds.
|
||||
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
||||
wrapping function.
|
||||
*/
|
||||
static VertexPointer Visit(
|
||||
MeshType & m,
|
||||
std::vector<VertDist> & seedVec,
|
||||
ScalarType & max_distance,
|
||||
bool farthestOnBorder = false,
|
||||
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL,
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
bool isLeaf;
|
||||
std::vector<VertDist> frontier;
|
||||
VertexPointer curr,farthest=0,pw1;
|
||||
ScalarType unreached = std::numeric_limits<ScalarType>::max();
|
||||
|
||||
VertexPointer pw;
|
||||
VertexPointer pw;
|
||||
|
||||
//Requirements
|
||||
assert(m.HasVFTopology());
|
||||
assert(!seedVec.empty());
|
||||
//Requirements
|
||||
assert(m.HasVFTopology());
|
||||
assert(!seedVec.empty());
|
||||
|
||||
TempDataType TD(m.vert,unreached);
|
||||
TempDataType TD(m.vert,unreached);
|
||||
|
||||
typename std::vector <VertDist >::iterator ifr;
|
||||
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
|
||||
TD[(*ifr).v].d = 0.0;
|
||||
(*ifr).d = 0.0;
|
||||
TD[(*ifr).v].source = (*ifr).v;
|
||||
frontier.push_back(VertDist((*ifr).v,0.0));
|
||||
}
|
||||
// initialize Heap
|
||||
make_heap(frontier.begin(),frontier.end(),pred());
|
||||
typename std::vector <VertDist >::iterator ifr;
|
||||
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
|
||||
TD[(*ifr).v].d = 0.0;
|
||||
(*ifr).d = 0.0;
|
||||
TD[(*ifr).v].source = (*ifr).v;
|
||||
frontier.push_back(VertDist((*ifr).v,0.0));
|
||||
}
|
||||
// initialize Heap
|
||||
make_heap(frontier.begin(),frontier.end(),pred());
|
||||
|
||||
ScalarType curr_d,d_curr = 0.0,d_heap;
|
||||
VertexPointer curr_s = NULL;
|
||||
max_distance=0.0;
|
||||
typename std::vector<VertDist >:: iterator iv;
|
||||
ScalarType curr_d,d_curr = 0.0,d_heap;
|
||||
VertexPointer curr_s = NULL;
|
||||
max_distance=0.0;
|
||||
typename std::vector<VertDist >:: iterator iv;
|
||||
|
||||
while(!frontier.empty() && max_distance < distance_threshold)
|
||||
{
|
||||
pop_heap(frontier.begin(),frontier.end(),pred());
|
||||
curr = (frontier.back()).v;
|
||||
curr_s = TD[curr].source;
|
||||
if(sources!=NULL)
|
||||
(*sources)[curr] = curr_s;
|
||||
d_heap = (frontier.back()).d;
|
||||
frontier.pop_back();
|
||||
while(!frontier.empty() && max_distance < distance_threshold)
|
||||
{
|
||||
pop_heap(frontier.begin(),frontier.end(),pred());
|
||||
curr = (frontier.back()).v;
|
||||
if (InInterval!=NULL)
|
||||
InInterval->push_back(curr);
|
||||
|
||||
assert(TD[curr].d <= d_heap);
|
||||
assert(curr_s != NULL);
|
||||
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
|
||||
continue;
|
||||
assert(TD[curr].d == d_heap);
|
||||
curr_s = TD[curr].source;
|
||||
if(sources!=NULL)
|
||||
(*sources)[curr] = curr_s;
|
||||
d_heap = (frontier.back()).d;
|
||||
frontier.pop_back();
|
||||
|
||||
d_curr = TD[curr].d;
|
||||
assert(TD[curr].d <= d_heap);
|
||||
assert(curr_s != NULL);
|
||||
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
|
||||
continue;
|
||||
assert(TD[curr].d == d_heap);
|
||||
|
||||
isLeaf = (!farthestOnBorder || curr->IsB());
|
||||
d_curr = TD[curr].d;
|
||||
|
||||
face::VFIterator<FaceType> x;int k;
|
||||
|
||||
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
||||
for(k=0;k<2;++k)
|
||||
{
|
||||
if(k==0) {
|
||||
pw = x.f->V1(x.z);
|
||||
pw1=x.f->V2(x.z);
|
||||
}
|
||||
else {
|
||||
pw = x.f->V2(x.z);
|
||||
pw1=x.f->V1(x.z);
|
||||
}
|
||||
isLeaf = (!farthestOnBorder || curr->IsB());
|
||||
|
||||
const ScalarType & d_pw1 = TD[pw1].d;
|
||||
face::VFIterator<FaceType> x;int k;
|
||||
|
||||
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
||||
for(k=0;k<2;++k)
|
||||
{
|
||||
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
|
||||
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
|
||||
if(k==0) {
|
||||
pw = x.f->V1(x.z);
|
||||
pw1=x.f->V2(x.z);
|
||||
}
|
||||
else {
|
||||
pw = x.f->V2(x.z);
|
||||
pw1=x.f->V1(x.z);
|
||||
}
|
||||
|
||||
if ( (TD[pw1].source != TD[curr].source)||// not the same source
|
||||
const ScalarType & d_pw1 = TD[pw1].d;
|
||||
{
|
||||
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
|
||||
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
|
||||
|
||||
if ( (TD[pw1].source != TD[curr].source)||// not the same source
|
||||
(inter + d_curr < d_pw1 +tol ) ||
|
||||
(inter + d_pw1 < d_curr +tol ) ||
|
||||
(d_curr + d_pw1 < inter +tol ) // triangular inequality
|
||||
)
|
||||
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
|
||||
else
|
||||
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
|
||||
}
|
||||
|
||||
if(TD[(pw)].d > curr_d){
|
||||
TD[(pw)].d = curr_d;
|
||||
TD[pw].source = curr_s;
|
||||
frontier.push_back(VertDist(pw,curr_d));
|
||||
push_heap(frontier.begin(),frontier.end(),pred());
|
||||
}
|
||||
if(isLeaf){
|
||||
if(d_curr > max_distance){
|
||||
max_distance = d_curr;
|
||||
farthest = curr;
|
||||
)
|
||||
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
|
||||
else
|
||||
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
|
||||
}
|
||||
|
||||
if(TD[(pw)].d > curr_d){
|
||||
TD[(pw)].d = curr_d;
|
||||
TD[pw].source = curr_s;
|
||||
frontier.push_back(VertDist(pw,curr_d));
|
||||
push_heap(frontier.begin(),frontier.end(),pred());
|
||||
}
|
||||
if(isLeaf){
|
||||
if(d_curr > max_distance){
|
||||
max_distance = d_curr;
|
||||
farthest = curr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}// end while
|
||||
|
||||
// Copy found distance onto the Quality (\todo parametric!)
|
||||
if (InInterval==NULL)
|
||||
{
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
|
||||
(*vi).Q() = TD[&(*vi)].d;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(InInterval->size()>0);
|
||||
for(int i=0;i<InInterval->size();i++)
|
||||
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
|
||||
}
|
||||
|
||||
return farthest;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
/*
|
||||
Given a mesh and a vector of pointers to vertices (sources), assigns the approximated geodesic
|
||||
distance from the cloasest source to all the mesh vertices and returns the vertices within the
|
||||
specified interval
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static bool FarthestVertex( MeshType & m,
|
||||
std::vector<VertexPointer> & fro,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL,
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
if(fro.empty()) return false;
|
||||
|
||||
for( fi = fro.begin(); fi != fro.end() ; ++fi)
|
||||
{
|
||||
fr.push_back(VertDist(*fi,0.0));
|
||||
/* if (InInterval==NULL)continue;
|
||||
InInterval.push_back();*/
|
||||
}
|
||||
}// end while
|
||||
farthest = Visit(m,fr,distance,false,distance_thr,sources,InInterval);
|
||||
return true;
|
||||
}
|
||||
/*
|
||||
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
||||
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max())
|
||||
{
|
||||
std::vector<VertexPointer> seedVec;
|
||||
seedVec.push_back( seed );
|
||||
VertexPointer v0;
|
||||
FarthestVertex(m,seedVec,v0,distance,distance_thr);
|
||||
farthest = v0;
|
||||
}
|
||||
|
||||
/*
|
||||
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
||||
distance from the vertex-source to all the mesh vertices and returns the vertices within the
|
||||
specified interval
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
ScalarType distance_thr,
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
std::vector<VertexPointer> seedVec;
|
||||
seedVec.push_back( seed );
|
||||
VertexPointer v0;
|
||||
FarthestVertex(m,seedVec,v0,distance,distance_thr,NULL,InInterval);
|
||||
farthest = v0;
|
||||
}
|
||||
|
||||
// Copy found distance onto the Quality (\todo parametric!)
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
|
||||
(*vi).Q() = TD[&(*vi)].d;
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex(MeshType & m,
|
||||
std::vector<VertexPointer> & seedVec,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
|
||||
return farthest;
|
||||
}
|
||||
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
|
||||
public:
|
||||
/*
|
||||
Given a mesh and a vector of pointers to vertices (sources), assigns the approximated geodesic
|
||||
distance from the cloasest source to all the mesh vertices and returns the pointer to the farthest.
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static bool FarthestVertex( MeshType & m,
|
||||
std::vector<VertexPointer> & fro,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){
|
||||
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,-1));
|
||||
farthest = Visit(m,fr,distance,true,sources);
|
||||
}
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){
|
||||
std::vector<VertexPointer> fro;
|
||||
fro.push_back( seed );
|
||||
VertexPointer v0;
|
||||
FarthestBVertex(m,fro,v0,distance,sources);
|
||||
farthest = v0;
|
||||
}
|
||||
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
if(fro.empty()) return false;
|
||||
|
||||
for( fi = fro.begin(); fi != fro.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,0.0));
|
||||
farthest = Visit(m,fr,distance,false,distance_thr,sources);
|
||||
return true;
|
||||
}
|
||||
/*
|
||||
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
||||
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max()){
|
||||
std::vector<VertexPointer> seedVec;
|
||||
seedVec.push_back( seed );
|
||||
VertexPointer v0;
|
||||
FarthestVertex(m,seedVec,v0,distance,distance_thr);
|
||||
farthest = v0;
|
||||
}
|
||||
/*
|
||||
Assigns to each vertex of the mesh its distance to the closest vertex on the border
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static bool DistanceFromBorder( MeshType & m,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
std::vector<VertexPointer> fro;
|
||||
VertexIterator vi;
|
||||
VertexPointer farthest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
if(fro.empty()) return false;
|
||||
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex(MeshType & m,
|
||||
std::vector<VertexPointer> & seedVec,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
||||
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
return FarthestVertex(m,fro,farthest,distance,std::numeric_limits<ScalarType>::max(),sources);
|
||||
}
|
||||
|
||||
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,-1));
|
||||
farthest = Visit(m,fr,distance,true,sources);
|
||||
}
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){
|
||||
std::vector<VertexPointer> fro;
|
||||
fro.push_back( seed );
|
||||
VertexPointer v0;
|
||||
FarthestBVertex(m,fro,v0,distance,sources);
|
||||
farthest = v0;
|
||||
}
|
||||
|
||||
/*
|
||||
Assigns to each vertex of the mesh its distance to the closest vertex on the border
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static bool DistanceFromBorder( MeshType & m,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
std::vector<VertexPointer> fro;
|
||||
VertexIterator vi;
|
||||
VertexPointer farthest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
if(fro.empty()) return false;
|
||||
|
||||
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
||||
|
||||
return FarthestVertex(m,fro,farthest,distance,std::numeric_limits<ScalarType>::max(),sources);
|
||||
}
|
||||
|
||||
};
|
||||
};// end namespace tri
|
||||
};
|
||||
};// end namespace tri
|
||||
};// end namespace vcg
|
||||
#endif
|
Loading…
Reference in New Issue