- added call of FarthestVertex with returning vertices within a specified interval

- added initial #define to avoid multiple inclusion
This commit is contained in:
Nico Pietroni 2011-04-19 09:40:04 +00:00
parent 95713e5723
commit c4cc235b52
1 changed files with 328 additions and 284 deletions

View File

@ -35,331 +35,375 @@
class for computing approximated geodesic distances on a mesh. class for computing approximated geodesic distances on a mesh.
basic example: farthest vertex from a specified one basic example: farthest vertex from a specified one
MyMesh m; MyMesh m;
MyMesh::VertexPointer seed,far; MyMesh::VertexPointer seed,far;
MyMesh::ScalarType dist; MyMesh::ScalarType dist;
vcg::Geo<MyMesh> g; vcg::Geo<MyMesh> g;
g.FarthestVertex(m,seed,far,d); g.FarthestVertex(m,seed,far,d);
*/ */
#ifndef __VCGLIB_GEODESIC
#define __VCGLIB_GEODESIC
namespace vcg{ namespace vcg{
namespace tri{ namespace tri{
template <class MeshType> template <class MeshType>
struct EuclideanDistance{ struct EuclideanDistance{
typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::ScalarType ScalarType;
EuclideanDistance(){}
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
{return vcg::Distance(v0->cP(),v1->cP());}
};
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
class Geo{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance
*/
struct VertDist{
VertDist(){}
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
VertexPointer v;
ScalarType d;
};
/* Temporary data to associate to all the vertices: estimated distance and boolean flag
*/
struct TempData{
TempData(){}
TempData(const ScalarType & d_){d=d_;source = NULL;}
ScalarType d;
VertexPointer source;//closest source
EuclideanDistance(){}
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
{return vcg::Distance(v0->cP(),v1->cP());}
}; };
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType; template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
//TempDataType * TD; class Geo{
public:
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
struct pred: public std::binary_function<VertDist,VertDist,bool>{
pred(){}; /* Auxiliary class for keeping the heap of vertices to visit and their estimated distance
bool operator()(const VertDist& v0, const VertDist& v1) const */
struct VertDist{
VertDist(){}
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
VertexPointer v;
ScalarType d;
};
/* Temporary data to associate to all the vertices: estimated distance and boolean flag
*/
struct TempData{
TempData(){}
TempData(const ScalarType & d_){d=d_;source = NULL;}
ScalarType d;
VertexPointer source;//closest source
};
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
//TempDataType * TD;
struct pred: public std::binary_function<VertDist,VertDist,bool>{
pred(){};
bool operator()(const VertDist& v0, const VertDist& v1) const
{return (v0.d > v1.d);} {return (v0.d > v1.d);}
}; };
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{ struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
pred_addr(){}; pred_addr(){};
bool operator()(const VertDist& v0, const VertDist& v1) const bool operator()(const VertDist& v0, const VertDist& v1) const
{return (v0.v > v1.v);} {return (v0.v > v1.v);}
}; };
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr //************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh //************** sapendo che (curr,pw,pw1) e'una faccia della mesh
//************** (vedi figura in file distance.gif) //************** (vedi figura in file distance.gif)
static ScalarType Distance(const VertexPointer &pw, static ScalarType Distance(const VertexPointer &pw,
const VertexPointer &pw1, const VertexPointer &pw1,
const VertexPointer &curr, const VertexPointer &curr,
const ScalarType &d_pw1, const ScalarType &d_pw1,
const ScalarType &d_curr) const ScalarType &d_curr)
{
ScalarType curr_d=0;
ScalarType ew_c = DistanceFunctor()(pw,curr);
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
s = (d_curr + d_pw1+ec_w1)/2;
a = s/ec_w1;
b = a*s;
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
if ( alpha+alpha_ > M_PI){
curr_d = d_curr + ew_c;
}else
{ {
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1))); ScalarType curr_d=0;
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
if ( beta+beta_ > M_PI) ScalarType ew_c = DistanceFunctor()(pw,curr);
curr_d = d_pw1 + ew_w1; ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
else ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
s = (d_curr + d_pw1+ec_w1)/2;
a = s/ec_w1;
b = a*s;
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
if ( alpha+alpha_ > M_PI){
curr_d = d_curr + ew_c;
}else
{
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
if ( beta+beta_ > M_PI)
curr_d = d_pw1 + ew_w1;
else
{ {
theta = ScalarType(M_PI)-alpha-alpha_; theta = ScalarType(M_PI)-alpha-alpha_;
delta = cos(theta)* ew_c; delta = cos(theta)* ew_c;
h = sin(theta)* ew_c; h = sin(theta)* ew_c;
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2)); curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
} }
}
return (curr_d);
} }
return (curr_d);
}
/* /*
starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
approximated geodesic distance to the closest seeds. approximated geodesic distance to the closest seeds.
This is function is not meant to be called (although is not prevented). Instead, it is invoked by This is function is not meant to be called (although is not prevented). Instead, it is invoked by
wrapping function. wrapping function.
*/ */
static VertexPointer Visit( static VertexPointer Visit(
MeshType & m, MeshType & m,
std::vector<VertDist> & seedVec, std::vector<VertDist> & seedVec,
ScalarType & max_distance, ScalarType & max_distance,
bool farthestOnBorder = false, bool farthestOnBorder = false,
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(), ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(),
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL,
) std::vector<VertexPointer> *InInterval=NULL)
{
bool isLeaf;
std::vector<VertDist> frontier;
VertexPointer curr,farthest=0,pw1;
ScalarType unreached = std::numeric_limits<ScalarType>::max();
VertexPointer pw;
//Requirements
assert(m.HasVFTopology());
assert(!seedVec.empty());
TempDataType TD(m.vert,unreached);
typename std::vector <VertDist >::iterator ifr;
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
TD[(*ifr).v].d = 0.0;
(*ifr).d = 0.0;
TD[(*ifr).v].source = (*ifr).v;
frontier.push_back(VertDist((*ifr).v,0.0));
}
// initialize Heap
make_heap(frontier.begin(),frontier.end(),pred());
ScalarType curr_d,d_curr = 0.0,d_heap;
VertexPointer curr_s = NULL;
max_distance=0.0;
typename std::vector<VertDist >:: iterator iv;
while(!frontier.empty() && max_distance < distance_threshold)
{ {
pop_heap(frontier.begin(),frontier.end(),pred()); bool isLeaf;
curr = (frontier.back()).v; std::vector<VertDist> frontier;
curr_s = TD[curr].source; VertexPointer curr,farthest=0,pw1;
if(sources!=NULL) ScalarType unreached = std::numeric_limits<ScalarType>::max();
(*sources)[curr] = curr_s;
d_heap = (frontier.back()).d;
frontier.pop_back();
assert(TD[curr].d <= d_heap); VertexPointer pw;
assert(curr_s != NULL);
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
continue;
assert(TD[curr].d == d_heap);
d_curr = TD[curr].d; //Requirements
assert(m.HasVFTopology());
assert(!seedVec.empty());
isLeaf = (!farthestOnBorder || curr->IsB()); TempDataType TD(m.vert,unreached);
face::VFIterator<FaceType> x;int k; typename std::vector <VertDist >::iterator ifr;
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
TD[(*ifr).v].d = 0.0;
(*ifr).d = 0.0;
TD[(*ifr).v].source = (*ifr).v;
frontier.push_back(VertDist((*ifr).v,0.0));
}
// initialize Heap
make_heap(frontier.begin(),frontier.end(),pred());
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x ) ScalarType curr_d,d_curr = 0.0,d_heap;
for(k=0;k<2;++k) VertexPointer curr_s = NULL;
{ max_distance=0.0;
if(k==0) { typename std::vector<VertDist >:: iterator iv;
pw = x.f->V1(x.z);
pw1=x.f->V2(x.z);
}
else {
pw = x.f->V2(x.z);
pw1=x.f->V1(x.z);
}
const ScalarType & d_pw1 = TD[pw1].d; while(!frontier.empty() && max_distance < distance_threshold)
{
pop_heap(frontier.begin(),frontier.end(),pred());
curr = (frontier.back()).v;
if (InInterval!=NULL)
InInterval->push_back(curr);
curr_s = TD[curr].source;
if(sources!=NULL)
(*sources)[curr] = curr_s;
d_heap = (frontier.back()).d;
frontier.pop_back();
assert(TD[curr].d <= d_heap);
assert(curr_s != NULL);
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
continue;
assert(TD[curr].d == d_heap);
d_curr = TD[curr].d;
isLeaf = (!farthestOnBorder || curr->IsB());
face::VFIterator<FaceType> x;int k;
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
for(k=0;k<2;++k)
{ {
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm(); if(k==0) {
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f; pw = x.f->V1(x.z);
pw1=x.f->V2(x.z);
}
else {
pw = x.f->V2(x.z);
pw1=x.f->V1(x.z);
}
if ( (TD[pw1].source != TD[curr].source)||// not the same source const ScalarType & d_pw1 = TD[pw1].d;
{
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
if ( (TD[pw1].source != TD[curr].source)||// not the same source
(inter + d_curr < d_pw1 +tol ) || (inter + d_curr < d_pw1 +tol ) ||
(inter + d_pw1 < d_curr +tol ) || (inter + d_pw1 < d_curr +tol ) ||
(d_curr + d_pw1 < inter +tol ) // triangular inequality (d_curr + d_pw1 < inter +tol ) // triangular inequality
) )
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm(); curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
else else
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr); curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
} }
if(TD[(pw)].d > curr_d){ if(TD[(pw)].d > curr_d){
TD[(pw)].d = curr_d; TD[(pw)].d = curr_d;
TD[pw].source = curr_s; TD[pw].source = curr_s;
frontier.push_back(VertDist(pw,curr_d)); frontier.push_back(VertDist(pw,curr_d));
push_heap(frontier.begin(),frontier.end(),pred()); push_heap(frontier.begin(),frontier.end(),pred());
} }
if(isLeaf){ if(isLeaf){
if(d_curr > max_distance){ if(d_curr > max_distance){
max_distance = d_curr; max_distance = d_curr;
farthest = curr; farthest = curr;
}
} }
} }
}// end while
// Copy found distance onto the Quality (\todo parametric!)
if (InInterval==NULL)
{
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
(*vi).Q() = TD[&(*vi)].d;
}
else
{
assert(InInterval->size()>0);
for(int i=0;i<InInterval->size();i++)
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
}
return farthest;
}
public:
/*
Given a mesh and a vector of pointers to vertices (sources), assigns the approximated geodesic
distance from the cloasest source to all the mesh vertices and returns the vertices within the
specified interval
Note: update the field Q() of the vertices
*/
static bool FarthestVertex( MeshType & m,
std::vector<VertexPointer> & fro,
VertexPointer & farthest,
ScalarType & distance,
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL,
std::vector<VertexPointer> *InInterval=NULL)
{
typename std::vector<VertexPointer>::iterator fi;
std::vector<VertDist>fr;
if(fro.empty()) return false;
for( fi = fro.begin(); fi != fro.end() ; ++fi)
{
fr.push_back(VertDist(*fi,0.0));
/* if (InInterval==NULL)continue;
InInterval.push_back();*/
} }
}// end while farthest = Visit(m,fr,distance,false,distance_thr,sources,InInterval);
return true;
}
/*
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
Note: update the field Q() of the vertices
*/
static void FarthestVertex( MeshType & m,
VertexPointer seed,
VertexPointer & farthest,
ScalarType & distance,
ScalarType distance_thr = std::numeric_limits<ScalarType>::max())
{
std::vector<VertexPointer> seedVec;
seedVec.push_back( seed );
VertexPointer v0;
FarthestVertex(m,seedVec,v0,distance,distance_thr);
farthest = v0;
}
// Copy found distance onto the Quality (\todo parametric!) /*
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
(*vi).Q() = TD[&(*vi)].d; distance from the vertex-source to all the mesh vertices and returns the vertices within the
specified interval
Note: update the field Q() of the vertices
*/
static void FarthestVertex( MeshType & m,
VertexPointer seed,
VertexPointer & farthest,
ScalarType & distance,
ScalarType distance_thr,
std::vector<VertexPointer> *InInterval=NULL)
{
std::vector<VertexPointer> seedVec;
seedVec.push_back( seed );
VertexPointer v0;
FarthestVertex(m,seedVec,v0,distance,distance_thr,NULL,InInterval);
farthest = v0;
}
return farthest; /*
} Same as FarthestPoint but the returned pointer is to a border vertex
Note: update the field Q() of the vertices
*/
static void FarthestBVertex(MeshType & m,
std::vector<VertexPointer> & seedVec,
VertexPointer & farthest,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
){
typename std::vector<VertexPointer>::iterator fi;
std::vector<VertDist>fr;
public: for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
/* fr.push_back(VertDist(*fi,-1));
Given a mesh and a vector of pointers to vertices (sources), assigns the approximated geodesic farthest = Visit(m,fr,distance,true,sources);
distance from the cloasest source to all the mesh vertices and returns the pointer to the farthest. }
Note: update the field Q() of the vertices /*
*/ Same as FarthestPoint but the returned pointer is to a border vertex
static bool FarthestVertex( MeshType & m, Note: update the field Q() of the vertices
std::vector<VertexPointer> & fro, */
VertexPointer & farthest, static void FarthestBVertex( MeshType & m,
ScalarType & distance, VertexPointer seed,
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(), VertexPointer & farthest,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){ ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){
std::vector<VertexPointer> fro;
fro.push_back( seed );
VertexPointer v0;
FarthestBVertex(m,fro,v0,distance,sources);
farthest = v0;
}
typename std::vector<VertexPointer>::iterator fi; /*
std::vector<VertDist>fr; Assigns to each vertex of the mesh its distance to the closest vertex on the border
if(fro.empty()) return false; Note: update the field Q() of the vertices
*/
static bool DistanceFromBorder( MeshType & m,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
){
std::vector<VertexPointer> fro;
VertexIterator vi;
VertexPointer farthest;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( (*vi).IsB())
fro.push_back(&(*vi));
if(fro.empty()) return false;
for( fi = fro.begin(); fi != fro.end() ; ++fi) tri::UpdateQuality<MeshType>::VertexConstant(m,0);
fr.push_back(VertDist(*fi,0.0));
farthest = Visit(m,fr,distance,false,distance_thr,sources);
return true;
}
/*
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
Note: update the field Q() of the vertices
*/
static void FarthestVertex( MeshType & m,
VertexPointer seed,
VertexPointer & farthest,
ScalarType & distance,
ScalarType distance_thr = std::numeric_limits<ScalarType>::max()){
std::vector<VertexPointer> seedVec;
seedVec.push_back( seed );
VertexPointer v0;
FarthestVertex(m,seedVec,v0,distance,distance_thr);
farthest = v0;
}
/* return FarthestVertex(m,fro,farthest,distance,std::numeric_limits<ScalarType>::max(),sources);
Same as FarthestPoint but the returned pointer is to a border vertex }
Note: update the field Q() of the vertices
*/
static void FarthestBVertex(MeshType & m,
std::vector<VertexPointer> & seedVec,
VertexPointer & farthest,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
){
typename std::vector<VertexPointer>::iterator fi; };
std::vector<VertDist>fr; };// end namespace tri
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
fr.push_back(VertDist(*fi,-1));
farthest = Visit(m,fr,distance,true,sources);
}
/*
Same as FarthestPoint but the returned pointer is to a border vertex
Note: update the field Q() of the vertices
*/
static void FarthestBVertex( MeshType & m,
VertexPointer seed,
VertexPointer & farthest,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){
std::vector<VertexPointer> fro;
fro.push_back( seed );
VertexPointer v0;
FarthestBVertex(m,fro,v0,distance,sources);
farthest = v0;
}
/*
Assigns to each vertex of the mesh its distance to the closest vertex on the border
Note: update the field Q() of the vertices
*/
static bool DistanceFromBorder( MeshType & m,
ScalarType & distance,
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
){
std::vector<VertexPointer> fro;
VertexIterator vi;
VertexPointer farthest;
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
if( (*vi).IsB())
fro.push_back(&(*vi));
if(fro.empty()) return false;
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
return FarthestVertex(m,fro,farthest,distance,std::numeric_limits<ScalarType>::max(),sources);
}
};
};// end namespace tri
};// end namespace vcg };// end namespace vcg
#endif