better templating

This commit is contained in:
Paolo Cignoni 2016-02-08 07:01:20 +00:00
parent beda36650d
commit c516493c7e
2 changed files with 4 additions and 411 deletions

View File

@ -29,6 +29,8 @@
#include<vcg/complex/algorithms/update/color.h>
#include<vcg/complex/algorithms/inertia.h>
#include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/ransac_matching.h>
#include<vcg/space/index/kdtree/kdtree.h>
#include<vcg/space/point_matching.h>
@ -46,415 +48,6 @@ class MyEdge : public Edge< MyUsedTypes, edge::VertexRef, edge::VEAdj, edge
class MyMesh : public tri::TriMesh< std::vector<MyVertex>, std::vector<MyFace> , std::vector<MyEdge> > {};
template <class MeshType>
class BaseFeature
{
public:
BaseFeature():_v(0) {}
typename MeshType::VertexType *_v;
typename MeshType::CoordType P() {return _v->cP();}
};
template <class MeshType>
class BaseFeatureSet
{
public:
typedef BaseFeature<MeshType> FeatureType;
typedef typename MeshType::VertexType VertexType;
std::vector<FeatureType> fixFeatureVec;
std::vector<FeatureType> movFeatureVec;
FeatureType &ff(int i) { return fixFeatureVec[i]; }
FeatureType &mf(int i) { return movFeatureVec[i]; }
int ffNum() const { return fixFeatureVec.size(); }
void Init(MeshType &fix, MeshType &mov,
std::vector<VertexType *> &fixSampleVec, std::vector<VertexType *> &movSampleVec)
{
this->fixFeatureVec.resize(fixSampleVec.size()/20);
for(int i=0;i<fixSampleVec.size()/20;++i)
this->fixFeatureVec[i]._v = fixSampleVec[i];
this->movFeatureVec.resize(movSampleVec.size()/20);
for(int i=0;i<movSampleVec.size()/20;++i)
this->movFeatureVec[i]._v = movSampleVec[i];
printf("Generated %i Features on Fix\n",this->fixFeatureVec.size());
printf("Generated %i Features on Mov\n",this->movFeatureVec.size());
}
// Returns the indexes of all the fix features matching a given one (from mov usually)
void getMatchingFeatureVec(FeatureType &q, vector<int> &mfiVec)
{
mfiVec.resize(movFeatureVec.size());
for(int i=0;i<movFeatureVec.size();++i)
mfiVec[i]=i;
}
};
template <class MeshType>
class NDFeature
{
public:
typedef typename MeshType::ScalarType ScalarType;
typename MeshType::VertexType *_v;
typename MeshType::CoordType nd; //
typename MeshType::CoordType P() {return _v->cP();}
static void EvalNormalVariation(MeshType &m, ScalarType dist)
{
tri::UpdateNormal<MeshType>::PerVertexNormalized(m);
VertexConstDataWrapper<MeshType > ww(m);
KdTree<ScalarType> tree(ww);
for(int i=0;i<m.vn;++i)
{
std::vector<unsigned int> ptIndVec;
std::vector<ScalarType> sqDistVec;
tree.doQueryDist(m.vert[i].P(),dist, ptIndVec, sqDistVec);
ScalarType varSum=0;
for(int j=0;j<sqDistVec.size();++j)
{
varSum += Distance(m.vert[i].N(),m.vert[ptIndVec[j]].N());
}
m.vert[i].Q()=varSum/ScalarType(ptIndVec.size());
}
tri::UpdateColor<MeshType>::PerVertexQualityGray(m,0,0);
}
};
template <class MeshType, class FeatureSetType>
class RansacFramework
{
typedef typename FeatureSetType::FeatureType FeatureType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::BoxType BoxType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::VertexPointer VertexPointer;
typedef typename MeshType::VertexIterator VertexIterator;
typedef typename MeshType::EdgeType EdgeType;
typedef typename MeshType::EdgeIterator EdgeIterator;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FacePointer FacePointer;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::FaceContainer FaceContainer;
typedef Matrix44<ScalarType> Matrix44Type;
public:
class Param
{
public:
Param()
{
iterMax=100;
samplingRadiusPerc=0.005;
samplingRadiusAbs=0;
evalSize=1000;
inlierRatioThr=0.3;
inlierDistanceThrPerc = 1.5; // the distance between a transformed mov sample and the corresponding on fix should be 1.5 * sampling dist.
congruenceThrPerc = 2.0; // the distance between two matching features must be within 2.0 * sampling distance
minFeatureDistancePerc = 4.0; // the distance between two chosen features must be at least 4.0 * sampling distance
}
ScalarType inlierRatioThr;
ScalarType inlierDistanceThrPerc;
ScalarType congruenceThrPerc;
ScalarType minFeatureDistancePerc;
ScalarType samplingRadiusPerc;
ScalarType samplingRadiusAbs;
int iterMax;
int evalSize;
ScalarType inlierSquareThr() const { return pow(samplingRadiusAbs* inlierDistanceThrPerc,2); }
};
class Candidate
{
public:
int fixInd[3];
int movInd[3];
int inlierNum;
int evalSize;
Matrix44Type Tr;
ScalarType err() const {return float(inlierNum)/float(evalSize);}
bool operator <(const Candidate &cc) const
{
return this->err() > cc.err();
}
};
FeatureSetType FS;
std::vector<Point3f> fixConsensusVec, movConsensusVec;
KdTree<ScalarType> *consensusTree;
// Given three pairs of sufficiently different distances (e.g. the edges of a scalene triangle)
// it finds the permutation that brings the vertexes so that the distances match.
// The meaning of the permutation vector nm0,nm1,nm2 is that the (N)ew index of (M)ov vertx i is the value of nmi
bool FindPermutation(int d01, int d02, int d12, int m01, int m02, int m12, int nm[], Param &pp)
{
ScalarType eps = pp.samplingRadiusAbs*2.0;
if(fabs(d01-m01)<eps) {
if(fabs(d02-m02)<eps) {
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=1;nm[2]=2; return true; }
else return false;
}
if(fabs(d02-m12)<eps) {
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=0;nm[2]=2; return true; }
else return false;
}
}
if(fabs(d01-m02)<eps) {
if(fabs(d02-m01)<eps) {
if(fabs(d12-m12)<eps){ nm[0]=0;nm[1]=2;nm[2]=1; return true; }
else return false;
}
if(fabs(d02-m12)<eps) {
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=0;nm[2]=1; return true; }
else return false;
}
}
if(fabs(d01-m12)<eps) {
if(fabs(d02-m01)<eps) {
if(fabs(d12-m02)<eps){ nm[0]=1;nm[1]=2;nm[2]=0; return true; }
else return false;
}
if(fabs(d02-m02)<eps) {
if(fabs(d12-m01)<eps){ nm[0]=2;nm[1]=1;nm[2]=0; return true; }
else return false;
}
}
return false;
}
// The main loop.
// Choose three points on fix that make a scalene triangle
// and search on mov three other points with matchng distances
void Process_SearchEvaluateTriple (vector<Candidate> &cVec, Param &pp)
{
math::MarsenneTwisterRNG rnd;
// ScalarType congruenceEps = pow(pp.samplingRadiusAbs * pp.congruenceThrPerc,2.0f);
ScalarType congruenceEps = pp.samplingRadiusAbs * pp.congruenceThrPerc;
ScalarType minFeatureDistEps = pp.samplingRadiusAbs * pp.minFeatureDistancePerc;
printf("Starting search congruenceEps = samplingRadiusAbs * 3.0 = %6.2f \n",congruenceEps);
int iterCnt=0;
while ( (iterCnt < pp.iterMax) && (cVec.size()<100) )
{
Candidate c;
// Choose a random pair of features from fix
c.fixInd[0] = rnd.generate(FS.ffNum());
c.fixInd[1] = rnd.generate(FS.ffNum());
ScalarType d01 = Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[1]).P());
if( d01 > minFeatureDistEps )
{
c.fixInd[2] = rnd.generate(FS.ffNum());
ScalarType d02=Distance(FS.ff(c.fixInd[0]).P(),FS.ff(c.fixInd[2]).P());
ScalarType d12=Distance(FS.ff(c.fixInd[1]).P(),FS.ff(c.fixInd[2]).P());
if( ( d02 > minFeatureDistEps ) && // Sample are sufficiently distant
( d12 > minFeatureDistEps ) &&
( fabs(d01-d02) > congruenceEps ) && // and they make a scalene triangle
( fabs(d01-d12) > congruenceEps ) &&
( fabs(d12-d02) > congruenceEps ) )
{
// Find a congruent triple on mov
printf("Starting search of a [%i] congruent triple for %4i %4i %4i - %6.2f %6.2f %6.2f\n",iterCnt,c.fixInd[0],c.fixInd[1],c.fixInd[2],d01,d02,d12);
// As a first Step we ask for three vectors of matching features;
std::vector<int> movFeatureVec0;
FS.getMatchingFeatureVec(FS.ff(c.fixInd[0]), movFeatureVec0);
std::vector<int> movFeatureVec1;
FS.getMatchingFeatureVec(FS.ff(c.fixInd[1]), movFeatureVec1);
std::vector<int> movFeatureVec2;
FS.getMatchingFeatureVec(FS.ff(c.fixInd[2]), movFeatureVec2);
int congrNum=0;
int congrGoodNum=0;
for(int i=0;i<movFeatureVec0.size();++i)
{
if(cVec.size()>100) break;
c.movInd[0]=movFeatureVec0[i];
for(int j=0;j<movFeatureVec1.size();++j)
{
if(cVec.size()>100) break;
c.movInd[1]=movFeatureVec1[j];
ScalarType m01 = Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[1]).P());
if( (fabs(m01-d01)<congruenceEps) )
{
// printf("- Found a congruent pair %i %i %6.2f\n", c.movInd[0],c.movInd[1], m01);
++congrNum;
for(int k=0;k<movFeatureVec2.size();++k)
{
if(cVec.size()>100) break;
c.movInd[2]=movFeatureVec2[k];
ScalarType m02=Distance(FS.mf(c.movInd[0]).P(),FS.mf(c.movInd[2]).P());
ScalarType m12=Distance(FS.mf(c.movInd[1]).P(),FS.mf(c.movInd[2]).P());
if( (fabs(m02-d02)<congruenceEps) && (fabs(m12-d12)<congruenceEps ) )
{
c.Tr = GenerateMatchingMatrix(c,pp);
EvaluateMatrix(c,pp);
if(c.err() > pp.inlierRatioThr ){
printf("- - Found %i th good congruent triple %i %i %i -- %f / %i \n", cVec.size(), c.movInd[0],c.movInd[1],c.movInd[2],c.err(),pp.evalSize);
++congrGoodNum;
cVec.push_back(c);
}
}
}
}
}
}
printf("Completed Search of congruent triple (found %i / %i good/congruent)\n",congrGoodNum,congrNum);
}
}
++iterCnt;
} // end While
printf("Found %i candidates \n",cVec.size());
sort(cVec.begin(),cVec.end());
printf("best candidate %f \n",cVec[0].err());
pp.evalSize = pp.evalSize*10;
for(int i=0;i<cVec.size();++i)
EvaluateMatrix(cVec[i],pp);
sort(cVec.begin(),cVec.end());
printf("After re-evaluation best is %f",cVec[0].err());
} // end Process
int EvaluateMatrix(Candidate &c, Param &pp)
{
c.inlierNum=0;
c.evalSize=pp.evalSize;
ScalarType sqThr = pp.inlierSquareThr();
Distribution<ScalarType> H;
for(int i=0;i<pp.evalSize;++i)
{
Point3f qp = c.Tr*movConsensusVec[i];
uint ind;
ScalarType squareDist;
consensusTree->doQueryClosest(qp,ind,squareDist);
if(squareDist < sqThr)
++c.inlierNum;
}
}
int DumpInlier(MeshType &m, Candidate &c, Param &pp)
{
ScalarType sqThr = pp.inlierSquareThr();
for(int i=0;i<pp.evalSize;++i)
{
Point3f qp = c.Tr*movConsensusVec[i];
uint ind;
ScalarType squareDist;
consensusTree->doQueryClosest(qp,ind,squareDist);
if(squareDist < sqThr)
tri::Allocator<MyMesh>::AddVertex(m,qp);
}
}
// Find the transformation that matches the mov onto the fix
// eg M * piMov = piFix
Matrix44f GenerateMatchingMatrix(Candidate &c, Param pp)
{
std::vector<Point3f> pFix(3);
pFix[0]= FS.ff(c.fixInd[0]).P();
pFix[1]= FS.ff(c.fixInd[1]).P();
pFix[2]= FS.ff(c.fixInd[2]).P();
std::vector<Point3f> pMov(3);
pMov[0]= FS.mf(c.movInd[0]).P();
pMov[1]= FS.mf(c.movInd[1]).P();
pMov[2]= FS.mf(c.movInd[2]).P();
Point3f upFix = vcg::Normal(pFix[0],pFix[1],pFix[2]);
Point3f upMov = vcg::Normal(pMov[0],pMov[1],pMov[2]);
upFix.Normalize();
upMov.Normalize();
upFix *= Distance(pFix[0],pFix[1]);
upMov *= Distance(pMov[0],pMov[1]);
for(int i=0;i<3;++i) pFix.push_back(pFix[i]+upFix);
for(int i=0;i<3;++i) pMov.push_back(pMov[i]+upMov);
Matrix44f res;
ComputeRigidMatchMatrix(pFix,pMov,res);
return res;
}
void Init(MeshType &fixM, MeshType &movM, Param &pp)
{
// First a bit of Sampling
typedef tri::TrivialPointerSampler<MeshType> BaseSampler;
typename tri::SurfaceSampling<MeshType, BaseSampler>::PoissonDiskParam pdp;
pdp.randomSeed = 0;
pdp.bestSampleChoiceFlag = true;
pdp.bestSamplePoolSize = 20;
int t0=clock();
pp.samplingRadiusAbs = pp.samplingRadiusPerc *fixM.bbox.Diag();
BaseSampler pdSampler;
std::vector<VertexType *> fixSampleVec;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, fixM, pp.samplingRadiusAbs,pdp);
std::swap(pdSampler.sampleVec,fixSampleVec);
std::vector<VertexType *> movSampleVec;
tri::SurfaceSampling<MeshType,BaseSampler>::PoissonDiskPruning(pdSampler, movM, pp.samplingRadiusAbs,pdp);
std::swap(pdSampler.sampleVec,movSampleVec);
int t1=clock();
printf("Poisson Sampling of surfaces %5.2f ( %iv and %iv) \n",float(t1-t0)/CLOCKS_PER_SEC,fixSampleVec.size(),movSampleVec.size());
printf("Sampling Radius %f \n",pp.samplingRadiusAbs);
for(int i=0;i<fixSampleVec.size();++i)
this->fixConsensusVec.push_back(fixSampleVec[i]->P());
for(int i=0;i<movSampleVec.size();++i)
this->movConsensusVec.push_back(movSampleVec[i]->P());
FS.Init(fixM, movM, fixSampleVec, movSampleVec);
std::random_shuffle(movConsensusVec.begin(),movConsensusVec.end());
VectorConstDataWrapper<std::vector<CoordType> > ww(fixConsensusVec);
consensusTree = new KdTree<ScalarType>(ww);
}
};
int main( int argc, char **argv )
{
setvbuf(stdout, NULL, _IONBF, 0);

View File

@ -1,4 +1,4 @@
include(../common.pri)
TARGET = ransac
TARGET = trimesh_ransac
SOURCES += ../../../wrap/ply/plylib.cpp \
ransac.cpp
trimesh_ransac.cpp