fixed a couple of MSVC issues, meshlab compile, the plugins soon...
This commit is contained in:
parent
7b075b3905
commit
c8506daaff
|
@ -42,11 +42,11 @@ template<typename Derived1, typename Derived2,
|
|||
struct ei_import_selector;
|
||||
|
||||
template<typename XprType,
|
||||
int Rows = XprType::RowsAtCompileTime,
|
||||
int Cols = XprType::ColsAtCompileTime,
|
||||
int StorageOrder = XprType::Flags&1,
|
||||
int MRows = XprType::MaxRowsAtCompileTime,
|
||||
int MCols = XprType::MaxColsAtCompileTime>
|
||||
int Rows = ei_traits<XprType>::RowsAtCompileTime,
|
||||
int Cols = ei_traits<XprType>::ColsAtCompileTime,
|
||||
int StorageOrder = ei_traits<XprType>::Flags&1,
|
||||
int MRows = ei_traits<XprType>::MaxRowsAtCompileTime,
|
||||
int MCols = ei_traits<XprType>::MaxColsAtCompileTime>
|
||||
struct ei_to_vcgtype;
|
||||
|
||||
}
|
||||
|
|
|
@ -81,6 +81,13 @@ for 'column' vectors.
|
|||
|
||||
*/
|
||||
|
||||
// Note that we have to pass Dim and HDim because it is not allowed to use a template
|
||||
// parameter to define a template specialization. To be more precise, in the following
|
||||
// specializations, it is not allowed to use Dim+1 instead of HDim.
|
||||
template< typename Other,
|
||||
int OtherRows=Eigen::ei_traits<Other>::RowsAtCompileTime,
|
||||
int OtherCols=Eigen::ei_traits<Other>::ColsAtCompileTime>
|
||||
struct ei_matrix44_product_impl;
|
||||
|
||||
/** \deprecated use Eigen::Matrix<Scalar,4,4> (or the typedef) you want a real 4x4 matrix, or use Eigen::Transform<Scalar,3> if you want a transformation matrix for a 3D space (a Eigen::Transform<Scalar,3> is internally a 4x4 col-major matrix)
|
||||
*
|
||||
|
@ -101,7 +108,6 @@ public:
|
|||
|
||||
_EIGEN_GENERIC_PUBLIC_INTERFACE(Matrix44,_Base);
|
||||
typedef _Scalar ScalarType;
|
||||
|
||||
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Matrix44)
|
||||
|
||||
Matrix44() : Base() {}
|
||||
|
@ -142,6 +148,24 @@ public:
|
|||
Matrix44 &SetRotateDeg(Scalar AngleDeg, const Point3<Scalar> & axis);
|
||||
Matrix44 &SetRotateRad(Scalar AngleRad, const Point3<Scalar> & axis);
|
||||
|
||||
/** taken from Eigen::Transform
|
||||
* \returns the product between the transform \c *this and a matrix expression \a other
|
||||
*
|
||||
* The right hand side \a other might be either:
|
||||
* \li a matrix expression with 4 rows
|
||||
* \li a 3D vector/point
|
||||
*/
|
||||
// note: this function is defined here because some compilers cannot find the respective declaration
|
||||
template<typename OtherDerived>
|
||||
inline const typename ei_matrix44_product_impl<OtherDerived>::ResultType
|
||||
operator * (const MatrixBase<OtherDerived> &other) const
|
||||
{ return ei_matrix44_product_impl<OtherDerived>::run(*this,other.derived()); }
|
||||
|
||||
/** Contatenates two transformations */
|
||||
inline const typename Eigen::ProductReturnType<Matrix44,Matrix44>::Type
|
||||
operator * (const Matrix44& other) const
|
||||
{ return (*this) * other; }
|
||||
|
||||
// template <class T> Point3<T> operator*(const Point3<T> &p) {
|
||||
// T w;
|
||||
// Point3<T> s;
|
||||
|
@ -153,16 +177,16 @@ public:
|
|||
// return s;
|
||||
// }
|
||||
|
||||
Eigen::Matrix<Scalar,3,1> operator * (const Eigen::Matrix<Scalar,3,1>& p) const {
|
||||
Scalar w;
|
||||
Eigen::Matrix<Scalar,3,1> s;
|
||||
s[0] = ElementAt(0, 0)*p[0] + ElementAt(0, 1)*p[1] + ElementAt(0, 2)*p[2] + ElementAt(0, 3);
|
||||
s[1] = ElementAt(1, 0)*p[0] + ElementAt(1, 1)*p[1] + ElementAt(1, 2)*p[2] + ElementAt(1, 3);
|
||||
s[2] = ElementAt(2, 0)*p[0] + ElementAt(2, 1)*p[1] + ElementAt(2, 2)*p[2] + ElementAt(2, 3);
|
||||
w = ElementAt(3, 0)*p[0] + ElementAt(3, 1)*p[1] + ElementAt(3, 2)*p[2] + ElementAt(3, 3);
|
||||
if(w!= 0) s /= w;
|
||||
return s;
|
||||
}
|
||||
//Eigen::Matrix<Scalar,3,1> operator * (const Eigen::Matrix<Scalar,3,1>& p) const {
|
||||
// Scalar w;
|
||||
// Eigen::Matrix<Scalar,3,1> s;
|
||||
// s[0] = ElementAt(0, 0)*p[0] + ElementAt(0, 1)*p[1] + ElementAt(0, 2)*p[2] + ElementAt(0, 3);
|
||||
// s[1] = ElementAt(1, 0)*p[0] + ElementAt(1, 1)*p[1] + ElementAt(1, 2)*p[2] + ElementAt(1, 3);
|
||||
// s[2] = ElementAt(2, 0)*p[0] + ElementAt(2, 1)*p[1] + ElementAt(2, 2)*p[2] + ElementAt(2, 3);
|
||||
// w = ElementAt(3, 0)*p[0] + ElementAt(3, 1)*p[1] + ElementAt(3, 2)*p[2] + ElementAt(3, 3);
|
||||
// if(w!= 0) s /= w;
|
||||
// return s;
|
||||
//}
|
||||
|
||||
void print() {std::cout << *this << "\n\n";}
|
||||
|
||||
|
@ -465,6 +489,32 @@ template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
|
|||
return m.lu().inverse();
|
||||
}
|
||||
|
||||
template<typename Other,int OtherCols>
|
||||
struct ei_matrix44_product_impl<Other, 4,OtherCols>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
typedef typename Eigen::ProductReturnType<Matrix44<Scalar>,Other>::Type ResultType;
|
||||
static ResultType run(const Matrix44<Scalar>& tr, const Other& other)
|
||||
{ return tr * other; }
|
||||
};
|
||||
|
||||
template<typename Other>
|
||||
struct ei_matrix44_product_impl<Other, 3,1>
|
||||
{
|
||||
typedef typename Other::Scalar Scalar;
|
||||
typedef Eigen::Matrix<Scalar,3,1> ResultType;
|
||||
static ResultType run(const Matrix44<Scalar>& tr, const Other& p)
|
||||
{
|
||||
Scalar w;
|
||||
Eigen::Matrix<Scalar,3,1> s;
|
||||
s[0] = tr.ElementAt(0, 0)*p[0] + tr.ElementAt(0, 1)*p[1] + tr.ElementAt(0, 2)*p[2] + tr.ElementAt(0, 3);
|
||||
s[1] = tr.ElementAt(1, 0)*p[0] + tr.ElementAt(1, 1)*p[1] + tr.ElementAt(1, 2)*p[2] + tr.ElementAt(1, 3);
|
||||
s[2] = tr.ElementAt(2, 0)*p[0] + tr.ElementAt(2, 1)*p[1] + tr.ElementAt(2, 2)*p[2] + tr.ElementAt(2, 3);
|
||||
w = tr.ElementAt(3, 0)*p[0] + tr.ElementAt(3, 1)*p[1] + tr.ElementAt(3, 2)*p[2] + tr.ElementAt(3, 3);
|
||||
if(w!= 0) s /= w;
|
||||
return s;
|
||||
}
|
||||
};
|
||||
|
||||
} //namespace
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue