Recompiled from previous out of date version. Still to revise but working
This commit is contained in:
parent
491317ecd5
commit
c919dca603
|
@ -19,6 +19,9 @@
|
|||
/*#**************************************************************************
|
||||
History
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.5 2005/12/13 17:17:19 ganovelli
|
||||
first importing from old version. NOT optimized! It works with VertexFace Adjacency even over non manifolds
|
||||
|
||||
|
||||
*#**************************************************************************/
|
||||
|
||||
|
@ -40,96 +43,110 @@ class Geo{
|
|||
public:
|
||||
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance
|
||||
*/
|
||||
struct VertDist{
|
||||
VertDist(){}
|
||||
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
||||
VertexPointer v;
|
||||
ScalarType d;
|
||||
};
|
||||
|
||||
|
||||
/* Temporary data to associate to all the vertices: estimated distance and boolean flag
|
||||
*/
|
||||
template <class MeshType>
|
||||
struct TempData{
|
||||
TempData(){}
|
||||
TempData(const double & d_){d=d_;visited=false;}
|
||||
double d;
|
||||
TempData(const ScalarType & d_){d=d_;visited=false;}
|
||||
ScalarType d;
|
||||
bool visited;
|
||||
};
|
||||
|
||||
typedef SimpleTempData<std::vector<typename MeshType::VertexType>, TempData<MeshType> > TempDataType;
|
||||
static TempDataType & TD(){ static TempDataType td; return td;}
|
||||
TempDataType * TD;
|
||||
|
||||
|
||||
struct pred: public std::binary_function<VertexPointer,VertexPointer,bool>{
|
||||
bool operator()(const VertexPointer& v0, const VertexPointer& v1) const
|
||||
{return (Geo<MeshType>::TD()[v0].d > Geo<MeshType>::TD()[v1].d);}
|
||||
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.d > v1.d);}
|
||||
};
|
||||
|
||||
|
||||
static typename MeshType::VertexPointer BuildSP(
|
||||
/*
|
||||
starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
||||
approximated geodesic distance to the closest seeds.
|
||||
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
||||
wrapping function.
|
||||
*/
|
||||
typename MeshType::VertexPointer Visit(
|
||||
MeshType & m,
|
||||
std::vector<typename MeshType::VertexPointer> & _frontier,
|
||||
double & max_distance,
|
||||
std::vector<VertDist> & _frontier,
|
||||
ScalarType & max_distance,
|
||||
bool fartestOnBorder = false
|
||||
)
|
||||
{
|
||||
TD().c = &m.vert;
|
||||
{
|
||||
bool isLeaf,toQueue;
|
||||
std::vector<VertDist> frontier;
|
||||
MeshType::VertexIterator ii;
|
||||
std::list<typename MeshType::VertexPointer> children;
|
||||
typename MeshType::VertexPointer curr,fartest,pw1;
|
||||
std::list<typename MeshType::VertexPointer>::iterator is;
|
||||
std::deque<typename MeshType::VertexPointer> leaves;
|
||||
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > expansion;
|
||||
std::vector <VertDist >::iterator ifr;
|
||||
face::VFIterator<typename MeshType::FaceType> x;int k;
|
||||
typename MeshType::VertexPointer pw;
|
||||
|
||||
bool isLeaf;
|
||||
std::vector<typename MeshType::VertexPointer> frontier;
|
||||
std::vector<typename MeshType::VertexPointer> :: iterator tmp;
|
||||
frontier.clear();
|
||||
//Requirements
|
||||
assert(m.HasVFTopology());
|
||||
//Requirements
|
||||
assert(m.HasVFTopology());
|
||||
assert(!_frontier.empty());
|
||||
|
||||
if(m.vn==0) return NULL;
|
||||
TD = new TempDataType(m.vert);
|
||||
TD->Start(TempData<MeshType>(-1.0));
|
||||
|
||||
MeshType::VertexIterator ii;
|
||||
std::list<typename MeshType::VertexPointer> children;
|
||||
typename MeshType::VertexPointer curr,fartest,pw1;
|
||||
bool toQueue;
|
||||
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr){
|
||||
(*TD)[(*ifr).v].visited= true;
|
||||
(*TD)[(*ifr).v].d = 0.0;
|
||||
(*ifr).d = 0.0;
|
||||
}
|
||||
|
||||
TD().Start(TempData<MeshType>(-1.0));
|
||||
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr)
|
||||
{
|
||||
// determina la distanza dei vertici della fan
|
||||
for( x.f = (*ifr).v->VFp(), x.z = (*ifr).v->VFi(); x.f!=0; ++x )
|
||||
for(k=0;k<2;++k)
|
||||
{
|
||||
if(k==0) pw = x.f->V1(x.z);
|
||||
else pw = x.f->V2(x.z);
|
||||
|
||||
std::list<typename MeshType::VertexPointer>::iterator is;
|
||||
std::deque<typename MeshType::VertexPointer> leaves;
|
||||
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > expansion;
|
||||
|
||||
std::vector <typename MeshType::VertexPointer >::const_iterator ifr;
|
||||
face::VFIterator<typename MeshType::FaceType> x;int k;
|
||||
typename MeshType::VertexPointer pw;
|
||||
|
||||
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr){
|
||||
TD()[*ifr].visited= true;
|
||||
TD()[*ifr].d = 0.0;
|
||||
}
|
||||
|
||||
for(ifr = _frontier.begin(); ifr != _frontier.end(); ++ifr)
|
||||
{
|
||||
// determina la distanza dei vertici della fan
|
||||
for( x.f = (*ifr)->VFp(), x.z = (*ifr)->VFi(); x.f!=0; ++x )
|
||||
for(k=0;k<2;++k)
|
||||
{
|
||||
if(k==0) pw = x.f->V1(x.z);
|
||||
else pw = x.f->V2(x.z);
|
||||
|
||||
if(TD()[pw].d ==-1){
|
||||
TD()[pw].d = Distance(pw->cP(),(*ifr)->cP());
|
||||
frontier.push_back(pw);
|
||||
if((*TD)[pw].d ==-1){
|
||||
(*TD)[pw].d = Distance(pw->cP(),(*ifr).v->cP());
|
||||
frontier.push_back(VertDist(pw,(*TD)[pw].d));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// initialize Heap
|
||||
make_heap(frontier.begin(),frontier.end(),pred());
|
||||
double curr_d,d_curr = 0.0;
|
||||
}
|
||||
// initialize Heap
|
||||
make_heap(frontier.begin(),frontier.end(),pred());
|
||||
ScalarType curr_d,d_curr = 0.0;
|
||||
max_distance=0.0;
|
||||
std::vector<typename MeshType::VertexPointer >:: iterator iv;
|
||||
std::vector<VertDist >:: iterator iv;
|
||||
|
||||
while(!frontier.empty())
|
||||
{ //printf("size: %d\n", frontier.size());
|
||||
expansion.clear();
|
||||
pop_heap(frontier.begin(),frontier.end(),pred());
|
||||
curr = frontier.back();
|
||||
curr = (frontier.back()).v;
|
||||
frontier.pop_back();
|
||||
d_curr = TD()[curr].d;
|
||||
TD()[curr].visited = true;
|
||||
d_curr = (*TD)[curr].d;
|
||||
(*TD)[curr].visited = true;
|
||||
|
||||
|
||||
isLeaf = (!fartestOnBorder || curr->IsB());
|
||||
|
||||
face::VFIterator<typename MeshType::FaceType> x;int k;
|
||||
face::VFIterator<typename MeshType::FaceType> x;int k;
|
||||
|
||||
|
||||
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
||||
|
@ -144,145 +161,181 @@ static typename MeshType::VertexPointer BuildSP(
|
|||
pw1=x.f->V1(x.z);
|
||||
}
|
||||
|
||||
const double & d_pw1 = TD()[pw1].d;
|
||||
const ScalarType & d_pw1 = (*TD)[pw1].d;
|
||||
|
||||
if((!TD()[pw1].visited ) || d_curr == 0.0)
|
||||
if((! (*TD)[pw1].visited ) || d_curr == 0.0)
|
||||
{
|
||||
if(TD()[pw].d == -1){
|
||||
curr_d = TD()[curr].d + (pw->P()-curr->P()).Norm();
|
||||
if( (*TD)[pw].d == -1){
|
||||
curr_d = (*TD)[curr].d + (pw->P()-curr->P()).Norm();
|
||||
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
assert( TD()[pw1].d != -1);
|
||||
assert( (curr!=pw) && (pw!=pw1) && (pw1 != curr));
|
||||
assert(d_pw1!=-1.0);
|
||||
continue;
|
||||
}
|
||||
|
||||
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
||||
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
||||
//************** (vedi figura in file distance.gif)
|
||||
Point3<MeshType::ScalarType> w_c = pw->cP()- curr->cP();
|
||||
Point3<MeshType::ScalarType> w_w1 = pw->cP()- pw1->cP();
|
||||
Point3<MeshType::ScalarType> w1_c = pw1->cP()- curr->cP();
|
||||
assert( (*TD)[pw1].d != -1);
|
||||
assert( (curr!=pw) && (pw!=pw1) && (pw1 != curr));
|
||||
assert(d_pw1!=-1.0);
|
||||
|
||||
double ew_c = (w_c).Norm();
|
||||
double ew_w1 = (w_w1).Norm();
|
||||
double ec_w1 = (w1_c).Norm();
|
||||
double alpha,alpha_, beta,beta_,theta_c,theta,h,delta,s,a,b;
|
||||
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
||||
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
||||
//************** (vedi figura in file distance.gif)
|
||||
Point3<MeshType::ScalarType> w_c = pw->cP()- curr->cP();
|
||||
Point3<MeshType::ScalarType> w_w1 = pw->cP()- pw1->cP();
|
||||
Point3<MeshType::ScalarType> w1_c = pw1->cP()- curr->cP();
|
||||
|
||||
alpha = acos((w_c*w1_c)/(ew_c*ec_w1));
|
||||
s = (d_curr + d_pw1+ec_w1)/2;
|
||||
a = s/ec_w1;
|
||||
b = a*s;
|
||||
alpha_ = 2*acos ( math::Min(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
||||
ScalarType ew_c = (w_c).Norm();
|
||||
ScalarType ew_w1 = (w_w1).Norm();
|
||||
ScalarType ec_w1 = (w1_c).Norm();
|
||||
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
||||
|
||||
if ( alpha+alpha_ > M_PI){
|
||||
curr_d = d_curr + ew_c;
|
||||
}else
|
||||
{
|
||||
beta_ = 2*acos ( math::Min(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
||||
beta = acos((w_w1)*(-w1_c)/(ew_w1*ec_w1));
|
||||
alpha = acos((w_c*w1_c)/(ew_c*ec_w1));
|
||||
s = (d_curr + d_pw1+ec_w1)/2;
|
||||
a = s/ec_w1;
|
||||
b = a*s;
|
||||
alpha_ = 2*acos ( math::Min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
||||
|
||||
if ( beta+beta_ > M_PI)
|
||||
curr_d = d_pw1 + ew_w1;
|
||||
else
|
||||
{
|
||||
theta = M_PI-alpha-alpha_;
|
||||
delta = cos(theta)* ew_c;
|
||||
h = sin(theta)* ew_c;
|
||||
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
||||
}
|
||||
}
|
||||
//**************************************************************************************
|
||||
toQueue = (TD()[(pw)].d==-1);
|
||||
if ( alpha+alpha_ > M_PI){
|
||||
curr_d = d_curr + ew_c;
|
||||
}else
|
||||
{
|
||||
beta_ = 2*acos ( math::Min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
||||
beta = acos((w_w1)*(-w1_c)/(ew_w1*ec_w1));
|
||||
|
||||
if(toQueue){// se non e'gia' in coda ce lo mette
|
||||
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
|
||||
}else
|
||||
{
|
||||
if( TD()[(pw)].d > curr_d )
|
||||
TD()[(pw)].d = curr_d;
|
||||
}
|
||||
if ( beta+beta_ > M_PI)
|
||||
curr_d = d_pw1 + ew_w1;
|
||||
else
|
||||
{
|
||||
theta = ScalarType(M_PI)-alpha-alpha_;
|
||||
delta = cos(theta)* ew_c;
|
||||
h = sin(theta)* ew_c;
|
||||
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
||||
}
|
||||
}
|
||||
//**************************************************************************************
|
||||
toQueue = ( (*TD)[(pw)].d==-1);
|
||||
|
||||
if(toQueue){// se non e'gia' in coda ce lo mette
|
||||
expansion.push_back(std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType>(pw,curr_d));
|
||||
}else
|
||||
{
|
||||
if( (*TD)[(pw)].d > curr_d )
|
||||
(*TD)[(pw)].d = curr_d;
|
||||
}
|
||||
|
||||
if(isLeaf){
|
||||
if(d_curr > max_distance){
|
||||
max_distance = d_curr;
|
||||
fartest = curr;
|
||||
}
|
||||
}
|
||||
if(isLeaf){
|
||||
if(d_curr > max_distance){
|
||||
max_distance = d_curr;
|
||||
fartest = curr;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > ::iterator i;
|
||||
for(i = expansion.begin(); i!= expansion.end(); ++i)
|
||||
std::vector <std::pair<typename MeshType::VertexPointer,typename MeshType::ScalarType> > ::iterator i;
|
||||
for(i = expansion.begin(); i!= expansion.end(); ++i)
|
||||
{
|
||||
TD()[(*i).first].d = (*i).second;
|
||||
frontier.push_back((*i).first);
|
||||
(*TD)[(*i).first].d = (*i).second;
|
||||
frontier.push_back(VertDist((*i).first,(*TD)[(*i).first].d));
|
||||
push_heap(frontier.begin(),frontier.end(),pred());
|
||||
} // end for
|
||||
}// end while
|
||||
}// end while
|
||||
|
||||
// scrivi le distanze sul campo qualita' (nn: farlo parametrico)
|
||||
MeshType::VertexIterator vi;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
(*vi).Q() = TD()[&(*vi)].d;
|
||||
|
||||
|
||||
TD().Stop();
|
||||
// scrivi le distanze sul campo qualita' (nn: farlo parametrico)
|
||||
MeshType::VertexIterator vi;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
(*vi).Q() = (*TD)[&(*vi)].d;
|
||||
|
||||
return fartest;
|
||||
|
||||
(*TD).Stop();
|
||||
|
||||
delete TD;
|
||||
|
||||
return fartest;
|
||||
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
static void FartestPoint( MeshType & m,
|
||||
std::vector<typename MeshType::VertexPointer> & fro,//insieme di vertici da cui trovare le distanze
|
||||
typename MeshType::VertexPointer & fartest, //punto piu'lontano
|
||||
double & distance){ //distaza geodesica
|
||||
fartest = BuildSP(m,fro,distance,false);
|
||||
}
|
||||
static void FartestBPoint(
|
||||
MeshType & m,
|
||||
std::vector<typename MeshType::VertexPointer> & fro, //insieme di vertici da cui trovare le distanze
|
||||
typename MeshType::VertexPointer & fartest, //punto piu'lontano
|
||||
double & distance){
|
||||
fartest = BuildSP(m,fro,distance,true);
|
||||
/*
|
||||
Given a mesh and a vector of pointers to vertices (sources), assigns the approximated geodesic
|
||||
distance from the cloasest source to all the mesh vertices and returns the pointer to the fartest.
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
void FartestPoint( MeshType & m,
|
||||
std::vector<typename MeshType::VertexPointer> & fro,
|
||||
typename MeshType::VertexPointer & fartest,
|
||||
ScalarType & distance){
|
||||
|
||||
std::vector<typename MeshType::VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
|
||||
for( fi = fro.begin(); fi != fro.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,-1));
|
||||
fartest = Visit(m,fr,distance,false);
|
||||
}
|
||||
/*
|
||||
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
||||
distance from the vertex-source to all the mesh vertices and returns the pointer to the fartest
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
void FartestPoint( MeshType & m,
|
||||
typename MeshType::VertexPointer seed,
|
||||
typename MeshType::VertexPointer & fartest,
|
||||
ScalarType & distance){
|
||||
std::vector<typename MeshType::VertexPointer> fro;
|
||||
fro.push_back( seed );
|
||||
typename MeshType::VertexPointer v0;
|
||||
FartestPoint(m,fro,v0,distance);
|
||||
fartest = v0;
|
||||
}
|
||||
|
||||
static void DistanceFromBorder( MeshType & m,
|
||||
typename MeshType::VertexPointer & v0, //ritorna il vertice piu'lontano da ogni punto sul bordo
|
||||
typename MeshType::VertexPointer & v1, // ritorna il vertice di bordo piu'vicino a v0
|
||||
double & distance // distanza geodesica tra v0 e v1
|
||||
)
|
||||
{
|
||||
std::vector<typename MeshType::VertexPointer> fro;
|
||||
MeshType::VertexIterator vi;
|
||||
MeshType::VertexPointer fartest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
FartestPoint(m,fro,fartest,distance);
|
||||
}
|
||||
/*
|
||||
Same as FartestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
void FartestBPoint(MeshType & m,
|
||||
std::vector<typename MeshType::VertexPointer> & fro,
|
||||
typename MeshType::VertexPointer & fartest,
|
||||
ScalarType & distance){
|
||||
|
||||
static void MostInternal( MeshType & m,
|
||||
typename MeshType::VertexPointer & v0, //ritorna il vertice piu'lontano da ogni punto sul bordo
|
||||
typename MeshType::VertexPointer & v1, // ritorna il vertice di bordo piu'vicino a v0
|
||||
double & distance // distanza geodesica tra v0 e v1
|
||||
)
|
||||
{
|
||||
std::vector<typename MeshType::VertexPointer> fro;
|
||||
MeshType::VertexIterator vi;
|
||||
MeshType::VertexPointer fartest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
FartestPoint(m,fro,fartest,distance);
|
||||
fro.clear();
|
||||
fro.push_back(fartest);
|
||||
FartestBPoint(m,fro,fartest,distance);
|
||||
}
|
||||
std::vector<typename MeshType::VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
|
||||
};
|
||||
for( fi = fro.begin(); fi != fro.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,-1));
|
||||
fartest = Visit(m,fr,distance,true);
|
||||
}
|
||||
/*
|
||||
Same as FartestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
void FartestBPoint( MeshType & m,
|
||||
typename MeshType::VertexPointer seed,
|
||||
typename MeshType::VertexPointer & fartest,
|
||||
ScalarType & distance){
|
||||
std::vector<typename MeshType::VertexPointer> fro;
|
||||
fro.push_back( seed );
|
||||
typename MeshType::VertexPointer v0;
|
||||
FartestBPoint(m,fro,v0,distance);
|
||||
fartest = v0;
|
||||
}
|
||||
|
||||
/*
|
||||
Assigns to each vertex of the mesh its distance to the closest vertex on the border
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
void DistanceFromBorder( MeshType & m,
|
||||
typename MeshType::VertexPointer & v0,
|
||||
ScalarType & distance
|
||||
){
|
||||
std::vector<typename MeshType::VertexPointer> fro;
|
||||
MeshType::VertexIterator vi;
|
||||
MeshType::VertexPointer fartest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
FartestPoint(m,fro,fartest,distance);
|
||||
}
|
||||
|
||||
};
|
||||
};// end namespace
|
Loading…
Reference in New Issue