plane line

plane segment
triangle triangle added
This commit is contained in:
ganovelli 2004-04-26 12:34:50 +00:00
parent faf56a6219
commit cbbb1cd0ff
1 changed files with 75 additions and 2 deletions

View File

@ -24,6 +24,9 @@
History
$Log: not supported by cvs2svn $
Revision 1.1 2004/04/21 14:22:27 cignoni
Initial Commit
****************************************************************************/
@ -33,10 +36,24 @@ $Log: not supported by cvs2svn $
#define __VCGLIB_INTERSECTION_3
#include <vcg/space/point3.h>
#include <vcg/space/line3.h>
#include <vcg/space/plane3.h>
#include <vcg/space/segment3.h>
#include <vcg/space/sphere3.h>
#include <vcg/space/triangle3.h>
#include <vcg/space/intersection/triangle_triangle3.h>
/** \addtogroup space */
/*@{*/
/**
Function computing the intersection between couple of geometric primitives in
3 dimension
*/
namespace vcg {
// sphere line
/// interseciton between sphere and line
template<class T>
inline bool Intersection( const Sphere3<T> & sp, const Line3<T> & li, Point3<T> & p0,Point3<T> & p1 ){
@ -65,6 +82,62 @@ inline bool Intersection( const Sphere3<T> & sp, const Line3<T> & li, Point3<T>
return true;
}
/// intersection between line and plane
template<class T>
inline bool Intersection( const Plane3<T> & pl, const Line3<T> & li, Point3<T> & po){
const T epsilon = T(1e-8);
T k = pl.n * li.dire; // Compute 'k' factor
if( (k > -epsilon) && (k < epsilon))
return false;
T r = (pl.d - pl.n*li.orig)/k; // Compute ray distance
po = li.orig + li.dire*r;
return true;
}
/// intersection between segment and plane
template<class T>
inline bool Intersection( const Plane3<T> & pl, const Segment3<T> & sg, Point3<T> & po){
const T epsilon = T(1e-8);
T k = pl.d - pl.n * (sg.P1()-sg.P0());
if( (k > -epsilon) && (k < epsilon))
return false;
T r = (pl.d - pl.n*sg.P0())/k; // Compute ray distance
if( (r<0) || (r > 1.0))
return false;
po = sg.P0()*(1-r)+sg.P1() * r;
return true;
}
/// intersection between two triangles
template<class T>
inline bool Intersection( Triangle3<T> t0,Triangle3<T> t1){
return NoDivTriTriIsect(t0.P0(0),t0.P0(1),t0.P0(2),
t1.P0(0),t1.P0(1),t1.P0(2));
}
template<class T>
inline bool Intersection( Point3<T> V0,Point3<T> V1,Point3<T> V2,
Point3<T> U0,Point3<T> U1,Point3<T> U2){
return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2);
}
template<class T>
inline bool Intersection( Point3<T> V0,Point3<T> V1,Point3<T> V2,
Point3<T> U0,Point3<T> U1,Point3<T> U2,int *coplanar,
Point3<T> &isectpt1,Point3<T> &isectpt2){
return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2,
coplanar,isectpt1,isectpt2);
}
template<class T>
inline bool Intersection( Triangle3<T> t0,Triangle3<T> t1,bool &coplanar,
Segment3<T> & sg){
Point3<T> ip0,ip1;
return tri_tri_intersect_with_isectline(t0.P0(0),t0.P0(1),t0.P0(2),
t1.P0(0),t1.P0(1),t1.P0(2),
coplanar,sg.P0(),sg.P1()
);
}
} // end namespace
#endif