corrected sqrt and added doxygen groups

This commit is contained in:
Paolo Cignoni 2004-02-19 15:13:40 +00:00
parent 9b71765561
commit cf744db2db
1 changed files with 490 additions and 485 deletions

View File

@ -1,485 +1,490 @@
/**************************************************************************** /****************************************************************************
* VCGLib o o * * VCGLib o o *
* Visual and Computer Graphics Library o o * * Visual and Computer Graphics Library o o *
* _ O _ * * _ O _ *
* Copyright(C) 2004 \/)\/ * * Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| * * Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | * * ISTI - Italian National Research Council | *
* \ * * \ *
* All rights reserved. * * All rights reserved. *
* * * *
* This program is free software; you can redistribute it and/or modify * * This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by * * it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or * * the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. * * (at your option) any later version. *
* * * *
* This program is distributed in the hope that it will be useful, * * This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of * * but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. * * for more details. *
* * * *
****************************************************************************/ ****************************************************************************/
/**************************************************************************** /****************************************************************************
History History
$Log: not supported by cvs2svn $ $Log: not supported by cvs2svn $
Revision 1.6 2004/02/15 23:35:47 cignoni Revision 1.7 2004/02/17 02:08:47 cignoni
Cambiato nome type template in accordo alla styleguide Di prova...
Revision 1.5 2004/02/10 01:07:15 cignoni Revision 1.6 2004/02/15 23:35:47 cignoni
Edited Comments and GPL license Cambiato nome type template in accordo alla styleguide
Revision 1.4 2004/02/09 13:48:02 cignoni Revision 1.5 2004/02/10 01:07:15 cignoni
Edited doxygen comments Edited Comments and GPL license
Revision 1.3 2004/02/06 02:25:54 cignoni Revision 1.4 2004/02/09 13:48:02 cignoni
First working release. Edited doxygen comments
Revision 1.2 2004/02/06 02:17:09 cignoni Revision 1.3 2004/02/06 02:25:54 cignoni
First commit... First working release.
Revision 1.2 2004/02/06 02:17:09 cignoni
****************************************************************************/ First commit...
#ifndef __VCGLIB_POINT3
#define __VCGLIB_POINT3 ****************************************************************************/
#include <assert.h> #ifndef __VCGLIB_POINT3
#include <vcg/math/base.h> #define __VCGLIB_POINT3
namespace vcg { #include <assert.h>
#include <vcg/math/base.h>
/** The templated class for representing a point in 3D space.
* The class is templated over the ScalarType class representing coordinates. namespace vcg {
*/ /** \addtogroup space */
/*@{*/
template <class P3ScalarType> class Point3 /**
{ The templated class for representing a point in 3D space.
protected: * The class is templated over the ScalarType class representing coordinates.
/// The only data member. Hidden to user. */
P3ScalarType _v[3];
template <class P3ScalarType> class Point3
public: {
typedef P3ScalarType ScalarType; protected:
/// The only data member. Hidden to user.
P3ScalarType _v[3];
//@{ public:
typedef P3ScalarType ScalarType;
/** @name Standard Constructors and Initializers
No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
**/
//@{
inline Point3 () { }
inline Point3 ( const P3ScalarType nx, const P3ScalarType ny, const P3ScalarType nz ) /** @name Standard Constructors and Initializers
{ No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types
_v[0] = nx; **/
_v[1] = ny;
_v[2] = nz; inline Point3 () { }
} inline Point3 ( const P3ScalarType nx, const P3ScalarType ny, const P3ScalarType nz )
inline Point3 ( Point3 const & p ) {
{ _v[0] = nx;
_v[0]= p._v[0]; _v[1] = ny;
_v[1]= p._v[1]; _v[2] = nz;
_v[2]= p._v[2]; }
} inline Point3 ( Point3 const & p )
inline Point3 ( const P3ScalarType nv[3] ) {
{ _v[0]= p._v[0];
_v[0] = nv[0]; _v[1]= p._v[1];
_v[1] = nv[1]; _v[2]= p._v[2];
_v[2] = nv[2]; }
} inline Point3 ( const P3ScalarType nv[3] )
inline Point3 & operator =( Point3 const & p ) {
{ _v[0] = nv[0];
_v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[1] = nv[1];
return *this; _v[2] = nv[2];
} }
inline void zero() inline Point3 & operator =( Point3 const & p )
{ {
_v[0] = 0; _v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2];
_v[1] = 0; return *this;
_v[2] = 0; }
} inline void zero()
{
/// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni _v[0] = 0;
/// paddando gli elementi estesi con zeri _v[1] = 0;
inline P3ScalarType Ext( const int i ) const _v[2] = 0;
{ }
if(i>=0 && i<=2) return _v[i];
else return 0; /// Questa funzione estende il vettore ad un qualsiasi numero di dimensioni
} /// paddando gli elementi estesi con zeri
inline P3ScalarType Ext( const int i ) const
template <class Q> {
inline void Import( const Point3<Q> & b ) if(i>=0 && i<=2) return _v[i];
{ else return 0;
_v[0] = P3ScalarType(b[0]); }
_v[1] = P3ScalarType(b[1]);
_v[2] = P3ScalarType(b[2]); template <class Q>
} inline void Import( const Point3<Q> & b )
{
template <class Q> _v[0] = P3ScalarType(b[0]);
static inline Point3 Construct( const Point3<Q> & b ) _v[1] = P3ScalarType(b[1]);
{ _v[2] = P3ScalarType(b[2]);
return Point3(P3ScalarType(b[0]),P3ScalarType(b[1]),P3ScalarType(b[2])); }
}
template <class Q>
//@} static inline Point3 Construct( const Point3<Q> & b )
{
//@{ return Point3(P3ScalarType(b[0]),P3ScalarType(b[1]),P3ScalarType(b[2]));
}
/** @name Data Access.
access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/ //@}
inline P3ScalarType & operator [] ( const int i ) //@{
{
assert(i>=0 && i<3); /** @name Data Access.
return _v[i]; access to data is done by overloading of [] or explicit naming of coords (x,y,z)**/
}
inline const P3ScalarType & operator [] ( const int i ) const inline P3ScalarType & operator [] ( const int i )
{ {
assert(i>=0 && i<3); assert(i>=0 && i<3);
return _v[i]; return _v[i];
} }
inline const P3ScalarType &X() const { return _v[0]; } inline const P3ScalarType & operator [] ( const int i ) const
inline const P3ScalarType &Y() const { return _v[1]; } {
inline const P3ScalarType &Z() const { return _v[2]; } assert(i>=0 && i<3);
inline P3ScalarType &X() { return _v[0]; } return _v[i];
inline P3ScalarType &Y() { return _v[1]; } }
inline P3ScalarType &Z() { return _v[2]; } inline const P3ScalarType &X() const { return _v[0]; }
inline const P3ScalarType * V() const inline const P3ScalarType &Y() const { return _v[1]; }
{ inline const P3ScalarType &Z() const { return _v[2]; }
return _v; inline P3ScalarType &X() { return _v[0]; }
} inline P3ScalarType &Y() { return _v[1]; }
inline P3ScalarType & V( const int i ) inline P3ScalarType &Z() { return _v[2]; }
{ inline const P3ScalarType * V() const
assert(i>=0 && i<3); {
return _v[i]; return _v;
} }
inline const P3ScalarType & V( const int i ) const inline P3ScalarType & V( const int i )
{ {
assert(i>=0 && i<3); assert(i>=0 && i<3);
return _v[i]; return _v[i];
} }
//@} inline const P3ScalarType & V( const int i ) const
//@{ {
assert(i>=0 && i<3);
/** @name Classical overloading of operators return _v[i];
Note }
**/ //@}
//@{
inline Point3 operator + ( Point3 const & p) const
{ /** @name Classical overloading of operators
return Point3<P3ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] ); Note
} **/
inline Point3 operator - ( Point3 const & p) const
{ inline Point3 operator + ( Point3 const & p) const
return Point3<P3ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] ); {
} return Point3<P3ScalarType>( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2] );
inline Point3 operator * ( const P3ScalarType s ) const }
{ inline Point3 operator - ( Point3 const & p) const
return Point3<P3ScalarType>( _v[0]*s, _v[1]*s, _v[2]*s ); {
} return Point3<P3ScalarType>( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2] );
inline Point3 operator / ( const P3ScalarType s ) const }
{ inline Point3 operator * ( const P3ScalarType s ) const
return Point3<P3ScalarType>( _v[0]/s, _v[1]/s, _v[2]/s ); {
} return Point3<P3ScalarType>( _v[0]*s, _v[1]*s, _v[2]*s );
/// Dot product }
inline P3ScalarType operator * ( Point3 const & p ) const inline Point3 operator / ( const P3ScalarType s ) const
{ {
return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] ); return Point3<P3ScalarType>( _v[0]/s, _v[1]/s, _v[2]/s );
} }
/// Cross product /// Dot product
inline Point3 operator ^ ( Point3 const & p ) const inline P3ScalarType operator * ( Point3 const & p ) const
{ {
return Point3 <P3ScalarType> return ( _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] );
( }
_v[1]*p._v[2] - _v[2]*p._v[1], /// Cross product
_v[2]*p._v[0] - _v[0]*p._v[2], inline Point3 operator ^ ( Point3 const & p ) const
_v[0]*p._v[1] - _v[1]*p._v[0] {
); return Point3 <P3ScalarType>
} (
_v[1]*p._v[2] - _v[2]*p._v[1],
inline Point3 & operator += ( Point3 const & p) _v[2]*p._v[0] - _v[0]*p._v[2],
{ _v[0]*p._v[1] - _v[1]*p._v[0]
_v[0] += p._v[0]; );
_v[1] += p._v[1]; }
_v[2] += p._v[2];
return *this; inline Point3 & operator += ( Point3 const & p)
} {
inline Point3 & operator -= ( Point3 const & p) _v[0] += p._v[0];
{ _v[1] += p._v[1];
_v[0] -= p._v[0]; _v[2] += p._v[2];
_v[1] -= p._v[1]; return *this;
_v[2] -= p._v[2]; }
return *this; inline Point3 & operator -= ( Point3 const & p)
} {
inline Point3 & operator *= ( const P3ScalarType s ) _v[0] -= p._v[0];
{ _v[1] -= p._v[1];
_v[0] *= s; _v[2] -= p._v[2];
_v[1] *= s; return *this;
_v[2] *= s; }
return *this; inline Point3 & operator *= ( const P3ScalarType s )
} {
inline Point3 & operator /= ( const P3ScalarType s ) _v[0] *= s;
{ _v[1] *= s;
_v[0] /= s; _v[2] *= s;
_v[1] /= s; return *this;
_v[2] /= s; }
return *this; inline Point3 & operator /= ( const P3ScalarType s )
} {
// Norme _v[0] /= s;
inline P3ScalarType Norm() const _v[1] /= s;
{ _v[2] /= s;
return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] ); return *this;
} }
inline P3ScalarType SquaredNorm() const // Norme
{ inline P3ScalarType Norm() const
return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] ); {
} return Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
// Scalatura differenziata }
inline Point3 & Scale( const P3ScalarType sx, const P3ScalarType sy, const P3ScalarType sz ) inline P3ScalarType SquaredNorm() const
{ {
_v[0] *= sx; return ( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] );
_v[1] *= sy; }
_v[2] *= sz; // Scalatura differenziata
return *this; inline Point3 & Scale( const P3ScalarType sx, const P3ScalarType sy, const P3ScalarType sz )
} {
inline Point3 & Scale( const Point3 & p ) _v[0] *= sx;
{ _v[1] *= sy;
_v[0] *= p._v[0]; _v[2] *= sz;
_v[1] *= p._v[1]; return *this;
_v[2] *= p._v[2]; }
return *this; inline Point3 & Scale( const Point3 & p )
} {
_v[0] *= p._v[0];
// Normalizzazione _v[1] *= p._v[1];
inline Point3 & Normalize() _v[2] *= p._v[2];
{ return *this;
P3ScalarType n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]); }
if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; }
return *this; // Normalizzazione
} inline Point3 & Normalize()
// Polarizzazione {
void Polar( P3ScalarType & ro, P3ScalarType & tetha, P3ScalarType & fi ) const P3ScalarType n = Sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2]);
{ if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; }
ro = Norm(); return *this;
tetha = (P3ScalarType)atan2( _v[1], _v[0] ); }
fi = (P3ScalarType)acos( _v[2]/ro ); // Polarizzazione
} void Polar( P3ScalarType & ro, P3ScalarType & tetha, P3ScalarType & fi ) const
{
//@} ro = Norm();
//@{ tetha = (P3ScalarType)atan2( _v[1], _v[0] );
fi = (P3ScalarType)acos( _v[2]/ro );
/** @name Comparison Operators. }
Note that the reverse z prioritized ordering, useful in many situations.
**/ //@}
//@{
inline bool operator == ( Point3 const & p ) const
{ /** @name Comparison Operators.
return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2]; Note that the reverse z prioritized ordering, useful in many situations.
} **/
inline bool operator != ( Point3 const & p ) const
{ inline bool operator == ( Point3 const & p ) const
return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2]; {
} return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2];
inline bool operator < ( Point3 const & p ) const }
{ inline bool operator != ( Point3 const & p ) const
return (_v[2]!=p._v[2])?(_v[2]<p._v[2]): {
(_v[1]!=p._v[1])?(_v[1]<p._v[1]): return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2];
(_v[0]<p._v[0]); }
} inline bool operator < ( Point3 const & p ) const
inline bool operator > ( Point3 const & p ) const {
{ return (_v[2]!=p._v[2])?(_v[2]<p._v[2]):
return (_v[2]!=p._v[2])?(_v[2]>p._v[2]): (_v[1]!=p._v[1])?(_v[1]<p._v[1]):
(_v[1]!=p._v[1])?(_v[1]>p._v[1]): (_v[0]<p._v[0]);
(_v[0]>p._v[0]); }
} inline bool operator > ( Point3 const & p ) const
inline bool operator <= ( Point3 const & p ) const {
{ return (_v[2]!=p._v[2])?(_v[2]>p._v[2]):
return (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]>p._v[1]):
(_v[1]!=p._v[1])?(_v[1]< p._v[1]): (_v[0]>p._v[0]);
(_v[0]<=p._v[0]); }
} inline bool operator <= ( Point3 const & p ) const
inline bool operator >= ( Point3 const & p ) const {
{ return (_v[2]!=p._v[2])?(_v[2]< p._v[2]):
return (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]):
(_v[1]!=p._v[1])?(_v[1]> p._v[1]): (_v[0]<=p._v[0]);
(_v[0]>=p._v[0]); }
} inline bool operator >= ( Point3 const & p ) const
{
return (_v[2]!=p._v[2])?(_v[2]> p._v[2]):
inline Point3 operator - () const (_v[1]!=p._v[1])?(_v[1]> p._v[1]):
{ (_v[0]>=p._v[0]);
return Point3<P3ScalarType> ( -_v[0], -_v[1], -_v[2] ); }
}
//@}
// Casts inline Point3 operator - () const
#ifdef __VCG_USE_CAST {
inline operator Point3<int> (){ return Point3<int> (_v[0],_v[1],_v[2]); } return Point3<P3ScalarType> ( -_v[0], -_v[1], -_v[2] );
inline operator Point3<unsigned int> (){ return Point3<unsigned int>(_v[0],_v[1],_v[2]); } }
inline operator Point3<double> (){ return Point3<double> (_v[0],_v[1],_v[2]); } //@}
inline operator Point3<float> (){ return Point3<float> (_v[0],_v[1],_v[2]); } // Casts
inline operator Point3<short> (){ return Point3<short> (_v[0],_v[1],_v[2]); } #ifdef __VCG_USE_CAST
#endif inline operator Point3<int> (){ return Point3<int> (_v[0],_v[1],_v[2]); }
inline operator Point3<unsigned int> (){ return Point3<unsigned int>(_v[0],_v[1],_v[2]); }
}; // end class definition inline operator Point3<double> (){ return Point3<double> (_v[0],_v[1],_v[2]); }
inline operator Point3<float> (){ return Point3<float> (_v[0],_v[1],_v[2]); }
inline operator Point3<short> (){ return Point3<short> (_v[0],_v[1],_v[2]); }
template <class P3ScalarType> #endif
inline P3ScalarType Angle( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
{ }; // end class definition
P3ScalarType w = p1.Norm()*p2.Norm();
if(w==0) return -1;
P3ScalarType t = (p1*p2)/w; template <class P3ScalarType>
if(t>1) t = 1; inline P3ScalarType Angle( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
else if(t<-1) t = -1; {
return (P3ScalarType) acos(t); P3ScalarType w = p1.Norm()*p2.Norm();
} if(w==0) return -1;
P3ScalarType t = (p1*p2)/w;
// versione uguale alla precedente ma che assume che i due vettori sono unitari if(t>1) t = 1;
template <class P3ScalarType> else if(t<-1) t = -1;
inline P3ScalarType AngleN( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 ) return (P3ScalarType) acos(t);
{ }
P3ScalarType w = p1*p2;
if(w>1) // versione uguale alla precedente ma che assume che i due vettori sono unitari
w = 1; template <class P3ScalarType>
else if(w<-1) inline P3ScalarType AngleN( Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2 )
w=-1; {
return (P3ScalarType) acos(w); P3ScalarType w = p1*p2;
} if(w>1)
w = 1;
else if(w<-1)
template <class P3ScalarType> w=-1;
inline P3ScalarType Norm( Point3<P3ScalarType> const & p ) return (P3ScalarType) acos(w);
{ }
return p.Norm();
}
template <class P3ScalarType>
template <class P3ScalarType> inline P3ScalarType Norm( Point3<P3ScalarType> const & p )
inline P3ScalarType SquaredNorm( Point3<P3ScalarType> const & p ) {
{ return p.Norm();
return p.SquaredNorm(); }
}
template <class P3ScalarType>
template <class P3ScalarType> inline P3ScalarType SquaredNorm( Point3<P3ScalarType> const & p )
inline Point3<P3ScalarType> & Normalize( Point3<P3ScalarType> & p ) {
{ return p.SquaredNorm();
p.Normalize(); }
return p;
} template <class P3ScalarType>
inline Point3<P3ScalarType> & Normalize( Point3<P3ScalarType> & p )
template <class P3ScalarType> {
inline P3ScalarType Distance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 ) p.Normalize();
{ return p;
return (p1-p2).Norm(); }
}
template <class P3ScalarType>
template <class P3ScalarType> inline P3ScalarType Distance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
inline P3ScalarType SquaredDistance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 ) {
{ return (p1-p2).Norm();
return (p1-p2).SquaredNorm(); }
}
template <class P3ScalarType>
// Dot product preciso numericamente (solo double!!) inline P3ScalarType SquaredDistance( Point3<P3ScalarType> const & p1,Point3<P3ScalarType> const & p2 )
// Implementazione: si sommano i prodotti per ordine di esponente {
// (prima le piu' grandi) return (p1-p2).SquaredNorm();
template<class P3ScalarType> }
double stable_dot ( Point3<P3ScalarType> const & p0, Point3<P3ScalarType> const & p1 )
{ // Dot product preciso numericamente (solo double!!)
P3ScalarType k0 = p0._v[0]*p1._v[0]; // Implementazione: si sommano i prodotti per ordine di esponente
P3ScalarType k1 = p0._v[1]*p1._v[1]; // (prima le piu' grandi)
P3ScalarType k2 = p0._v[2]*p1._v[2]; template<class P3ScalarType>
double stable_dot ( Point3<P3ScalarType> const & p0, Point3<P3ScalarType> const & p1 )
int exp0,exp1,exp2; {
P3ScalarType k0 = p0._v[0]*p1._v[0];
frexp( double(k0), &exp0 ); P3ScalarType k1 = p0._v[1]*p1._v[1];
frexp( double(k1), &exp1 ); P3ScalarType k2 = p0._v[2]*p1._v[2];
frexp( double(k2), &exp2 );
int exp0,exp1,exp2;
if( exp0<exp1 )
{ frexp( double(k0), &exp0 );
if(exp0<exp2) frexp( double(k1), &exp1 );
return (k1+k2)+k0; frexp( double(k2), &exp2 );
else
return (k0+k1)+k2; if( exp0<exp1 )
} {
else if(exp0<exp2)
{ return (k1+k2)+k0;
if(exp1<exp2) else
return(k0+k2)+k1; return (k0+k1)+k2;
else }
return (k0+k1)+k2; else
} {
} if(exp1<exp2)
return(k0+k2)+k1;
// Returns 2*AreaTri/(MaxEdge^2), range [0.0, 0.866] else
// e.g. halfsquare: 1/2, Equitri sqrt(3)/2, ecc return (k0+k1)+k2;
// Modificata il 7/sep/00 per evitare l'allocazione temporanea di variabili }
template<class P3ScalarType> }
P3ScalarType Quality( Point3<P3ScalarType> const &p0, Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2)
{ // Returns 2*AreaTri/(MaxEdge^2), range [0.0, 0.866]
Point3<P3ScalarType> d10=p1-p0; // e.g. halfsquare: 1/2, Equitri sqrt(3)/2, ecc
Point3<P3ScalarType> d20=p2-p0; // Modificata il 7/sep/00 per evitare l'allocazione temporanea di variabili
Point3<P3ScalarType> d12=p1-p2; template<class P3ScalarType>
Point3<P3ScalarType> x = d10^d20; P3ScalarType Quality( Point3<P3ScalarType> const &p0, Point3<P3ScalarType> const & p1, Point3<P3ScalarType> const & p2)
{
P3ScalarType a = Norm( x ); Point3<P3ScalarType> d10=p1-p0;
if(a==0) return 0; // Area zero triangles have surely quality==0; Point3<P3ScalarType> d20=p2-p0;
P3ScalarType b = SquaredNorm( d10 ); Point3<P3ScalarType> d12=p1-p2;
P3ScalarType t = b; Point3<P3ScalarType> x = d10^d20;
t = SquaredNorm( d20 ); if ( b<t ) b = t;
t = SquaredNorm( d12 ); if ( b<t ) b = t; P3ScalarType a = Norm( x );
assert(b!=0.0); if(a==0) return 0; // Area zero triangles have surely quality==0;
return a/b; P3ScalarType b = SquaredNorm( d10 );
} P3ScalarType t = b;
t = SquaredNorm( d20 ); if ( b<t ) b = t;
// Return the value of the face normal (internal use only) t = SquaredNorm( d12 ); if ( b<t ) b = t;
template<class P3ScalarType> assert(b!=0.0);
Point3<P3ScalarType> Normal(const Point3<P3ScalarType> & p0, const Point3<P3ScalarType> & p1, const Point3<P3ScalarType> & p2) return a/b;
{ }
return ((p1 - p0) ^ (p2 - p0));
} // Return the value of the face normal (internal use only)
template<class P3ScalarType>
// Return the value of the face normal (internal use only) Point3<P3ScalarType> Normal(const Point3<P3ScalarType> & p0, const Point3<P3ScalarType> & p1, const Point3<P3ScalarType> & p2)
template<class P3ScalarType> {
Point3<P3ScalarType> NormalizedNormal(const Point3<P3ScalarType> & p0, const Point3<P3ScalarType> & p1, const Point3<P3ScalarType> & p2) return ((p1 - p0) ^ (p2 - p0));
{ }
return ((p1 - p0) ^ (p2 - p0)).Normalize();
} // Return the value of the face normal (internal use only)
template<class P3ScalarType>
template<class P3ScalarType> Point3<P3ScalarType> NormalizedNormal(const Point3<P3ScalarType> & p0, const Point3<P3ScalarType> & p1, const Point3<P3ScalarType> & p2)
Point3<P3ScalarType> Jitter(Point3<P3ScalarType> &n, P3ScalarType RadAngle) {
{ return ((p1 - p0) ^ (p2 - p0)).Normalize();
Point3<P3ScalarType> rnd(1.0 - 2.0*P3ScalarType(rand())/RAND_MAX, 1.0 - 2.0*P3ScalarType(rand())/RAND_MAX, 1.0 - 2.0*P3ScalarType(rand())/RAND_MAX); }
rnd*=Sin(RadAngle);
return (n+rnd).Normalize(); template<class P3ScalarType>
} Point3<P3ScalarType> Jitter(Point3<P3ScalarType> &n, P3ScalarType RadAngle)
{
Point3<P3ScalarType> rnd(1.0 - 2.0*P3ScalarType(rand())/RAND_MAX, 1.0 - 2.0*P3ScalarType(rand())/RAND_MAX, 1.0 - 2.0*P3ScalarType(rand())/RAND_MAX);
rnd*=Sin(RadAngle);
// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist return (n+rnd).Normalize();
template<class P3ScalarType> }
P3ScalarType PSDist( const Point3<P3ScalarType> & p,
const Point3<P3ScalarType> & v1,
const Point3<P3ScalarType> & v2,
Point3<P3ScalarType> & q ) /// Point(p) Edge(v1-v2) dist, q is the point in v1-v2 with min dist
{ template<class P3ScalarType>
Point3<P3ScalarType> e = v2-v1; P3ScalarType PSDist( const Point3<P3ScalarType> & p,
P3ScalarType t = ((p-v1)*e)/e.SquaredNorm(); const Point3<P3ScalarType> & v1,
if(t<0) t = 0; const Point3<P3ScalarType> & v2,
else if(t>1) t = 1; Point3<P3ScalarType> & q )
q = v1+e*t; {
return Distance(p,q); Point3<P3ScalarType> e = v2-v1;
} P3ScalarType t = ((p-v1)*e)/e.SquaredNorm();
if(t<0) t = 0;
else if(t>1) t = 1;
typedef Point3<short> Point3s; q = v1+e*t;
typedef Point3<int> Point3i; return Distance(p,q);
typedef Point3<float> Point3f; }
typedef Point3<double> Point3d;
typedef Point3<short> Point3s;
} // end namespace typedef Point3<int> Point3i;
#endif typedef Point3<float> Point3f;
typedef Point3<double> Point3d;
/*@}*/
} // end namespace
#endif