Corrected missing template and typename keyword and added function to just select the points

This commit is contained in:
Paolo Cignoni 2015-10-25 23:24:23 +00:00
parent 12c1495bb0
commit d15745b128
1 changed files with 96 additions and 82 deletions

View File

@ -21,7 +21,7 @@
* * * *
****************************************************************************/ ****************************************************************************/
#ifndef VCG_TRI_OUTLIERS__H #ifndef VCG_TRI_OUTLIERS__H
#define VCG_TRI_OUTLIERS_H #define VCG_TRI_OUTLIERS__H
#include <vcg/space/index/kdtree/kdtree.h> #include <vcg/space/index/kdtree/kdtree.h>
@ -37,92 +37,106 @@ class OutlierRemoval
{ {
public: public:
typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::ScalarType ScalarType;
typedef typename vcg::KdTree<ScalarType> KdTreeType; typedef typename vcg::KdTree<ScalarType> KdTreeType;
typedef typename vcg::KdTree<ScalarType>::PriorityQueue PriorityQueue; typedef typename vcg::KdTree<ScalarType>::PriorityQueue PriorityQueue;
/**
Compute an outlier probability value for each vertex of the mesh using the approch
in the paper "LoOP: Local Outlier Probabilities". The outlier probability is stored in the
vertex attribute "outlierScore". It use the input kdtree to find the kNearest of each vertex.
"LoOP: local outlier probabilities" by Hans-Peter Kriegel et al.
Proceedings of the 18th ACM conference on Information and knowledge management
*/
static void ComputeLoOPScore(MeshType& mesh, KdTreeType& kdTree, int kNearest)
{
vcg::tri::RequireCompactness(mesh);
typename MeshType::template PerVertexAttributeHandle<ScalarType> outlierScore = tri::Allocator<MeshType>:: template GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
typename MeshType::template PerVertexAttributeHandle<ScalarType> sigma = tri::Allocator<MeshType>:: template GetPerVertexAttribute<ScalarType>(mesh, std::string("sigma"));
typename MeshType::template PerVertexAttributeHandle<ScalarType> plof = tri::Allocator<MeshType>:: template GetPerVertexAttribute<ScalarType>(mesh, std::string("plof"));
/**
Compute an outlier probability value for each vertex of the mesh using the approch
in the paper "LoOP: Local Outlier Probabilities". The outlier probability is stored in the
vertex attribute "outlierScore". It use the input kdtree to find the kNearest of each vertex.
"LoOP: local outlier probabilities" by Hans-Peter Kriegel et al.
Proceedings of the 18th ACM conference on Information and knowledge management
*/
static void ComputeLoOPScore(MeshType& mesh, KdTreeType& kdTree, int kNearest)
{
vcg::tri::RequireCompactness(mesh);
CMesh::PerVertexAttributeHandle<ScalarType> outlierScore = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
CMesh::PerVertexAttributeHandle<ScalarType> sigma = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("sigma"));
CMesh::PerVertexAttributeHandle<ScalarType> plof = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("plof"));
#pragma omp parallel for schedule(dynamic, 10) #pragma omp parallel for schedule(dynamic, 10)
for (int i = 0; i < mesh.vert.size(); i++) for (int i = 0; i < mesh.vert.size(); i++)
{ {
PriorityQueue queue; PriorityQueue queue;
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue); kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
ScalarType sum = 0; ScalarType sum = 0;
for (int j = 0; j < queue.getNofElements(); j++) for (int j = 0; j < queue.getNofElements(); j++)
sum += queue.getWeight(j); sum += queue.getWeight(j);
sum /= (queue.getNofElements()); sum /= (queue.getNofElements());
sigma[i] = sqrt(sum); sigma[i] = sqrt(sum);
} }
float mean = 0;
#pragma omp parallel for reduction(+: mean) schedule(dynamic, 10)
for (int i = 0; i < mesh.vert.size(); i++)
{
PriorityQueue queue;
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
ScalarType sum = 0;
for (int j = 0; j < queue.getNofElements(); j++)
sum += sigma[queue.getIndex(j)];
sum /= (queue.getNofElements());
plof[i] = sigma[i] / sum - 1.0f;
mean += plof[i] * plof[i];
}
mean /= mesh.vert.size();
mean = sqrt(mean);
float mean = 0;
#pragma omp parallel for reduction(+: mean) schedule(dynamic, 10)
for (int i = 0; i < mesh.vert.size(); i++)
{
PriorityQueue queue;
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
ScalarType sum = 0;
for (int j = 0; j < queue.getNofElements(); j++)
sum += sigma[queue.getIndex(j)];
sum /= (queue.getNofElements());
plof[i] = sigma[i] / sum - 1.0f;
mean += plof[i] * plof[i];
}
mean /= mesh.vert.size();
mean = sqrt(mean);
#pragma omp parallel for schedule(dynamic, 10) #pragma omp parallel for schedule(dynamic, 10)
for (int i = 0; i < mesh.vert.size(); i++) for (int i = 0; i < mesh.vert.size(); i++)
{ {
ScalarType value = plof[i] / (mean * sqrt(2.0f)); ScalarType value = plof[i] / (mean * sqrt(2.0f));
double dem = 1.0 + 0.278393 * value; double dem = 1.0 + 0.278393 * value;
dem += 0.230389 * value * value; dem += 0.230389 * value * value;
dem += 0.000972 * value * value * value; dem += 0.000972 * value * value * value;
dem += 0.078108 * value * value * value * value; dem += 0.078108 * value * value * value * value;
ScalarType op = max(0.0, 1.0 - 1.0 / dem); ScalarType op = max(0.0, 1.0 - 1.0 / dem);
outlierScore[i] = op; outlierScore[i] = op;
} }
vcg::tri::Allocator<CMesh>::DeletePerVertexAttribute(mesh, std::string("sigma")); tri::Allocator<MeshType>::DeletePerVertexAttribute(mesh, std::string("sigma"));
vcg::tri::Allocator<CMesh>::DeletePerVertexAttribute(mesh, std::string("plof")); tri::Allocator<MeshType>::DeletePerVertexAttribute(mesh, std::string("plof"));
}; };
/**
/** Select all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0].
Delete all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0]. */
*/ static int SelectLoOPOutliers(MeshType& mesh, KdTreeType& kdTree, int kNearest, float threshold)
static int DeleteLoOPOutliers(MeshType& mesh, KdTreeType& kdTree, int kNearest, float threshold) {
{ ComputeLoOPScore(mesh, kdTree, kNearest);
ComputeLoOPScore(mesh, kdTree, kNearest); int count = 0;
int count = 0; typename MeshType:: template PerVertexAttributeHandle<ScalarType> outlierScore = tri::Allocator<MeshType>::template GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
CMesh::PerVertexAttributeHandle<ScalarType> outlierScore = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore")); for (int i = 0; i < mesh.vert.size(); i++)
for (int i = 0; i < mesh.vert.size(); i++) {
{ if (outlierScore[i] > threshold)
if (outlierScore[i] > threshold) {
{ mesh.vert[i].SetS();
vcg::tri::Allocator<CMesh>::DeleteVertex(mesh, mesh.vert[i]); count++;
count++; }
} }
} return count;
vcg::tri::Allocator<CMesh>::CompactVertexVector(mesh); }
vcg::tri::Allocator<CMesh>::DeletePerVertexAttribute(mesh, std::string("outlierScore"));
return count;
};
/**
Delete all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0].
*/
static int DeleteLoOPOutliers(MeshType& m, KdTreeType& kdTree, int kNearest, float threshold)
{
SelectLoOPOutliers(m,kdTree,kNearest,threshold);
int ovn = m.vn;
for(typename MeshType::VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi)
if((*vi).IsS() ) tri::Allocator<MeshType>::DeleteVertex(m,*vi);
tri::Allocator<MeshType>::CompactVertexVector(m);
tri::Allocator<MeshType>::DeletePerVertexAttribute(m, std::string("outlierScore"));
return m.vn - ovn;
}
}; };
} // end namespace tri } // end namespace tri