Encapsulated everything in a static class. Also, templated with Interpolator "single-method static class" functor to make custom vertex interpolations during collapses.

This commit is contained in:
mtarini 2009-08-28 15:17:23 +00:00
parent 9fc361301d
commit d231b9d021
3 changed files with 430 additions and 459 deletions

View File

@ -3,7 +3,7 @@
/** BIT-QUAD creation support:
a collection of methods that,
starting from a triangular mesh, will create your quad-only or quad-domainant mesh.
starting from a triangular mesh, will create your quad-pure or quad-domainant mesh.
They all require:
- per face Q, and FF connectivity, 2-manyfold meshes,
@ -12,37 +12,37 @@
[ list of available methods: ]
void MakeBitQuadOnlyByRefine(Mesh &m)
void MakePureByRefine(Mesh &m)
- adds a vertex for each tri or quad present
- thus, miminal complexity increase is the mesh is quad-dominant already
- old non-border edges are made faux
- never fails
void MakeBitQuadOnlyByCatmullClark(Mesh &m)
void MakePureByCatmullClark(MeshType &m)
- adds a vertex in each (non-faux) edge.
- twice complexity increase w.r.t. "ByRefine" method.
- preserves edges: old edges are still edges
- never fails
bool MakeBitQuadOnlyByFlip(Mesh &m [, int maxdist] )
bool MakePureByFlip(MeshType &m [, int maxdist] )
- does not increase # vertices, just flips edges
- call in a loop until it returns true (temporary hack)
- fails if number of triangle is odd (only happens in open meshes)
- add "StepByStep" to method name if you want it to make a single step (debugging purposes)
bool MakeTriEvenBySplit(Mesh& m)
bool MakeTriEvenByDelete(Mesh& m)
bool MakeTriEvenBySplit(MeshType& m)
bool MakeTriEvenByDelete(MeshType& m)
- two simple variants that either delete or split *at most one* border face
so that the number of tris will be made even. Return true if it did it.
- useful to use the previous method, when mesh is still all triangle
void MakeBitQuadDominant(Mesh &m, int level)
void MakeDominant(MeshType &m, int level)
- just merges traingle pairs into quads, trying its best
- various heuristic available, see descr. for parameter "level"
- provides good starting point for make-Quad-Only methods
- uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)
void MakeBitTriOnly(Mesh &m)
void MakeBitTriOnly(MeshType &m)
- inverse process: returns to tri-only mesh
@ -52,14 +52,28 @@ void MakeBitTriOnly(Mesh &m)
namespace vcg{namespace tri{
template <class _MeshType>
class BitQuadCreation{
public:
typedef _MeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType* FaceTypeP;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;
typedef BitQuad<MeshType> BQ; // static class to make basic quad operations
// helper function:
// given a triangle, merge it with its best neightboord to form a quad
template <class Face, bool override>
static void selectBestQuadDiag(Face *fi){
template <bool override>
static void selectBestDiag(FaceType *fi){
typedef typename Face::ScalarType ScalarType;
typedef typename Face::VertexType VertexType;
if (!override) {
if (fi->IsAnyF()) return;
}
@ -79,7 +93,7 @@ static void selectBestQuadDiag(Face *fi){
}
if (fi->FFp(k)==fi) continue; // never make a border faux
ScalarType score = quadQuality( &*fi, k );
ScalarType score = BQ::quadQuality( &*fi, k );
if (override) {
// don't override anyway iff other face has a better match
if (score < fi->FFp(k)->Q()) continue;
@ -129,33 +143,27 @@ static void selectBestQuadDiag(Face *fi){
// helper funcion:
// a pass though all triangles to merge triangle pairs into quads
template <class Mesh, bool override> // override previous decisions?
static void MakeQuadDominantPass(Mesh &m){
typedef typename Mesh::FaceType Face;
typedef typename Mesh::FaceIterator FaceIterator;
template <bool override> // override previous decisions?
static void MakeDominantPass(MeshType &m){
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
selectBestQuadDiag<Face,override>(&(*fi));
selectBestDiag<override>(&(*fi));
}
}
// make tri count even by splitting a single triangle...
template <class Mesh>
bool MakeTriEvenBySplit(Mesh& m){
static bool MakeTriEvenBySplit(MeshType& m){
if (m.fn%2==0) return false; // it's already Even
assert(0); // todo!
}
// make tri count even by delete...
template <class Mesh>
bool MakeTriEvenByDelete(Mesh& m)
static bool MakeTriEvenByDelete(MeshType& m)
{
if (m.fn%2==0) return false; // it's already Even
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType Face;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
for (int k=0; k<3; k++) {
@ -165,7 +173,7 @@ bool MakeTriEvenByDelete(Mesh& m)
for (int h=1; h<3; h++) {
int kh=(k+h)%3;
int j = fi->FFi( kh );
Face *f = fi->FFp(kh);
FaceType *f = fi->FFp(kh);
if (f != &* fi) {
f->FFp( j ) = f;
f->FFi( j ) = j;
@ -174,7 +182,7 @@ bool MakeTriEvenByDelete(Mesh& m)
}
// delete found face
Allocator<Mesh>::DeleteFace(m,*fi);
Allocator<MeshType>::DeleteFace(m,*fi);
return true;
}
}
@ -187,9 +195,7 @@ bool MakeTriEvenByDelete(Mesh& m)
/**
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
*/
template <class Mesh>
void MakeBitTriOnly(Mesh &m){
typedef typename Mesh::FaceIterator FaceIterator;
static void MakeBitTriOnly(MeshType &m){
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
fi->ClearAllF();
}
@ -201,17 +207,13 @@ void MakeBitTriOnly(Mesh &m){
* Updates: per wedge attributes, if any
* Other connectivity structures, and per edge and per wedge flags are ignored
*/
template <class Mesh>
bool MakeBitTriQuadConventional(Mesh &m){
static bool MakeBitTriQuadConventional(MeshType &m){
assert(0); // todo
}
/* returns true if mesh is a "conventional" quad mesh.
I.e. if it is all quads, with third edge faux fora all triangles*/
template <class Mesh>
bool IsBitTriQuadConventional(Mesh &m){
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
static bool IsBitTriQuadConventional(MeshType &m){
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
if (fi->IsAnyF())
if ( fi->Flags() & ( FaceType::FAUX012 ) != FaceType::FAUX2 ) {
@ -226,16 +228,10 @@ bool IsBitTriQuadConventional(Mesh &m){
previous diags
requires that the mesh is made only of quads and tris.
*/
template <class Mesh>
void MakeBitQuadOnlyByRefine(Mesh &m){
static void MakePureByRefine(MeshType &m){
// todo: update VF connectivity if present
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::VertexIterator VertexIterator;
typedef typename Mesh::FaceType Face;
typedef typename Mesh::VertexType Vert;
int ev = 0; // EXTRA vertices (times 2)
int ef = 0; // EXTRA faces
@ -269,8 +265,8 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
ev/=2; // I was counting each of them twice
int originalFaceNum = m.fn;
FaceIterator nfi = tri::Allocator<Mesh>::AddFaces(m,ef);
VertexIterator nvi = tri::Allocator<Mesh>::AddVertices(m,ev);
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->ClearV();
@ -291,12 +287,12 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
if (k==0) // add a vertex in the center of the face, splitting it in 3
{
assert(nvi!=m.vert.end());
Vert *nv = &*nvi; nvi++;
VertexType *nv = &*nvi; nvi++;
*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
Face *fa = &*fi;
Face *fb = &*nfi; nfi++;
Face *fc = &*nfi; nfi++;
FaceType *fa = &*fi;
FaceType *fb = &*nfi; nfi++;
FaceType *fc = &*nfi; nfi++;
*fb = *fc = *fa; // lazy: copy everything from the old faces
fa->V(0) = nv;
fb->V(1) = nv;
@ -342,9 +338,9 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
}
else {
// assuming is a part of quad (not a penta, etc), i.e. only one faux
Face *fa = &*fi;
int ea2 = FauxIndex(fa); // index of the only faux edge
Face *fb = fa->FFp(ea2);
FaceType *fa = &*fi;
int ea2 = BQ::FauxIndex(fa); // index of the only faux edge
FaceType *fb = fa->FFp(ea2);
int eb2 = fa->FFi(ea2);
assert(fb->FFp(eb2)==fa) ;
assert(fa->IsF(ea2));
@ -357,15 +353,15 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
// create new vert in center of faux edge
assert(nvi!=m.vert.end());
Vert *nv = &*nvi; nvi++;
VertexType *nv = &*nvi; nvi++;
*nv = * fa->V0( ea2 );
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
// split faces: add 2 faces (one per side)
assert(nfi!=m.face.end());
Face *fc = &*nfi; nfi++;
FaceType *fc = &*nfi; nfi++;
assert(nfi!=m.face.end());
Face *fd = &*nfi; nfi++;
FaceType *fd = &*nfi; nfi++;
*fc = *fa;
*fd = *fb;
@ -443,10 +439,10 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
// last pass: add vertex on faux border faces... (if any)
if (nsplit>0) {
FaceIterator nfi = tri::Allocator<Mesh>::AddFaces(m,nsplit);
VertexIterator nvi = tri::Allocator<Mesh>::AddVertices(m,nsplit);
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,nsplit);
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
Face* fa = &*fi;
FaceType* fa = &*fi;
int ea2 = -1; // border and faux face (if any)
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
@ -458,12 +454,12 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
int ea1 = (ea2+2) %3;
// create new vert in center of faux edge
Vert *nv = &*nvi; nvi++;
VertexType *nv = &*nvi; nvi++;
*nv = * fa->V0( ea2 );
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
// split face: add 1 face
Face *fc = &*nfi; nfi++;
FaceType *fc = &*nfi; nfi++;
*fc = *fa;
fa->V(ea2) = fc->V(ea0) = nv ;
@ -502,38 +498,33 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
// uses Catmull Clark to enforce quad only meshes
// each old edge (but not faux) is split in two.
template <class Mesh>
void MakeBitQuadOnlyByCatmullClark(Mesh &m){
MakeBitQuadOnlyByRefine(m);
MakeBitQuadOnlyByRefine(m);
static void MakePureByCatmullClark(MeshType &m){
MakePureByRefine(m);
MakePureByRefine(m);
// et-voilà!!!
}
// Helper funcion:
// marks edge distance froma a given face.
// Stops at maxDist or at the distance when a triangle is found
template <class Mesh>
typename Mesh::FaceType * MarkEdgeDistance(Mesh &m, typename Mesh::FaceType *f, int maxDist){
typedef typename Mesh::FaceType Face;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::VertexIterator VertexIterator;
assert(Mesh::HasPerFaceQuality());
static FaceType * MarkEdgeDistance(MeshType &m, FaceType *f, int maxDist){
assert(MeshType::HasPerFaceQuality());
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!f->IsD()) {
fi->Q()=maxDist;
}
Face * firstTriangleFound = NULL;
FaceType * firstTriangleFound = NULL;
f->Q() = 0;
std::vector<Face*> stack;
std::vector<FaceType*> stack;
int stackPos=0;
stack.push_back(f);
while ( stackPos<stack.size() ) {
Face *f = stack[stackPos++];
FaceType *f = stack[stackPos++];
for (int k=0; k<3; k++) {
Face *fk = f->FFp(k);
FaceType *fk = f->FFp(k);
int fq = int(f->Q()) + ( ! f->IsF(k) );
if (fk->Q()> fq && fq <= maxDist) {
if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
@ -556,13 +547,9 @@ typename Mesh::FaceType * MarkEdgeDistance(Mesh &m, typename Mesh::FaceType *f,
maxdist is the maximal edge distance where to look for a companion triangle
*/
template <class Mesh>
int MakeBitQuadOnlyByFlipStepByStep(Mesh &m, int maxdist=10000, int restart=false){
typedef typename Mesh::FaceType Face;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::VertexIterator VertexIterator;
static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){
static Face *ta, *tb; // faces to be matched into a quad
static FaceType *ta, *tb; // faces to be matched into a quad
static int step = 0; // hack
@ -595,18 +582,18 @@ if (step==0) {
for (int k=0; k<3; k++) {
if (tb->FFp(k) == tb) continue; // border
Face* tbk = tb->FFp(k);
FaceType* tbk = tb->FFp(k);
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
int back = tb->FFi(k);
int faux = FauxIndex(tbk);
int faux = BQ::FauxIndex(tbk);
int other = 3-back-faux;
int scoreA = int(tbk->FFp(other)->Q());
Face* tbh = tbk->FFp(faux);
int fauxh = FauxIndex(tbh);
FaceType* tbh = tbk->FFp(faux);
int fauxh = BQ::FauxIndex(tbh);
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
@ -623,10 +610,10 @@ if (step==0) {
// use that edge to proceed
if (mustDoFlip) {
FlipBitQuadDiag( *(tb->FFp(edge)) );
BQ::FlipDiag( *(tb->FFp(edge)) );
}
Face* next = tb->FFp(edge)->FFp( FauxIndex(tb->FFp(edge)) );
FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge)) );
// create new edge
next->ClearAllF();
@ -660,12 +647,11 @@ break;
- maxdist is the maximal edge distance where to look for a companion triangle
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
*/
template <class Mesh>
bool MakeBitQuadOnlyByFlip(Mesh &m, int maxdist=10000)
static bool MakePureByFlip(MeshType &m, int maxdist=10000)
{
MakeBitQuadOnlyByFlipStepByStep(m, maxdist, true); // restart
MakePureByFlipStepByStep(m, maxdist, true); // restart
int res=-1;
while (res==-1) res = MakeBitQuadOnlyByFlipStepByStep(m, maxdist);
while (res==-1) res = MakePureByFlipStepByStep(m, maxdist);
return res==0;
}
@ -676,23 +662,22 @@ bool MakeBitQuadOnlyByFlip(Mesh &m, int maxdist=10000)
level = 1: smarter: leaves more triangles, but makes better quality quads
level = 2: even more so (marginally)
*/
template <class Mesh>
void MakeBitQuadDominant(Mesh &m, int level){
static void MakeDominant(MeshType &m, int level){
assert(Mesh::HasPerFaceQuality());
assert(Mesh::HasPerFaceFlags());
assert(MeshType::HasPerFaceQuality());
assert(MeshType::HasPerFaceFlags());
typedef typename Mesh::FaceIterator FaceIterator;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
fi->ClearAllF();
fi->Q() = 0;
}
MakeQuadDominantPass<Mesh, false> (m);
if (level>0) MakeQuadDominantPass<Mesh, true> (m);
if (level>1) MakeQuadDominantPass<Mesh, true> (m);
if (level>0) MakeQuadDominantPass<Mesh, false> (m);
MakeDominantPass<false> (m);
if (level>0) MakeDominantPass<true> (m);
if (level>1) MakeDominantPass<true> (m);
if (level>0) MakeDominantPass<false> (m);
}
};
}} // end namespace vcg::tri

View File

@ -1,12 +1,26 @@
namespace vcg{namespace tri{
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
template <class Mesh>
void MarkFace(typename Mesh::FaceType* f, Mesh &m){
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
template <class BQ>
class BitQuadOptimization{
typedef typename BQ::MeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType* FaceTypeP;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;
//typedef BitQuad<MeshType> BQ; // static class to make basic quad operatins
public:
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
static void MarkFace(FaceType* f, MeshType &m){
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
fi->Q() = 1;
}
@ -22,11 +36,8 @@ void MarkFace(typename Mesh::FaceType* f, Mesh &m){
}
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
template <class Mesh>
void MarkVertex(typename Mesh::FaceType* f, int wedge, Mesh &m){
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
typedef typename Mesh::VertexType VertexType;
static void MarkVertex(FaceType* f, int wedge, MeshType &m){
VertexType *v = f->V(wedge);
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
@ -36,12 +47,8 @@ void MarkVertex(typename Mesh::FaceType* f, int wedge, Mesh &m){
}
template <class Mesh>
bool MarkSmallestEdge(Mesh &m, bool perform)
static bool MarkSmallestEdge(MeshType &m, bool perform)
{
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
typedef typename Mesh::ScalarType ScalarType;
ScalarType min = std::numeric_limits<ScalarType>::max();
FaceType *fa=NULL; int w=0;
@ -64,7 +71,7 @@ bool MarkSmallestEdge(Mesh &m, bool perform)
}
if (fa) {
if (perform) {
return CollapseQuadEdge(*fa,w,m);
return BQ::CollapseEdge(*fa,w,m);
} else {
fa->Q()=0.0;
fa->FFp(w)->Q()=0.0;
@ -75,12 +82,8 @@ bool MarkSmallestEdge(Mesh &m, bool perform)
}
// returns: 0 if fail. 1 if edge. 2 if diag.
template <class Mesh>
int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool perform)
static int MarkSmallestEdgeOrDiag(MeshType &m, ScalarType edgeMult, bool perform)
{
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
typedef typename Mesh::ScalarType ScalarType;
ScalarType min = std::numeric_limits<ScalarType>::max();
FaceType *fa=NULL; int w=0; bool counterDiag = false;
@ -104,7 +107,7 @@ int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool per
}
if (f->IsF(k)) { // for diag faces, test counterdiag too
score = CounterDiag(f).Norm();
score = BQ::CounterDiag(f).Norm();
if (score<min) {
min=score;
fa = f;
@ -120,12 +123,12 @@ int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool per
if (perform) {
if (fa->IsF(w)) {
if (counterDiag) {
CollapseQuadCounterDiag(*fa, PosOnDiag(*fa,true), m ); return 2;
BQ::CollapseCounterDiag(*fa, BQ::PosOnDiag(*fa,true), m ); return 2;
} else {
CollapseQuadDiag(*fa, PosOnDiag(*fa,false), m ); return 2;
BQ::CollapseDiag(*fa, BQ::PosOnDiag(*fa,false), m ); return 2;
}
} else {
if (CollapseQuadEdge(*fa,w,m)) return 1;
if (BQ::CollapseEdge(*fa,w,m)) return 1;
}
} else {
fa->Q()=0.0;
@ -137,12 +140,8 @@ int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool per
}
template <class Mesh>
void MarkSmallestDiag(Mesh &m)
static void MarkSmallestDiag(MeshType &m)
{
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
typedef typename Mesh::ScalarType ScalarType;
ScalarType min = std::numeric_limits<ScalarType>::max();
FaceType *fa=NULL;
@ -151,13 +150,13 @@ void MarkSmallestDiag(Mesh &m)
ScalarType score;
score = Diag(f).Norm();
score = BQ::Diag(f).Norm();
if (score<min) {
min=score;
fa = f;
}
score = CounterDiag(f).Norm();
score = BQ::CounterDiag(f).Norm();
if (score<min) {
min=score;
fa = f;
@ -166,16 +165,12 @@ void MarkSmallestDiag(Mesh &m)
}
if (fa) {
fa->Q()=0.0;
fa->FFp(FauxIndex(fa))->Q()=0.0;
fa->FFp(BQ::FauxIndex(fa))->Q()=0.0;
}
}
template <class Mesh>
bool IdentifyAndCollapseSmallestDiag(Mesh &m){
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
typedef typename Mesh::ScalarType ScalarType;
static bool IdentifyAndCollapseSmallestDiag(MeshType &m){
ScalarType min = std::numeric_limits<ScalarType>::max();
FaceType *fa=NULL; bool flip;
@ -184,14 +179,14 @@ bool IdentifyAndCollapseSmallestDiag(Mesh &m){
ScalarType score;
score = Diag(f).Norm();
score = BQ::Diag(f).Norm();
if (score<min) {
min=score;
fa = f;
flip = false;
}
score = CounterDiag(f).Norm();
score = BQ::CounterDiag(f).Norm();
if (score<min) {
min=score;
fa = f;
@ -201,22 +196,22 @@ bool IdentifyAndCollapseSmallestDiag(Mesh &m){
}
if (!fa) return false;
if (TestAndRemoveDoublet(*fa,0,m)) { return true; }
if (TestAndRemoveDoublet(*fa,1,m)) { return true; }
if (TestAndRemoveDoublet(*fa,2,m)) { return true; }
int k = FauxIndex(fa);
if (TestAndRemoveDoublet( *fa->FFp(k),(fa->FFi(k)+2)%3, m )) return true;
if (BQ::TestAndRemoveDoublet(*fa,0,m)) { return true; }
if (BQ::TestAndRemoveDoublet(*fa,1,m)) { return true; }
if (BQ::TestAndRemoveDoublet(*fa,2,m)) { return true; }
int k = BQ::FauxIndex(fa);
if (BQ::TestAndRemoveDoublet( *fa->FFp(k),(fa->FFi(k)+2)%3, m )) return true;
if (flip) {
if (!CheckFlipBitQuadDiag(*fa) ) {
if (!BQ::CheckFlipDiag(*fa) ) {
// I can't collapse (why?)
MarkFace(fa,m);
return false;
} else
CollapseQuadCounterDiag(*fa, PosOnDiag(*fa,true), m );
BQ::CollapseCounterDiag(*fa, BQ::PosOnDiag(*fa,true), m );
}
else {
CollapseQuadDiag(*fa, PosOnDiag(*fa,false), m );
BQ::CollapseDiag(*fa, BQ::PosOnDiag(*fa,false), m );
}
return true;
}
@ -228,18 +223,15 @@ seeks and removes all doublets (a pair of quads sharing two consecutive edges)
by merging them into a single quad (thus removing one vertex and two tri faces)-
Returns number of removed Doublets
*/
template <class Mesh>
int BitQuadRemoveDoublets(Mesh &m)
static int RemoveDoublets(MeshType &m)
{
int res=0;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
fi->Q()=1;
for (int k=0; k<3; k++) {
if ( IsDoublet(*fi,k) ){
if ( BQ::IsDoublet(*fi,k) ){
res++;
RemoveDoublet(*fi,k,m);
BQ::RemoveDoublet(*fi,k,m);
if (fi->IsD()) break; // break wedge circle, if face disappeard
}
}
@ -251,14 +243,10 @@ int BitQuadRemoveDoublets(Mesh &m)
marks (Quality=0) and approx. counts profitable vertex rotations
(vertex rotations which make edge shorter
*/
template <class Mesh, bool perform>
int BitQuadMarkVertexRotations(Mesh &m)
template <bool perform>
static int MarkVertexRotations(MeshType &m)
{
int res=0;
typedef typename Mesh::VertexIterator VertexIterator;
typedef typename Mesh::VertexType VertexType;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) vi->ClearV();
if (!perform)
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1.0;
@ -267,14 +255,14 @@ int BitQuadMarkVertexRotations(Mesh &m)
for (int k=0; k<3; k++) {
if (fi->V(k)->IsV()) continue;
if (TestBitQuadVertexRotation(*fi,k)) {
if (BQ::TestVertexRotation(*fi,k)) {
res++;
fi->V(k)->SetV();
if (!perform) {
res++; MarkVertex(&*fi, k, m); //fi->Q()=0;
}
else {
if (RotateBitQuadVertex(*fi, k)) res++; //fi->Q()=0;
if (BQ::RotateVertex(*fi, k)) res++; //fi->Q()=0;
//if (res>1) return res; // uncomment for only one rotation
}
}
@ -285,12 +273,10 @@ int BitQuadMarkVertexRotations(Mesh &m)
// mark (and count) all edges that are worth rotating
// if perform == true, actually rotate them
template <class Mesh, bool perform>
int BitQuadMarkEdgeRotations(Mesh &m)
template <bool perform>
static int MarkEdgeRotations(MeshType &m)
{
int count = 0;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1;
@ -299,10 +285,10 @@ int BitQuadMarkEdgeRotations(Mesh &m)
for (int k=0; k<3; k++) {
if (fi->IsF(k)) continue;
if (fi->FFp(k)<= &*fi) continue; // only once per real (non faux) edge, and only for non border ones
int best = TestBitQuadEdgeRotation(*fi, k);
int best = BQ::TestEdgeRotation(*fi, k);
if (perform) {
if (best==+1) if (RotateBitQuadEdge<FaceType, true>(*fi, k)) count++;
if (best==-1) if (RotateBitQuadEdge<FaceType,false>(*fi, k)) count++;
if (best==+1) if (BQ::template RotateEdge< true>(*fi, k)) count++;
if (best==-1) if (BQ::template RotateEdge<false>(*fi, k)) count++;
}
else {
if (best!=0) { fi->Q()=0; fi->FFp(k)->Q()=0; count++; }
@ -316,16 +302,13 @@ int BitQuadMarkEdgeRotations(Mesh &m)
/*
marks (Quality=0) and approx. counts doublets (a pair of quads sharing two consecutive edges)
*/
template <class Mesh>
int BitQuadMarkDoublets(Mesh &m)
static int MarkDoublets(MeshType &m)
{
int res=0;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
fi->Q()=1;
for (int k=0; k<3; k++) {
if ( IsDoublet(*fi,k) ){
if ( BQ::IsDoublet(*fi,k) ){
res++;
if (fi->IsF((k+1)%3)) res++; // counts for a quad
fi->Q()=0;
@ -339,16 +322,13 @@ int BitQuadMarkDoublets(Mesh &m)
/*
marks (Quality=0) and counts singlets (vertex B in an A-B-A-C quad)
*/
template <class Mesh>
int BitQuadMarkSinglets(Mesh &m)
static int MarkSinglets(MeshType &m)
{
int res=0;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
fi->Q()=1;
for (int k=0; k<3; k++) {
if ( IsSinglet(*fi,k) ){
if ( BQ::IsSinglet(*fi,k) ){
res++;
fi->Q()=0;
}
@ -361,17 +341,14 @@ int BitQuadMarkSinglets(Mesh &m)
/*
deletes singlets, reutrns number of
*/
template <class Mesh>
int BitQuadRemoveSinglets(Mesh &m)
static int RemoveSinglets(MeshType &m)
{
int res=0;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::FaceType FaceType;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
for (int k=0; k<3; k++) {
if ( IsSinglet(*fi,k) ){
if ( BQ::IsSinglet(*fi,k) ){
res++;
RemoveSinglet(*fi,k,m);
BQ::RemoveSinglet(*fi,k,m);
return res;
break;
}
@ -383,19 +360,17 @@ int BitQuadRemoveSinglets(Mesh &m)
/* returns average quad quality, and assigns it to triangle quality
*/
template <class Mesh>
typename Mesh::ScalarType MeasureBitQuadQuality(Mesh &m)
static ScalarType MeasureQuality(MeshType &m)
{
assert(Mesh::HasPerFaceFlags());
typename Mesh::ScalarType res = 0;
assert(MeshType::HasPerFaceFlags());
ScalarType res = 0;
int div = 0;
typedef typename Mesh::FaceIterator FaceIterator;
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
if (fi->IsAnyF()) {
typename Mesh::ScalarType q = quadQuality( &*fi, FauxIndex(&*fi) );
ScalarType q = BQ::quadQuality( &*fi, BQ::FauxIndex(&*fi) );
if (Mesh::HasPerFaceQuality()) fi->Q() = q;
if (MeshType::HasPerFaceQuality()) fi->Q() = q;
res += q;
div++;
}
@ -403,4 +378,5 @@ typename Mesh::ScalarType MeasureBitQuadQuality(Mesh &m)
if (!div) return 0; else return res / div;
}
};
}} // end namespace vcg::tri

View File

@ -10,23 +10,23 @@
[ basic operations: ]
bool IsDoublet(const Face& f, int wedge)
void RemoveDoublet(Face &f, int wedge, Mesh& m)
bool IsDoublet(const FaceType& f, int wedge)
void RemoveDoublet(FaceType &f, int wedge, MeshType& m)
- identifies and removed "Doublets" (pair of quads sharing two consecutive edges)
bool IsSinglet(const Face& f, int wedge)
void RemoveSinglet(Face &f, int wedge, Mesh& m)
bool IsSinglet(const FaceType& f, int wedge)
void RemoveSinglet(FaceType &f, int wedge, MeshType& m)
void FlipBitQuadDiag(Face &f)
void FlipDiag(FaceType &f)
- rotates the faux edge of a quad (quad only change internally)
bool RotateBitQuadEdge(Face& f, int w0a);
bool RotateEdge(FaceType& f, int w0a);
- rotate a quad edge (clockwise or counterclockwise, specified via template)
bool RotateBitQuadVertex(FaceType &f, int w0)
bool RotateVertex(FaceType &f, int w0)
- rotate around a quad vertex ("wind-mill" operation)
void CollapseQuadDiag(Face &f, ... p , Mesh& m)
void CollapseDiag(FaceType &f, ... p , MeshType& m)
- collapses a quad on its diagonal.
- p identifies the pos of collapsed point
(as either the parametric pos on the diagonal, or a fresh coordtype)
@ -39,10 +39,10 @@
- (should be made into a template parameter for methods using it)
- currently measures how squared each angle is
int FauxIndex(const Face* f);
int FauxIndex(const FaceType* f);
- returns index of the only faux edge of a quad (otherwise, assert)
int CountBitPolygonInternalValency(const Face& f, int wedge)
int CountBitPolygonInternalValency(const FaceType& f, int wedge)
- returns valency of vertex in terms of polygons (quads, tris...)
@ -55,134 +55,59 @@
namespace vcg{namespace tri{
// helper function:
// cos of angle abc. This should probably go elsewhere
template<class CoordType>
static typename CoordType::ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
{
CoordType
e0 = b - a,
e1 = b - c;
typename CoordType::ScalarType d = (e0.Norm()*e1.Norm());
if (d==0) return 0.0;
return (e0*e1)/d;
}
// helper function:
// returns quality of a quad formed by points a,b,c,d
// quality is computed as "how squared angles are"
template <class Coord>
inline static typename Coord::ScalarType quadQuality(const Coord &a, const Coord &b, const Coord &c, const Coord &d){
typename Coord::ScalarType score = 0;
score += 1 - math::Abs( Cos( a,b,c) );
score += 1 - math::Abs( Cos( b,c,d) );
score += 1 - math::Abs( Cos( c,d,a) );
score += 1 - math::Abs( Cos( d,a,b) );
return score / 4;
}
// helper function:
// returns quality of a given (potential) quad
template <class Face>
static typename Face::ScalarType quadQuality(Face *f, int edge){
typedef typename Face::CoordType CoordType;
CoordType
a = f->V0(edge)->P(),
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
c = f->V1(edge)->P(),
d = f->V2(edge)->P();
return quadQuality(a,b,c,d);
}
/**
helper function:
given a quad edge, retruns:
0 if that edge should not be rotated
+1 if it should be rotated clockwise (+1)
-1 if it should be rotated counterclockwise (-1)
Currently an edge is rotated iff it is shortened by that rotations
(shortcut criterion)
*/
template <class Face>
int TestBitQuadEdgeRotation(const Face &f, int w0)
{
const Face *fa = &f;
assert(! fa->IsF(w0) );
typename Face::ScalarType q0,q1,q2;
typename Face::CoordType v0,v1,v2,v3,v4,v5;
int w1 = (w0+1)%3;
int w2 = (w0+2)%3;
v0 = fa->P(w0);
v3 = fa->P(w1);
if (fa->IsF(w2) ) {
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
v2 = fa->P(w2);
} else {
v1 = fa->P(w2);
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
/* simple geometric-interpolation mono-function class used
as a default template parameter to BitQuad class */
template <class VertexType>
class GeometricInterpolator{
public:
typedef typename VertexType::ScalarType ScalarType;
static void Apply( const VertexType &a, const VertexType &b, ScalarType t, VertexType &res){
assert (&a != &b);
res.P() = a.P()*(1-t) + b.P()*(t);
}
const Face *fb = fa->cFFp(w0);
w0 = fa->cFFi(w0);
w1 = (w0+1)%3;
w2 = (w0+2)%3;
if (fb->IsF(w2) ) {
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
v5 = fb->P(w2);
} else {
v4 = fb->P(w2);
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
}
/*
// max overall quality criterion:
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
if (q0>=q1 && q0>=q2) return 0;
if (q1>=q2) return 1;*/
// min distance (shortcut criterion)
q0 = (v0 - v3).SquaredNorm();
q1 = (v1 - v4).SquaredNorm();
q2 = (v5 - v2).SquaredNorm();
if (q0<=q1 && q0<=q2) return 0;
if (q1<=q2) return 1;
return -1;
}
};
template <
// first template parameter: the tri mesh (with face-edges flagged)
class _MeshType,
// second template parameter: used to define interpolations between points
class Interpolator = GeometricInterpolator<typename _MeshType::VertexType>
>
class BitQuad{
public:
typedef _MeshType MeshType;
typedef typename MeshType::ScalarType ScalarType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::FaceType* FaceTypeP;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::FaceIterator FaceIterator;
typedef typename MeshType::VertexIterator VertexIterator;
template <class Face, bool verse>
bool RotateBitQuadEdge(Face& f, int w0a){
Face *fa = &f;
template <bool verse>
static bool RotateEdge(FaceType& f, int w0a){
FaceType *fa = &f;
assert(! fa->IsF(w0a) );
typename Face::VertexType *v0, *v1;
VertexType *v0, *v1;
v0= fa->V0(w0a);
v1= fa->V1(w0a);
int w1a = (w0a+1)%3;
int w2a = (w0a+2)%3;
Face *fb = fa->FFp(w0a);
FaceType *fb = fa->FFp(w0a);
int w0b = fa->FFi(w0a);
int w1b = (w0b+1)%3;
int w2b = (w0b+2)%3;
if (fa->IsF(w2a) == verse) {
if (!CheckFlipBitQuadDiag(*fa)) return false;
FlipBitQuadDiag(*fa);
if (!CheckFlipDiag(*fa)) return false;
FlipDiag(*fa);
// recover edge index, so that (f, w0a) identifies the same edge as before
Face *fc = fa->FFp(FauxIndex(fa));
FaceType *fc = fa->FFp(FauxIndex(fa));
for (int i=0; i<3; i++){
if ( v0==fa->V0(i) && v1==fa->V1(i) ) w0a = i;
if ( v0==fc->V0(i) && v1==fc->V1(i) ) { fa = fc; w0a = i; }
@ -190,20 +115,19 @@ bool RotateBitQuadEdge(Face& f, int w0a){
}
if (fb->IsF(w2b) == verse) {
if (!CheckFlipBitQuadDiag(*fb)) return false;
FlipBitQuadDiag(*fb);
if (!CheckFlipDiag(*fb)) return false;
FlipDiag(*fb);
}
if (!CheckFlipEdge(*fa,w0a)) return false;
FlipBitQuadEdge(*fa,w0a);
FlipEdge(*fa,w0a);
return true;
}
/* small helper function which returns the index of the only
faux index, assuming there is exactly one (asserts out otherwise)
*/
template <class Face>
int FauxIndex(const Face* f){
static int FauxIndex(const FaceType* f){
if (f->IsF(0)) return 0;
if (f->IsF(1)) return 1;
assert(f->IsF(2));
@ -211,11 +135,10 @@ int FauxIndex(const Face* f){
}
// rotates the diagonal of a quad
template <class Face>
void FlipBitQuadDiag(Face &f){
static void FlipDiag(FaceType &f){
int faux = FauxIndex(&f);
Face* fa = &f;
Face* fb = f.FFp(faux);
FaceType* fa = &f;
FaceType* fb = f.FFp(faux);
vcg::face::FlipEdge(f, faux);
// ripristinate faux flags
fb->ClearAllF();
@ -230,11 +153,9 @@ void FlipBitQuadDiag(Face &f){
// given a vertex (i.e. a face and a wedge),
// this function tells us how the average edge lenght around a vertex would change
// if that vertex is rotated
template <class Face>
typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Face &f, int w0)
static ScalarType AvgEdgeLenghtVariationIfVertexRotated(const FaceType &f, int w0)
{
assert(!f.IsD());
typedef typename Face::ScalarType ScalarType;
ScalarType
before=0, // sum of quad edges (originating from v)
@ -242,7 +163,7 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
int guard = 0;
// rotate arond vertex
const Face* pf = &f;
const FaceType* pf = &f;
int pi = w0;
int n = 0; // vertex valency
int na = 0;
@ -252,11 +173,11 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
else { before+= triEdge; n++; }
if ( pf->IsF((pi+1)%3)) { after += CounterDiag( pf ).Norm(); na++; }
const Face *t = pf;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return std::numeric_limits<ScalarType>::max(); // it's a mesh border! flee!
pi = pf->cFFi( pi );
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
@ -265,17 +186,17 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
}
/*
const Face* pf = &f;
const FaceType* pf = &f;
int pi = wedge;
int res = 0, guard=0;
do {
if (!pf->IsAnyF()) return false; // there's a triangle!
if (!pf->IsF(pi)) res++;
const Face *t = pf;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return false;
pi = pf->cFFi( pi );
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
@ -284,19 +205,16 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
// given a vertex (i.e. a face and a wedge),
// this function tells us if it should be rotated or not
// (currently, we should iff it is shortened)
template <class Face>
bool TestBitQuadVertexRotation(const Face &f, int w0)
static bool TestVertexRotation(const FaceType &f, int w0)
{
assert(!f.IsD());
// rotate quad IFF this way edges become shorter:
return AvgBitQuadEdgeLenghtVariationIfVertexRotated(f,w0)<0;
return AvgEdgeLenghtVariationIfVertexRotated(f,w0)<0;
}
template <class FaceType>
bool RotateBitQuadVertex(FaceType &f, int w0)
static bool RotateVertex(FaceType &f, int w0)
{
typedef typename FaceType::ScalarType ScalarType;
int guard = 0;
@ -330,8 +248,8 @@ bool RotateBitQuadVertex(FaceType &f, int w0)
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
if (mustFlip) {
if (!CheckFlipBitQuadDiag(*lastF)) return false; // cannot flip??
FlipBitQuadDiag(*lastF);
if (!CheckFlipDiag(*lastF)) return false; // cannot flip??
FlipDiag(*lastF);
}
} while (pf != stopA && pf!= stopB);
@ -354,16 +272,15 @@ bool RotateBitQuadVertex(FaceType &f, int w0)
// flips the faux edge of a quad
template <class Face>
void FlipBitQuadEdge(Face &f, int k){
static void FlipEdge(FaceType &f, int k){
assert(!f.IsF(k));
Face* fa = &f;
Face* fb = f.FFp(k);
FaceType* fa = &f;
FaceType* fb = f.FFp(k);
assert(fa!=fb); // else, rotating a border edge
// backup prev other-quads-halves
Face* fa2 = fa->FFp( FauxIndex(fa) );
Face* fb2 = fb->FFp( FauxIndex(fb) );
FaceType* fa2 = fa->FFp( FauxIndex(fa) );
FaceType* fb2 = fb->FFp( FauxIndex(fb) );
vcg::face::FlipEdge(*fa, k);
@ -379,22 +296,19 @@ void FlipBitQuadEdge(Face &f, int k){
}
// check if a quad diagonal can be topologically flipped
template <class Face>
bool CheckFlipBitQuadDiag(Face &f){
static bool CheckFlipDiag(FaceType &f){
return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) );
}
// given a face (part of a quad), returns its diagonal
template <class Face>
typename Face::CoordType Diag(const Face* f){
static CoordType Diag(const FaceType* f){
int i = FauxIndex(f);
return f->P1( i ) - f->P0( i );
}
// given a face (part of a quad), returns other diagonal
template <class Face>
typename Face::CoordType CounterDiag(const Face* f){
static CoordType CounterDiag(const FaceType* f){
int i = FauxIndex(f);
return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ;
}
@ -402,22 +316,20 @@ typename Face::CoordType CounterDiag(const Face* f){
/* helper function:
collapses a single face along its faux edge.
Updates FF adj of other edges. */
template <class Mesh>
void _CollapseQuadDiagHalf(typename Mesh::FaceType &f, int faux, Mesh& m)
static void _CollapseDiagHalf(FaceType &f, int faux, MeshType& m)
{
typedef typename Mesh::FaceType Face;
int faux1 = (faux+1)%3;
int faux2 = (faux+2)%3;
Face* fA = f.FFp( faux1 );
Face* fB = f.FFp( faux2 );
FaceType* fA = f.FFp( faux1 );
FaceType* fB = f.FFp( faux2 );
int iA = f.FFi( faux1 );
int iB = f.FFi( faux2 );
if (fA==&f && fB==&f) {
// both non-faux edges are borders: tri-face disappears, just remove the vertex
if (DELETE_VERTICES)
Allocator<Mesh>::DeleteVertex(m,*(f.V(faux2)));
Allocator<MeshType>::DeleteVertex(m,*(f.V(faux2)));
} else {
if (fA==&f) {
fB->FFp(iB) = fB; fB->FFi(iB) = iB;
@ -432,15 +344,14 @@ void _CollapseQuadDiagHalf(typename Mesh::FaceType &f, int faux, Mesh& m)
}
}
Allocator<Mesh>::DeleteFace(m,f);
Allocator<MeshType>::DeleteFace(m,f);
}
template <class Mesh>
void RemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
static void RemoveDoublet(FaceType &f, int wedge, MeshType& m){
if (f.IsF((wedge+1)%3) ) {
typename Mesh::VertexType *v = f.V(wedge);
FlipBitQuadDiag(f);
VertexType *v = f.V(wedge);
FlipDiag(f);
// quick hack: recover wedge index after flip
if (f.V(0)==v) wedge = 0;
else if (f.V(1)==v) wedge = 1;
@ -449,15 +360,14 @@ void RemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
wedge = 2;
}
}
typename Mesh::ScalarType k=(f.IsF(wedge))?1:0;
CollapseQuadDiag(f, k, m);
typename Mesh::VertexType *v = f.V(wedge);
ScalarType k=(f.IsF(wedge))?1:0;
CollapseDiag(f, k, m);
VertexType *v = f.V(wedge);
}
template <class Mesh>
void RemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
typename Mesh::FaceType *fa, *fb; // these will die
typename Mesh::FaceType *fc, *fd; // their former neight
static void RemoveSinglet(FaceType &f, int wedge, MeshType& m){
FaceType *fa, *fb; // these will die
FaceType *fc, *fd; // their former neight
fa = & f;
fb = fa->FFp(wedge);
int wa0 = wedge;
@ -478,15 +388,14 @@ void RemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
// faux status of survivors: unchanged
assert( ! ( fc->IsF( wc) ) );
assert( ! ( fd->IsF( wd) ) );
Allocator<Mesh>::DeleteFace( m,*fa );
Allocator<Mesh>::DeleteFace( m,*fb );
Allocator<MeshType>::DeleteFace( m,*fa );
Allocator<MeshType>::DeleteFace( m,*fb );
if (DELETE_VERTICES)
Allocator<Mesh>::DeleteVertex( m,*fa->V(wedge) );
Allocator<MeshType>::DeleteVertex( m,*fa->V(wedge) );
}
template <class Mesh>
bool TestAndRemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
static bool TestAndRemoveDoublet(FaceType &f, int wedge, MeshType& m){
if (IsDoublet(f,wedge)) {
RemoveDoublet(f,wedge,m);
return true;
@ -494,32 +403,31 @@ bool TestAndRemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
return false;
}
template <class Mesh>
bool TestAndRemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
static bool TestAndRemoveSinglet(FaceType &f, int wedge, MeshType& m){
if (IsSinglet(f,wedge)) {
RemoveSinglet(f,wedge,m);
return true;
}
return false;
}
template <class Face, int verse>
void RotateBitQuadEdge(const Face& f, int wedge){
template <int verse>
static void RotateEdge(const FaceType& f, int wedge){
}
// given a face and a wedge, counts its valency in terms of quads (and triangles)
// uses only FF, assumes twomanyfold
// returns -1 if border
template <class Face>
int CountBitPolygonInternalValency(const Face& f, int wedge){
const Face* pf = &f;
static int CountBitPolygonInternalValency(const FaceType& f, int wedge){
const FaceType* pf = &f;
int pi = wedge;
int res = 0;
do {
if (!pf->IsF(pi)) res++;
const Face *t = pf;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return -1;
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
} while (pf != &f);
return res;
@ -527,38 +435,36 @@ int CountBitPolygonInternalValency(const Face& f, int wedge){
// given a face and a wedge, returns if it host a doubet
// assumes tri and quad only. uses FF topology only.
template <class Face>
bool IsDoublet(const Face& f, int wedge){
const Face* pf = &f;
static bool IsDoublet(const FaceType& f, int wedge){
const FaceType* pf = &f;
int pi = wedge;
int res = 0, guard=0;
do {
if (!pf->IsAnyF()) return false; // there's a triangle!
if (!pf->IsF(pi)) res++;
const Face *t = pf;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return false;
pi = pf->cFFi( pi );
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
return (res == 2);
}
template <class Face>
bool IsSinglet(const Face& f, int wedge){
const Face* pf = &f;
static bool IsSinglet(const FaceType& f, int wedge){
const FaceType* pf = &f;
int pi = wedge;
int res = 0, guard=0;
do {
if (!pf->IsAnyF()) return false; // there's a triangle!
if (!pf->IsF(pi)) res++;
const Face *t = pf;
const FaceType *t = pf;
t = pf->FFp( pi );
if (pf == t ) return false;
pi = pf->cFFi( pi );
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
pf = t;
assert(guard++<100);
} while (pf != &f);
@ -566,32 +472,16 @@ bool IsSinglet(const Face& f, int wedge){
}
/** collapses a quad diagonal a-b
forming the new vertex in between the two old vertices.
if k == 0, new vertex is in a
if k == 1, new vertex is in b
if k == 0.5, new vertex in the middle, etc
*/
template <class Mesh>
void CollapseQuadDiag(typename Mesh::FaceType &f, typename Mesh::ScalarType k, Mesh& m){
typename Mesh::CoordType p;
int fauxa = FauxIndex(&f);
p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k);
CollapseQuadDiag(f,p,m);
}
template <class Mesh>
bool CollapseQuadEdgeDirect(typename Mesh::FaceType &f, int w0, Mesh& m){
typename Mesh::FaceType * f0 = &f;
static bool CollapseEdgeDirect(FaceType &f, int w0, MeshType& m){
FaceType * f0 = &f;
assert( !f0->IsF(w0) );
typename Mesh::VertexType *v0, *v1;
VertexType *v0, *v1;
v0 = f0->V0(w0);
v1 = f0->V1(w0);
if (!RotateBitQuadVertex(*f0,w0)) return false;
if (!RotateVertex(*f0,w0)) return false;
// quick hack: recover original wedge
@ -603,13 +493,11 @@ bool CollapseQuadEdgeDirect(typename Mesh::FaceType &f, int w0, Mesh& m){
assert( f0->V1(w0) == v1 );
assert( f0->IsF(w0) );
CollapseQuadDiag(*f0,PosOnDiag(*f0,false), m);
CollapseDiag(*f0,PosOnDiag(*f0,false), m);
return true;
}
template <class Mesh>
bool CollapseQuadEdge(typename Mesh::FaceType &f, int w0, Mesh& m){
typedef typename Mesh::FaceType * FaceTypeP;
static bool CollapseEdge(FaceType &f, int w0, MeshType& m){
FaceTypeP f0 = &f;
assert(!f0->IsF(w0)); // don't use this to collapse diag.
@ -621,39 +509,69 @@ bool CollapseQuadEdge(typename Mesh::FaceType &f, int w0, Mesh& m){
// choose: rotate around V0 or around V1?
if (
AvgBitQuadEdgeLenghtVariationIfVertexRotated(*f0,w0)
AvgEdgeLenghtVariationIfVertexRotated(*f0,w0)
<
AvgBitQuadEdgeLenghtVariationIfVertexRotated(*f1,w1)
) return CollapseQuadEdgeDirect(*f0,w0,m);
else return CollapseQuadEdgeDirect(*f1,w1,m);
AvgEdgeLenghtVariationIfVertexRotated(*f1,w1)
) return CollapseEdgeDirect(*f0,w0,m);
else return CollapseEdgeDirect(*f1,w1,m);
}
template <class Mesh>
void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType &p, Mesh& m){
/** collapses a quad diagonal a-b
forming the new vertex in between the two old vertices.
if k == 0, new vertex is in a
if k == 1, new vertex is in b
if k == 0.5, new vertex in the middle, etc
*/
static void CollapseCounterDiag(FaceType &f, ScalarType interpol, MeshType& m){
//CoordType p;
//int fauxa = FauxIndex(&f);
//p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k);
typedef typename Mesh::FaceType Face;
typedef typename Mesh::VertexType Vert;
Face* fa = &f;
FlipDiag(f);
CollapseDiag(f,interpol,m);
}
/*
static void CollapseCounterDiag(FaceType &f, ScalarType k, MeshType& m){
CoordType p;
int fauxa = FauxIndex(&f);
p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k);
CollapseCounterDiag(f,p,m);
}
*/
//static void CollapseCounterDiag(FaceType &f, const CoordType &p, MeshType& m){
// FlipDiag(f);
// CollapseDiag(f,p,m);
//}
static void CollapseDiag(FaceType &f, ScalarType interpol, MeshType& m){
FaceType* fa = &f;
int fauxa = FauxIndex(fa);
Face* fb = fa->FFp(fauxa);
FaceType* fb = fa->FFp(fauxa);
assert (fb!=fa);
int fauxb = FauxIndex(fb);
Vert* va = fa->V(fauxa); // va lives
Vert* vb = fb->V(fauxb); // vb dies
VertexType* va = fa->V(fauxa); // va lives
VertexType* vb = fb->V(fauxb); // vb dies
Interpolator::Apply( *(f.V0(fauxa)), *(f.V1(fauxa)), interpol, *va);
// update FV...
bool border = false;
int pi = fauxb;
Face* pf = fb; /* pf, pi could be a Pos<Face> p(pf, pi) */
FaceType* pf = fb; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
// rotate around vb, (same-sense-as-face)-wise
do {
pf->V(pi) = va;
pi=(pi+2)%3;
Face *t = pf->FFp(pi);
FaceType *t = pf->FFp(pi);
if (t==pf) { border= true; break; }
pi = pf->FFi(pi);
pf = t;
@ -662,11 +580,11 @@ void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType
// rotate around va, (counter-sense-as-face)-wise
if (border) {
int pi = fauxa;
Face* pf = fa; /* pf, pi could be a Pos<Face> p(pf, pi) */
FaceType* pf = fa; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
do {
pi=(pi+1)%3;
pf->V(pi) = va;
Face *t = pf->FFp(pi);
FaceType *t = pf->FFp(pi);
if (t==pf) break;
pi = pf->FFi(pi);
pf = t;
@ -674,39 +592,32 @@ void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType
}
// update FF, delete faces
_CollapseQuadDiagHalf(*fb, fauxb, m);
_CollapseQuadDiagHalf(*fa, fauxa, m);
_CollapseDiagHalf(*fb, fauxb, m);
_CollapseDiagHalf(*fa, fauxa, m);
if (DELETE_VERTICES) Allocator<Mesh>::DeleteVertex(m,*vb);
va->P() = p;
if (DELETE_VERTICES) Allocator<MeshType>::DeleteVertex(m,*vb);
// for diagonals
// for counterdiagonals
//Inpterpolator::Apply( *(f.V2(fauxa)), *(f.FFp( fauxa )->V2(fauxa)), interpol, va);
//va->P() = p;
}
template <class Mesh>
void CollapseQuadCounterDiag(typename Mesh::FaceType &f, typename Mesh::ScalarType k, Mesh& m){
typename Mesh::CoordType p;
int fauxa = FauxIndex(&f);
p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k);
CollapseQuadCounterDiag(f,p,m);
}
template <class Mesh>
void CollapseQuadCounterDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType &p, Mesh& m){
FlipBitQuadDiag(f);
CollapseQuadDiag(f,p,m);
}
// helper function: find a good position on a diag to collapse a point
// currently, it is point in the middle,
// unless a mixed border-non border edge is collapsed, then it is an exreme
template <class Face>
typename Face::ScalarType PosOnDiag(const Face& f, bool counterDiag){
static ScalarType PosOnDiag(const FaceType& f, bool counterDiag){
bool b0, b1, b2, b3; // which side of the quads are border
const Face* fa=&f;
const FaceType* fa=&f;
int ia = FauxIndex(fa);
const Face* fb=fa->cFFp(ia);
const FaceType* fb=fa->cFFp(ia);
int ib = fa->cFFi(ia);
b0 = fa->FFp((ia+1)%3) == fa;
@ -715,8 +626,8 @@ typename Face::ScalarType PosOnDiag(const Face& f, bool counterDiag){
b3 = fb->FFp((ib+2)%3) == fb;
if (counterDiag) {
if ( (b0||b1) && !(b2||b3) ) return 0;
if ( !(b0||b1) && (b2||b3) ) return 1;
if ( (b0||b1) && !(b2||b3) ) return 1;
if ( !(b0||b1) && (b2||b3) ) return 0;
} else {
if ( (b1||b2) && !(b3||b0) ) return 0;
if ( !(b1||b2) && (b3||b0) ) return 1;
@ -725,10 +636,7 @@ typename Face::ScalarType PosOnDiag(const Face& f, bool counterDiag){
return 0.5f;
}
template <class Mesh>
void UpdateQualityAsBitQuadValency(Mesh& m){
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::VertexIterator VertexIterator;
static void UpdateQualityAsValency(MeshType& m){
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
vi->Q() = 0;
}
@ -739,4 +647,106 @@ void UpdateQualityAsBitQuadValency(Mesh& m){
}
}
private:
// helper function:
// cos of angle abc. This should probably go elsewhere
static ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
{
CoordType
e0 = b - a,
e1 = b - c;
ScalarType d = (e0.Norm()*e1.Norm());
if (d==0) return 0.0;
return (e0*e1)/d;
}
// helper function:
// returns quality of a quad formed by points a,b,c,d
// quality is computed as "how squared angles are"
static ScalarType quadQuality(const CoordType &a, const CoordType &b, const CoordType &c, const CoordType &d){
ScalarType score = 0;
score += 1 - math::Abs( Cos( a,b,c) );
score += 1 - math::Abs( Cos( b,c,d) );
score += 1 - math::Abs( Cos( c,d,a) );
score += 1 - math::Abs( Cos( d,a,b) );
return score / 4;
}
// helper function:
// returns quality of a given (potential) quad
static ScalarType quadQuality(FaceType *f, int edge){
CoordType
a = f->V0(edge)->P(),
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
c = f->V1(edge)->P(),
d = f->V2(edge)->P();
return quadQuality(a,b,c,d);
}
/**
helper function:
given a quad edge, retruns:
0 if that edge should not be rotated
+1 if it should be rotated clockwise (+1)
-1 if it should be rotated counterclockwise (-1)
Currently an edge is rotated iff it is shortened by that rotations
(shortcut criterion)
*/
static int TestEdgeRotation(const FaceType &f, int w0)
{
const FaceType *fa = &f;
assert(! fa->IsF(w0) );
ScalarType q0,q1,q2;
CoordType v0,v1,v2,v3,v4,v5;
int w1 = (w0+1)%3;
int w2 = (w0+2)%3;
v0 = fa->P(w0);
v3 = fa->P(w1);
if (fa->IsF(w2) ) {
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
v2 = fa->P(w2);
} else {
v1 = fa->P(w2);
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
}
const FaceType *fb = fa->cFFp(w0);
w0 = fa->cFFi(w0);
w1 = (w0+1)%3;
w2 = (w0+2)%3;
if (fb->IsF(w2) ) {
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
v5 = fb->P(w2);
} else {
v4 = fb->P(w2);
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
}
/*
// max overall quality criterion:
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
if (q0>=q1 && q0>=q2) return 0;
if (q1>=q2) return 1;*/
// min distance (shortcut criterion)
q0 = (v0 - v3).SquaredNorm();
q1 = (v1 - v4).SquaredNorm();
q2 = (v5 - v2).SquaredNorm();
if (q0<=q1 && q0<=q2) return 0;
if (q1<=q2) return 1;
return -1;
}
};
}} // end namespace vcg::tri