Encapsulated everything in a static class. Also, templated with Interpolator "single-method static class" functor to make custom vertex interpolations during collapses.
This commit is contained in:
parent
9fc361301d
commit
d231b9d021
|
@ -3,7 +3,7 @@
|
||||||
|
|
||||||
/** BIT-QUAD creation support:
|
/** BIT-QUAD creation support:
|
||||||
a collection of methods that,
|
a collection of methods that,
|
||||||
starting from a triangular mesh, will create your quad-only or quad-domainant mesh.
|
starting from a triangular mesh, will create your quad-pure or quad-domainant mesh.
|
||||||
|
|
||||||
They all require:
|
They all require:
|
||||||
- per face Q, and FF connectivity, 2-manyfold meshes,
|
- per face Q, and FF connectivity, 2-manyfold meshes,
|
||||||
|
@ -12,37 +12,37 @@
|
||||||
|
|
||||||
[ list of available methods: ]
|
[ list of available methods: ]
|
||||||
|
|
||||||
void MakeBitQuadOnlyByRefine(Mesh &m)
|
void MakePureByRefine(Mesh &m)
|
||||||
- adds a vertex for each tri or quad present
|
- adds a vertex for each tri or quad present
|
||||||
- thus, miminal complexity increase is the mesh is quad-dominant already
|
- thus, miminal complexity increase is the mesh is quad-dominant already
|
||||||
- old non-border edges are made faux
|
- old non-border edges are made faux
|
||||||
- never fails
|
- never fails
|
||||||
|
|
||||||
void MakeBitQuadOnlyByCatmullClark(Mesh &m)
|
void MakePureByCatmullClark(MeshType &m)
|
||||||
- adds a vertex in each (non-faux) edge.
|
- adds a vertex in each (non-faux) edge.
|
||||||
- twice complexity increase w.r.t. "ByRefine" method.
|
- twice complexity increase w.r.t. "ByRefine" method.
|
||||||
- preserves edges: old edges are still edges
|
- preserves edges: old edges are still edges
|
||||||
- never fails
|
- never fails
|
||||||
|
|
||||||
bool MakeBitQuadOnlyByFlip(Mesh &m [, int maxdist] )
|
bool MakePureByFlip(MeshType &m [, int maxdist] )
|
||||||
- does not increase # vertices, just flips edges
|
- does not increase # vertices, just flips edges
|
||||||
- call in a loop until it returns true (temporary hack)
|
- call in a loop until it returns true (temporary hack)
|
||||||
- fails if number of triangle is odd (only happens in open meshes)
|
- fails if number of triangle is odd (only happens in open meshes)
|
||||||
- add "StepByStep" to method name if you want it to make a single step (debugging purposes)
|
- add "StepByStep" to method name if you want it to make a single step (debugging purposes)
|
||||||
|
|
||||||
bool MakeTriEvenBySplit(Mesh& m)
|
bool MakeTriEvenBySplit(MeshType& m)
|
||||||
bool MakeTriEvenByDelete(Mesh& m)
|
bool MakeTriEvenByDelete(MeshType& m)
|
||||||
- two simple variants that either delete or split *at most one* border face
|
- two simple variants that either delete or split *at most one* border face
|
||||||
so that the number of tris will be made even. Return true if it did it.
|
so that the number of tris will be made even. Return true if it did it.
|
||||||
- useful to use the previous method, when mesh is still all triangle
|
- useful to use the previous method, when mesh is still all triangle
|
||||||
|
|
||||||
void MakeBitQuadDominant(Mesh &m, int level)
|
void MakeDominant(MeshType &m, int level)
|
||||||
- just merges traingle pairs into quads, trying its best
|
- just merges traingle pairs into quads, trying its best
|
||||||
- various heuristic available, see descr. for parameter "level"
|
- various heuristic available, see descr. for parameter "level"
|
||||||
- provides good starting point for make-Quad-Only methods
|
- provides good starting point for make-Quad-Only methods
|
||||||
- uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)
|
- uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)
|
||||||
|
|
||||||
void MakeBitTriOnly(Mesh &m)
|
void MakeBitTriOnly(MeshType &m)
|
||||||
- inverse process: returns to tri-only mesh
|
- inverse process: returns to tri-only mesh
|
||||||
|
|
||||||
|
|
||||||
|
@ -52,14 +52,28 @@ void MakeBitTriOnly(Mesh &m)
|
||||||
|
|
||||||
namespace vcg{namespace tri{
|
namespace vcg{namespace tri{
|
||||||
|
|
||||||
|
template <class _MeshType>
|
||||||
|
class BitQuadCreation{
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
typedef _MeshType MeshType;
|
||||||
|
typedef typename MeshType::ScalarType ScalarType;
|
||||||
|
typedef typename MeshType::CoordType CoordType;
|
||||||
|
typedef typename MeshType::FaceType FaceType;
|
||||||
|
typedef typename MeshType::FaceType* FaceTypeP;
|
||||||
|
typedef typename MeshType::VertexType VertexType;
|
||||||
|
typedef typename MeshType::FaceIterator FaceIterator;
|
||||||
|
typedef typename MeshType::VertexIterator VertexIterator;
|
||||||
|
|
||||||
|
typedef BitQuad<MeshType> BQ; // static class to make basic quad operations
|
||||||
|
|
||||||
|
|
||||||
// helper function:
|
// helper function:
|
||||||
// given a triangle, merge it with its best neightboord to form a quad
|
// given a triangle, merge it with its best neightboord to form a quad
|
||||||
template <class Face, bool override>
|
template <bool override>
|
||||||
static void selectBestQuadDiag(Face *fi){
|
static void selectBestDiag(FaceType *fi){
|
||||||
|
|
||||||
typedef typename Face::ScalarType ScalarType;
|
|
||||||
typedef typename Face::VertexType VertexType;
|
|
||||||
if (!override) {
|
if (!override) {
|
||||||
if (fi->IsAnyF()) return;
|
if (fi->IsAnyF()) return;
|
||||||
}
|
}
|
||||||
|
@ -79,7 +93,7 @@ static void selectBestQuadDiag(Face *fi){
|
||||||
}
|
}
|
||||||
if (fi->FFp(k)==fi) continue; // never make a border faux
|
if (fi->FFp(k)==fi) continue; // never make a border faux
|
||||||
|
|
||||||
ScalarType score = quadQuality( &*fi, k );
|
ScalarType score = BQ::quadQuality( &*fi, k );
|
||||||
if (override) {
|
if (override) {
|
||||||
// don't override anyway iff other face has a better match
|
// don't override anyway iff other face has a better match
|
||||||
if (score < fi->FFp(k)->Q()) continue;
|
if (score < fi->FFp(k)->Q()) continue;
|
||||||
|
@ -129,33 +143,27 @@ static void selectBestQuadDiag(Face *fi){
|
||||||
|
|
||||||
// helper funcion:
|
// helper funcion:
|
||||||
// a pass though all triangles to merge triangle pairs into quads
|
// a pass though all triangles to merge triangle pairs into quads
|
||||||
template <class Mesh, bool override> // override previous decisions?
|
template <bool override> // override previous decisions?
|
||||||
static void MakeQuadDominantPass(Mesh &m){
|
static void MakeDominantPass(MeshType &m){
|
||||||
typedef typename Mesh::FaceType Face;
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
selectBestQuadDiag<Face,override>(&(*fi));
|
selectBestDiag<override>(&(*fi));
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// make tri count even by splitting a single triangle...
|
// make tri count even by splitting a single triangle...
|
||||||
template <class Mesh>
|
static bool MakeTriEvenBySplit(MeshType& m){
|
||||||
bool MakeTriEvenBySplit(Mesh& m){
|
|
||||||
if (m.fn%2==0) return false; // it's already Even
|
if (m.fn%2==0) return false; // it's already Even
|
||||||
assert(0); // todo!
|
assert(0); // todo!
|
||||||
}
|
}
|
||||||
|
|
||||||
// make tri count even by delete...
|
// make tri count even by delete...
|
||||||
template <class Mesh>
|
static bool MakeTriEvenByDelete(MeshType& m)
|
||||||
bool MakeTriEvenByDelete(Mesh& m)
|
|
||||||
{
|
{
|
||||||
|
|
||||||
if (m.fn%2==0) return false; // it's already Even
|
if (m.fn%2==0) return false; // it's already Even
|
||||||
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType Face;
|
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
|
@ -165,7 +173,7 @@ bool MakeTriEvenByDelete(Mesh& m)
|
||||||
for (int h=1; h<3; h++) {
|
for (int h=1; h<3; h++) {
|
||||||
int kh=(k+h)%3;
|
int kh=(k+h)%3;
|
||||||
int j = fi->FFi( kh );
|
int j = fi->FFi( kh );
|
||||||
Face *f = fi->FFp(kh);
|
FaceType *f = fi->FFp(kh);
|
||||||
if (f != &* fi) {
|
if (f != &* fi) {
|
||||||
f->FFp( j ) = f;
|
f->FFp( j ) = f;
|
||||||
f->FFi( j ) = j;
|
f->FFi( j ) = j;
|
||||||
|
@ -174,7 +182,7 @@ bool MakeTriEvenByDelete(Mesh& m)
|
||||||
}
|
}
|
||||||
|
|
||||||
// delete found face
|
// delete found face
|
||||||
Allocator<Mesh>::DeleteFace(m,*fi);
|
Allocator<MeshType>::DeleteFace(m,*fi);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -187,9 +195,7 @@ bool MakeTriEvenByDelete(Mesh& m)
|
||||||
/**
|
/**
|
||||||
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
|
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static void MakeBitTriOnly(MeshType &m){
|
||||||
void MakeBitTriOnly(Mesh &m){
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||||||
fi->ClearAllF();
|
fi->ClearAllF();
|
||||||
}
|
}
|
||||||
|
@ -201,17 +207,13 @@ void MakeBitTriOnly(Mesh &m){
|
||||||
* Updates: per wedge attributes, if any
|
* Updates: per wedge attributes, if any
|
||||||
* Other connectivity structures, and per edge and per wedge flags are ignored
|
* Other connectivity structures, and per edge and per wedge flags are ignored
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static bool MakeBitTriQuadConventional(MeshType &m){
|
||||||
bool MakeBitTriQuadConventional(Mesh &m){
|
|
||||||
assert(0); // todo
|
assert(0); // todo
|
||||||
}
|
}
|
||||||
|
|
||||||
/* returns true if mesh is a "conventional" quad mesh.
|
/* returns true if mesh is a "conventional" quad mesh.
|
||||||
I.e. if it is all quads, with third edge faux fora all triangles*/
|
I.e. if it is all quads, with third edge faux fora all triangles*/
|
||||||
template <class Mesh>
|
static bool IsBitTriQuadConventional(MeshType &m){
|
||||||
bool IsBitTriQuadConventional(Mesh &m){
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
if (fi->IsAnyF())
|
if (fi->IsAnyF())
|
||||||
if ( fi->Flags() & ( FaceType::FAUX012 ) != FaceType::FAUX2 ) {
|
if ( fi->Flags() & ( FaceType::FAUX012 ) != FaceType::FAUX2 ) {
|
||||||
|
@ -226,17 +228,11 @@ bool IsBitTriQuadConventional(Mesh &m){
|
||||||
previous diags
|
previous diags
|
||||||
requires that the mesh is made only of quads and tris.
|
requires that the mesh is made only of quads and tris.
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static void MakePureByRefine(MeshType &m){
|
||||||
void MakeBitQuadOnlyByRefine(Mesh &m){
|
|
||||||
|
|
||||||
// todo: update VF connectivity if present
|
// todo: update VF connectivity if present
|
||||||
|
|
||||||
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::VertexIterator VertexIterator;
|
|
||||||
typedef typename Mesh::FaceType Face;
|
|
||||||
typedef typename Mesh::VertexType Vert;
|
|
||||||
|
|
||||||
int ev = 0; // EXTRA vertices (times 2)
|
int ev = 0; // EXTRA vertices (times 2)
|
||||||
int ef = 0; // EXTRA faces
|
int ef = 0; // EXTRA faces
|
||||||
|
|
||||||
|
@ -269,8 +265,8 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
ev/=2; // I was counting each of them twice
|
ev/=2; // I was counting each of them twice
|
||||||
|
|
||||||
int originalFaceNum = m.fn;
|
int originalFaceNum = m.fn;
|
||||||
FaceIterator nfi = tri::Allocator<Mesh>::AddFaces(m,ef);
|
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,ef);
|
||||||
VertexIterator nvi = tri::Allocator<Mesh>::AddVertices(m,ev);
|
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,ev);
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->ClearV();
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->ClearV();
|
||||||
|
|
||||||
|
@ -291,12 +287,12 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
||||||
{
|
{
|
||||||
assert(nvi!=m.vert.end());
|
assert(nvi!=m.vert.end());
|
||||||
Vert *nv = &*nvi; nvi++;
|
VertexType *nv = &*nvi; nvi++;
|
||||||
*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
|
*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
|
||||||
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
|
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
|
||||||
Face *fa = &*fi;
|
FaceType *fa = &*fi;
|
||||||
Face *fb = &*nfi; nfi++;
|
FaceType *fb = &*nfi; nfi++;
|
||||||
Face *fc = &*nfi; nfi++;
|
FaceType *fc = &*nfi; nfi++;
|
||||||
*fb = *fc = *fa; // lazy: copy everything from the old faces
|
*fb = *fc = *fa; // lazy: copy everything from the old faces
|
||||||
fa->V(0) = nv;
|
fa->V(0) = nv;
|
||||||
fb->V(1) = nv;
|
fb->V(1) = nv;
|
||||||
|
@ -342,9 +338,9 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
// assuming is a part of quad (not a penta, etc), i.e. only one faux
|
// assuming is a part of quad (not a penta, etc), i.e. only one faux
|
||||||
Face *fa = &*fi;
|
FaceType *fa = &*fi;
|
||||||
int ea2 = FauxIndex(fa); // index of the only faux edge
|
int ea2 = BQ::FauxIndex(fa); // index of the only faux edge
|
||||||
Face *fb = fa->FFp(ea2);
|
FaceType *fb = fa->FFp(ea2);
|
||||||
int eb2 = fa->FFi(ea2);
|
int eb2 = fa->FFi(ea2);
|
||||||
assert(fb->FFp(eb2)==fa) ;
|
assert(fb->FFp(eb2)==fa) ;
|
||||||
assert(fa->IsF(ea2));
|
assert(fa->IsF(ea2));
|
||||||
|
@ -357,15 +353,15 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
|
|
||||||
// create new vert in center of faux edge
|
// create new vert in center of faux edge
|
||||||
assert(nvi!=m.vert.end());
|
assert(nvi!=m.vert.end());
|
||||||
Vert *nv = &*nvi; nvi++;
|
VertexType *nv = &*nvi; nvi++;
|
||||||
*nv = * fa->V0( ea2 );
|
*nv = * fa->V0( ea2 );
|
||||||
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
||||||
|
|
||||||
// split faces: add 2 faces (one per side)
|
// split faces: add 2 faces (one per side)
|
||||||
assert(nfi!=m.face.end());
|
assert(nfi!=m.face.end());
|
||||||
Face *fc = &*nfi; nfi++;
|
FaceType *fc = &*nfi; nfi++;
|
||||||
assert(nfi!=m.face.end());
|
assert(nfi!=m.face.end());
|
||||||
Face *fd = &*nfi; nfi++;
|
FaceType *fd = &*nfi; nfi++;
|
||||||
*fc = *fa;
|
*fc = *fa;
|
||||||
*fd = *fb;
|
*fd = *fb;
|
||||||
|
|
||||||
|
@ -443,10 +439,10 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
|
|
||||||
// last pass: add vertex on faux border faces... (if any)
|
// last pass: add vertex on faux border faces... (if any)
|
||||||
if (nsplit>0) {
|
if (nsplit>0) {
|
||||||
FaceIterator nfi = tri::Allocator<Mesh>::AddFaces(m,nsplit);
|
FaceIterator nfi = tri::Allocator<MeshType>::AddFaces(m,nsplit);
|
||||||
VertexIterator nvi = tri::Allocator<Mesh>::AddVertices(m,nsplit);
|
VertexIterator nvi = tri::Allocator<MeshType>::AddVertices(m,nsplit);
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
Face* fa = &*fi;
|
FaceType* fa = &*fi;
|
||||||
int ea2 = -1; // border and faux face (if any)
|
int ea2 = -1; // border and faux face (if any)
|
||||||
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
|
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
|
||||||
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
|
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
|
||||||
|
@ -458,12 +454,12 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
int ea1 = (ea2+2) %3;
|
int ea1 = (ea2+2) %3;
|
||||||
|
|
||||||
// create new vert in center of faux edge
|
// create new vert in center of faux edge
|
||||||
Vert *nv = &*nvi; nvi++;
|
VertexType *nv = &*nvi; nvi++;
|
||||||
*nv = * fa->V0( ea2 );
|
*nv = * fa->V0( ea2 );
|
||||||
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
||||||
|
|
||||||
// split face: add 1 face
|
// split face: add 1 face
|
||||||
Face *fc = &*nfi; nfi++;
|
FaceType *fc = &*nfi; nfi++;
|
||||||
*fc = *fa;
|
*fc = *fa;
|
||||||
|
|
||||||
fa->V(ea2) = fc->V(ea0) = nv ;
|
fa->V(ea2) = fc->V(ea0) = nv ;
|
||||||
|
@ -502,38 +498,33 @@ void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||||
|
|
||||||
// uses Catmull Clark to enforce quad only meshes
|
// uses Catmull Clark to enforce quad only meshes
|
||||||
// each old edge (but not faux) is split in two.
|
// each old edge (but not faux) is split in two.
|
||||||
template <class Mesh>
|
static void MakePureByCatmullClark(MeshType &m){
|
||||||
void MakeBitQuadOnlyByCatmullClark(Mesh &m){
|
MakePureByRefine(m);
|
||||||
MakeBitQuadOnlyByRefine(m);
|
MakePureByRefine(m);
|
||||||
MakeBitQuadOnlyByRefine(m);
|
|
||||||
// et-voilà!!!
|
// et-voilà!!!
|
||||||
}
|
}
|
||||||
|
|
||||||
// Helper funcion:
|
// Helper funcion:
|
||||||
// marks edge distance froma a given face.
|
// marks edge distance froma a given face.
|
||||||
// Stops at maxDist or at the distance when a triangle is found
|
// Stops at maxDist or at the distance when a triangle is found
|
||||||
template <class Mesh>
|
static FaceType * MarkEdgeDistance(MeshType &m, FaceType *f, int maxDist){
|
||||||
typename Mesh::FaceType * MarkEdgeDistance(Mesh &m, typename Mesh::FaceType *f, int maxDist){
|
assert(MeshType::HasPerFaceQuality());
|
||||||
typedef typename Mesh::FaceType Face;
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::VertexIterator VertexIterator;
|
|
||||||
assert(Mesh::HasPerFaceQuality());
|
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!f->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!f->IsD()) {
|
||||||
fi->Q()=maxDist;
|
fi->Q()=maxDist;
|
||||||
}
|
}
|
||||||
|
|
||||||
Face * firstTriangleFound = NULL;
|
FaceType * firstTriangleFound = NULL;
|
||||||
|
|
||||||
f->Q() = 0;
|
f->Q() = 0;
|
||||||
std::vector<Face*> stack;
|
std::vector<FaceType*> stack;
|
||||||
int stackPos=0;
|
int stackPos=0;
|
||||||
stack.push_back(f);
|
stack.push_back(f);
|
||||||
|
|
||||||
while ( stackPos<stack.size() ) {
|
while ( stackPos<stack.size() ) {
|
||||||
Face *f = stack[stackPos++];
|
FaceType *f = stack[stackPos++];
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
Face *fk = f->FFp(k);
|
FaceType *fk = f->FFp(k);
|
||||||
int fq = int(f->Q()) + ( ! f->IsF(k) );
|
int fq = int(f->Q()) + ( ! f->IsF(k) );
|
||||||
if (fk->Q()> fq && fq <= maxDist) {
|
if (fk->Q()> fq && fq <= maxDist) {
|
||||||
if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
|
if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
|
||||||
|
@ -556,13 +547,9 @@ typename Mesh::FaceType * MarkEdgeDistance(Mesh &m, typename Mesh::FaceType *f,
|
||||||
|
|
||||||
maxdist is the maximal edge distance where to look for a companion triangle
|
maxdist is the maximal edge distance where to look for a companion triangle
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static int MakePureByFlipStepByStep(MeshType &m, int maxdist=10000, int restart=false){
|
||||||
int MakeBitQuadOnlyByFlipStepByStep(Mesh &m, int maxdist=10000, int restart=false){
|
|
||||||
typedef typename Mesh::FaceType Face;
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::VertexIterator VertexIterator;
|
|
||||||
|
|
||||||
static Face *ta, *tb; // faces to be matched into a quad
|
static FaceType *ta, *tb; // faces to be matched into a quad
|
||||||
|
|
||||||
static int step = 0; // hack
|
static int step = 0; // hack
|
||||||
|
|
||||||
|
@ -595,18 +582,18 @@ if (step==0) {
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if (tb->FFp(k) == tb) continue; // border
|
if (tb->FFp(k) == tb) continue; // border
|
||||||
|
|
||||||
Face* tbk = tb->FFp(k);
|
FaceType* tbk = tb->FFp(k);
|
||||||
|
|
||||||
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
|
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
|
||||||
|
|
||||||
int back = tb->FFi(k);
|
int back = tb->FFi(k);
|
||||||
int faux = FauxIndex(tbk);
|
int faux = BQ::FauxIndex(tbk);
|
||||||
int other = 3-back-faux;
|
int other = 3-back-faux;
|
||||||
|
|
||||||
int scoreA = int(tbk->FFp(other)->Q());
|
int scoreA = int(tbk->FFp(other)->Q());
|
||||||
|
|
||||||
Face* tbh = tbk->FFp(faux);
|
FaceType* tbh = tbk->FFp(faux);
|
||||||
int fauxh = FauxIndex(tbh);
|
int fauxh = BQ::FauxIndex(tbh);
|
||||||
|
|
||||||
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
|
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
|
||||||
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
|
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
|
||||||
|
@ -623,10 +610,10 @@ if (step==0) {
|
||||||
|
|
||||||
// use that edge to proceed
|
// use that edge to proceed
|
||||||
if (mustDoFlip) {
|
if (mustDoFlip) {
|
||||||
FlipBitQuadDiag( *(tb->FFp(edge)) );
|
BQ::FlipDiag( *(tb->FFp(edge)) );
|
||||||
}
|
}
|
||||||
|
|
||||||
Face* next = tb->FFp(edge)->FFp( FauxIndex(tb->FFp(edge)) );
|
FaceType* next = tb->FFp(edge)->FFp( BQ::FauxIndex(tb->FFp(edge)) );
|
||||||
|
|
||||||
// create new edge
|
// create new edge
|
||||||
next->ClearAllF();
|
next->ClearAllF();
|
||||||
|
@ -660,12 +647,11 @@ break;
|
||||||
- maxdist is the maximal edge distance where to look for a companion triangle
|
- maxdist is the maximal edge distance where to look for a companion triangle
|
||||||
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
|
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static bool MakePureByFlip(MeshType &m, int maxdist=10000)
|
||||||
bool MakeBitQuadOnlyByFlip(Mesh &m, int maxdist=10000)
|
|
||||||
{
|
{
|
||||||
MakeBitQuadOnlyByFlipStepByStep(m, maxdist, true); // restart
|
MakePureByFlipStepByStep(m, maxdist, true); // restart
|
||||||
int res=-1;
|
int res=-1;
|
||||||
while (res==-1) res = MakeBitQuadOnlyByFlipStepByStep(m, maxdist);
|
while (res==-1) res = MakePureByFlipStepByStep(m, maxdist);
|
||||||
return res==0;
|
return res==0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -676,23 +662,22 @@ bool MakeBitQuadOnlyByFlip(Mesh &m, int maxdist=10000)
|
||||||
level = 1: smarter: leaves more triangles, but makes better quality quads
|
level = 1: smarter: leaves more triangles, but makes better quality quads
|
||||||
level = 2: even more so (marginally)
|
level = 2: even more so (marginally)
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static void MakeDominant(MeshType &m, int level){
|
||||||
void MakeBitQuadDominant(Mesh &m, int level){
|
|
||||||
|
|
||||||
assert(Mesh::HasPerFaceQuality());
|
assert(MeshType::HasPerFaceQuality());
|
||||||
assert(Mesh::HasPerFaceFlags());
|
assert(MeshType::HasPerFaceFlags());
|
||||||
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||||||
fi->ClearAllF();
|
fi->ClearAllF();
|
||||||
fi->Q() = 0;
|
fi->Q() = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
MakeQuadDominantPass<Mesh, false> (m);
|
MakeDominantPass<false> (m);
|
||||||
if (level>0) MakeQuadDominantPass<Mesh, true> (m);
|
if (level>0) MakeDominantPass<true> (m);
|
||||||
if (level>1) MakeQuadDominantPass<Mesh, true> (m);
|
if (level>1) MakeDominantPass<true> (m);
|
||||||
if (level>0) MakeQuadDominantPass<Mesh, false> (m);
|
if (level>0) MakeDominantPass<false> (m);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
};
|
||||||
}} // end namespace vcg::tri
|
}} // end namespace vcg::tri
|
||||||
|
|
|
@ -1,11 +1,25 @@
|
||||||
|
|
||||||
namespace vcg{namespace tri{
|
namespace vcg{namespace tri{
|
||||||
|
|
||||||
|
template <class BQ>
|
||||||
|
class BitQuadOptimization{
|
||||||
|
|
||||||
|
typedef typename BQ::MeshType MeshType;
|
||||||
|
|
||||||
|
typedef typename MeshType::ScalarType ScalarType;
|
||||||
|
typedef typename MeshType::CoordType CoordType;
|
||||||
|
typedef typename MeshType::FaceType FaceType;
|
||||||
|
typedef typename MeshType::FaceType* FaceTypeP;
|
||||||
|
typedef typename MeshType::VertexType VertexType;
|
||||||
|
typedef typename MeshType::FaceIterator FaceIterator;
|
||||||
|
typedef typename MeshType::VertexIterator VertexIterator;
|
||||||
|
|
||||||
|
//typedef BitQuad<MeshType> BQ; // static class to make basic quad operatins
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
|
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
|
||||||
template <class Mesh>
|
static void MarkFace(FaceType* f, MeshType &m){
|
||||||
void MarkFace(typename Mesh::FaceType* f, Mesh &m){
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
fi->Q() = 1;
|
fi->Q() = 1;
|
||||||
|
@ -22,11 +36,8 @@ void MarkFace(typename Mesh::FaceType* f, Mesh &m){
|
||||||
}
|
}
|
||||||
|
|
||||||
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
|
// helper function: mark a quadface, setting Q at 0, and neight at .75, 0.5...
|
||||||
template <class Mesh>
|
static void MarkVertex(FaceType* f, int wedge, MeshType &m){
|
||||||
void MarkVertex(typename Mesh::FaceType* f, int wedge, Mesh &m){
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
typedef typename Mesh::VertexType VertexType;
|
|
||||||
VertexType *v = f->V(wedge);
|
VertexType *v = f->V(wedge);
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
|
@ -36,12 +47,8 @@ void MarkVertex(typename Mesh::FaceType* f, int wedge, Mesh &m){
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static bool MarkSmallestEdge(MeshType &m, bool perform)
|
||||||
bool MarkSmallestEdge(Mesh &m, bool perform)
|
|
||||||
{
|
{
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
typedef typename Mesh::ScalarType ScalarType;
|
|
||||||
ScalarType min = std::numeric_limits<ScalarType>::max();
|
ScalarType min = std::numeric_limits<ScalarType>::max();
|
||||||
|
|
||||||
FaceType *fa=NULL; int w=0;
|
FaceType *fa=NULL; int w=0;
|
||||||
|
@ -64,7 +71,7 @@ bool MarkSmallestEdge(Mesh &m, bool perform)
|
||||||
}
|
}
|
||||||
if (fa) {
|
if (fa) {
|
||||||
if (perform) {
|
if (perform) {
|
||||||
return CollapseQuadEdge(*fa,w,m);
|
return BQ::CollapseEdge(*fa,w,m);
|
||||||
} else {
|
} else {
|
||||||
fa->Q()=0.0;
|
fa->Q()=0.0;
|
||||||
fa->FFp(w)->Q()=0.0;
|
fa->FFp(w)->Q()=0.0;
|
||||||
|
@ -75,12 +82,8 @@ bool MarkSmallestEdge(Mesh &m, bool perform)
|
||||||
}
|
}
|
||||||
|
|
||||||
// returns: 0 if fail. 1 if edge. 2 if diag.
|
// returns: 0 if fail. 1 if edge. 2 if diag.
|
||||||
template <class Mesh>
|
static int MarkSmallestEdgeOrDiag(MeshType &m, ScalarType edgeMult, bool perform)
|
||||||
int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool perform)
|
|
||||||
{
|
{
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
typedef typename Mesh::ScalarType ScalarType;
|
|
||||||
ScalarType min = std::numeric_limits<ScalarType>::max();
|
ScalarType min = std::numeric_limits<ScalarType>::max();
|
||||||
|
|
||||||
FaceType *fa=NULL; int w=0; bool counterDiag = false;
|
FaceType *fa=NULL; int w=0; bool counterDiag = false;
|
||||||
|
@ -104,7 +107,7 @@ int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool per
|
||||||
}
|
}
|
||||||
|
|
||||||
if (f->IsF(k)) { // for diag faces, test counterdiag too
|
if (f->IsF(k)) { // for diag faces, test counterdiag too
|
||||||
score = CounterDiag(f).Norm();
|
score = BQ::CounterDiag(f).Norm();
|
||||||
if (score<min) {
|
if (score<min) {
|
||||||
min=score;
|
min=score;
|
||||||
fa = f;
|
fa = f;
|
||||||
|
@ -120,12 +123,12 @@ int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool per
|
||||||
if (perform) {
|
if (perform) {
|
||||||
if (fa->IsF(w)) {
|
if (fa->IsF(w)) {
|
||||||
if (counterDiag) {
|
if (counterDiag) {
|
||||||
CollapseQuadCounterDiag(*fa, PosOnDiag(*fa,true), m ); return 2;
|
BQ::CollapseCounterDiag(*fa, BQ::PosOnDiag(*fa,true), m ); return 2;
|
||||||
} else {
|
} else {
|
||||||
CollapseQuadDiag(*fa, PosOnDiag(*fa,false), m ); return 2;
|
BQ::CollapseDiag(*fa, BQ::PosOnDiag(*fa,false), m ); return 2;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (CollapseQuadEdge(*fa,w,m)) return 1;
|
if (BQ::CollapseEdge(*fa,w,m)) return 1;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
fa->Q()=0.0;
|
fa->Q()=0.0;
|
||||||
|
@ -137,12 +140,8 @@ int MarkSmallestEdgeOrDiag(Mesh &m, typename Mesh::ScalarType edgeMult, bool per
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template <class Mesh>
|
static void MarkSmallestDiag(MeshType &m)
|
||||||
void MarkSmallestDiag(Mesh &m)
|
|
||||||
{
|
{
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
typedef typename Mesh::ScalarType ScalarType;
|
|
||||||
ScalarType min = std::numeric_limits<ScalarType>::max();
|
ScalarType min = std::numeric_limits<ScalarType>::max();
|
||||||
|
|
||||||
FaceType *fa=NULL;
|
FaceType *fa=NULL;
|
||||||
|
@ -151,13 +150,13 @@ void MarkSmallestDiag(Mesh &m)
|
||||||
|
|
||||||
ScalarType score;
|
ScalarType score;
|
||||||
|
|
||||||
score = Diag(f).Norm();
|
score = BQ::Diag(f).Norm();
|
||||||
if (score<min) {
|
if (score<min) {
|
||||||
min=score;
|
min=score;
|
||||||
fa = f;
|
fa = f;
|
||||||
}
|
}
|
||||||
|
|
||||||
score = CounterDiag(f).Norm();
|
score = BQ::CounterDiag(f).Norm();
|
||||||
if (score<min) {
|
if (score<min) {
|
||||||
min=score;
|
min=score;
|
||||||
fa = f;
|
fa = f;
|
||||||
|
@ -166,16 +165,12 @@ void MarkSmallestDiag(Mesh &m)
|
||||||
}
|
}
|
||||||
if (fa) {
|
if (fa) {
|
||||||
fa->Q()=0.0;
|
fa->Q()=0.0;
|
||||||
fa->FFp(FauxIndex(fa))->Q()=0.0;
|
fa->FFp(BQ::FauxIndex(fa))->Q()=0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static bool IdentifyAndCollapseSmallestDiag(MeshType &m){
|
||||||
bool IdentifyAndCollapseSmallestDiag(Mesh &m){
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
typedef typename Mesh::ScalarType ScalarType;
|
|
||||||
ScalarType min = std::numeric_limits<ScalarType>::max();
|
ScalarType min = std::numeric_limits<ScalarType>::max();
|
||||||
|
|
||||||
FaceType *fa=NULL; bool flip;
|
FaceType *fa=NULL; bool flip;
|
||||||
|
@ -184,14 +179,14 @@ bool IdentifyAndCollapseSmallestDiag(Mesh &m){
|
||||||
|
|
||||||
ScalarType score;
|
ScalarType score;
|
||||||
|
|
||||||
score = Diag(f).Norm();
|
score = BQ::Diag(f).Norm();
|
||||||
if (score<min) {
|
if (score<min) {
|
||||||
min=score;
|
min=score;
|
||||||
fa = f;
|
fa = f;
|
||||||
flip = false;
|
flip = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
score = CounterDiag(f).Norm();
|
score = BQ::CounterDiag(f).Norm();
|
||||||
if (score<min) {
|
if (score<min) {
|
||||||
min=score;
|
min=score;
|
||||||
fa = f;
|
fa = f;
|
||||||
|
@ -201,22 +196,22 @@ bool IdentifyAndCollapseSmallestDiag(Mesh &m){
|
||||||
}
|
}
|
||||||
if (!fa) return false;
|
if (!fa) return false;
|
||||||
|
|
||||||
if (TestAndRemoveDoublet(*fa,0,m)) { return true; }
|
if (BQ::TestAndRemoveDoublet(*fa,0,m)) { return true; }
|
||||||
if (TestAndRemoveDoublet(*fa,1,m)) { return true; }
|
if (BQ::TestAndRemoveDoublet(*fa,1,m)) { return true; }
|
||||||
if (TestAndRemoveDoublet(*fa,2,m)) { return true; }
|
if (BQ::TestAndRemoveDoublet(*fa,2,m)) { return true; }
|
||||||
int k = FauxIndex(fa);
|
int k = BQ::FauxIndex(fa);
|
||||||
if (TestAndRemoveDoublet( *fa->FFp(k),(fa->FFi(k)+2)%3, m )) return true;
|
if (BQ::TestAndRemoveDoublet( *fa->FFp(k),(fa->FFi(k)+2)%3, m )) return true;
|
||||||
|
|
||||||
if (flip) {
|
if (flip) {
|
||||||
if (!CheckFlipBitQuadDiag(*fa) ) {
|
if (!BQ::CheckFlipDiag(*fa) ) {
|
||||||
// I can't collapse (why?)
|
// I can't collapse (why?)
|
||||||
MarkFace(fa,m);
|
MarkFace(fa,m);
|
||||||
return false;
|
return false;
|
||||||
} else
|
} else
|
||||||
CollapseQuadCounterDiag(*fa, PosOnDiag(*fa,true), m );
|
BQ::CollapseCounterDiag(*fa, BQ::PosOnDiag(*fa,true), m );
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
CollapseQuadDiag(*fa, PosOnDiag(*fa,false), m );
|
BQ::CollapseDiag(*fa, BQ::PosOnDiag(*fa,false), m );
|
||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
@ -228,18 +223,15 @@ seeks and removes all doublets (a pair of quads sharing two consecutive edges)
|
||||||
by merging them into a single quad (thus removing one vertex and two tri faces)-
|
by merging them into a single quad (thus removing one vertex and two tri faces)-
|
||||||
Returns number of removed Doublets
|
Returns number of removed Doublets
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static int RemoveDoublets(MeshType &m)
|
||||||
int BitQuadRemoveDoublets(Mesh &m)
|
|
||||||
{
|
{
|
||||||
int res=0;
|
int res=0;
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
fi->Q()=1;
|
fi->Q()=1;
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if ( IsDoublet(*fi,k) ){
|
if ( BQ::IsDoublet(*fi,k) ){
|
||||||
res++;
|
res++;
|
||||||
RemoveDoublet(*fi,k,m);
|
BQ::RemoveDoublet(*fi,k,m);
|
||||||
if (fi->IsD()) break; // break wedge circle, if face disappeard
|
if (fi->IsD()) break; // break wedge circle, if face disappeard
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -251,14 +243,10 @@ int BitQuadRemoveDoublets(Mesh &m)
|
||||||
marks (Quality=0) and approx. counts profitable vertex rotations
|
marks (Quality=0) and approx. counts profitable vertex rotations
|
||||||
(vertex rotations which make edge shorter
|
(vertex rotations which make edge shorter
|
||||||
*/
|
*/
|
||||||
template <class Mesh, bool perform>
|
template <bool perform>
|
||||||
int BitQuadMarkVertexRotations(Mesh &m)
|
static int MarkVertexRotations(MeshType &m)
|
||||||
{
|
{
|
||||||
int res=0;
|
int res=0;
|
||||||
typedef typename Mesh::VertexIterator VertexIterator;
|
|
||||||
typedef typename Mesh::VertexType VertexType;
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) vi->ClearV();
|
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) vi->ClearV();
|
||||||
if (!perform)
|
if (!perform)
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1.0;
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1.0;
|
||||||
|
@ -267,14 +255,14 @@ int BitQuadMarkVertexRotations(Mesh &m)
|
||||||
|
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if (fi->V(k)->IsV()) continue;
|
if (fi->V(k)->IsV()) continue;
|
||||||
if (TestBitQuadVertexRotation(*fi,k)) {
|
if (BQ::TestVertexRotation(*fi,k)) {
|
||||||
res++;
|
res++;
|
||||||
fi->V(k)->SetV();
|
fi->V(k)->SetV();
|
||||||
if (!perform) {
|
if (!perform) {
|
||||||
res++; MarkVertex(&*fi, k, m); //fi->Q()=0;
|
res++; MarkVertex(&*fi, k, m); //fi->Q()=0;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
if (RotateBitQuadVertex(*fi, k)) res++; //fi->Q()=0;
|
if (BQ::RotateVertex(*fi, k)) res++; //fi->Q()=0;
|
||||||
//if (res>1) return res; // uncomment for only one rotation
|
//if (res>1) return res; // uncomment for only one rotation
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -285,12 +273,10 @@ int BitQuadMarkVertexRotations(Mesh &m)
|
||||||
|
|
||||||
// mark (and count) all edges that are worth rotating
|
// mark (and count) all edges that are worth rotating
|
||||||
// if perform == true, actually rotate them
|
// if perform == true, actually rotate them
|
||||||
template <class Mesh, bool perform>
|
template <bool perform>
|
||||||
int BitQuadMarkEdgeRotations(Mesh &m)
|
static int MarkEdgeRotations(MeshType &m)
|
||||||
{
|
{
|
||||||
int count = 0;
|
int count = 0;
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1;
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->Q()=1;
|
||||||
|
|
||||||
|
@ -299,10 +285,10 @@ int BitQuadMarkEdgeRotations(Mesh &m)
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if (fi->IsF(k)) continue;
|
if (fi->IsF(k)) continue;
|
||||||
if (fi->FFp(k)<= &*fi) continue; // only once per real (non faux) edge, and only for non border ones
|
if (fi->FFp(k)<= &*fi) continue; // only once per real (non faux) edge, and only for non border ones
|
||||||
int best = TestBitQuadEdgeRotation(*fi, k);
|
int best = BQ::TestEdgeRotation(*fi, k);
|
||||||
if (perform) {
|
if (perform) {
|
||||||
if (best==+1) if (RotateBitQuadEdge<FaceType, true>(*fi, k)) count++;
|
if (best==+1) if (BQ::template RotateEdge< true>(*fi, k)) count++;
|
||||||
if (best==-1) if (RotateBitQuadEdge<FaceType,false>(*fi, k)) count++;
|
if (best==-1) if (BQ::template RotateEdge<false>(*fi, k)) count++;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
if (best!=0) { fi->Q()=0; fi->FFp(k)->Q()=0; count++; }
|
if (best!=0) { fi->Q()=0; fi->FFp(k)->Q()=0; count++; }
|
||||||
|
@ -316,16 +302,13 @@ int BitQuadMarkEdgeRotations(Mesh &m)
|
||||||
/*
|
/*
|
||||||
marks (Quality=0) and approx. counts doublets (a pair of quads sharing two consecutive edges)
|
marks (Quality=0) and approx. counts doublets (a pair of quads sharing two consecutive edges)
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static int MarkDoublets(MeshType &m)
|
||||||
int BitQuadMarkDoublets(Mesh &m)
|
|
||||||
{
|
{
|
||||||
int res=0;
|
int res=0;
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
fi->Q()=1;
|
fi->Q()=1;
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if ( IsDoublet(*fi,k) ){
|
if ( BQ::IsDoublet(*fi,k) ){
|
||||||
res++;
|
res++;
|
||||||
if (fi->IsF((k+1)%3)) res++; // counts for a quad
|
if (fi->IsF((k+1)%3)) res++; // counts for a quad
|
||||||
fi->Q()=0;
|
fi->Q()=0;
|
||||||
|
@ -339,16 +322,13 @@ int BitQuadMarkDoublets(Mesh &m)
|
||||||
/*
|
/*
|
||||||
marks (Quality=0) and counts singlets (vertex B in an A-B-A-C quad)
|
marks (Quality=0) and counts singlets (vertex B in an A-B-A-C quad)
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static int MarkSinglets(MeshType &m)
|
||||||
int BitQuadMarkSinglets(Mesh &m)
|
|
||||||
{
|
{
|
||||||
int res=0;
|
int res=0;
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
fi->Q()=1;
|
fi->Q()=1;
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if ( IsSinglet(*fi,k) ){
|
if ( BQ::IsSinglet(*fi,k) ){
|
||||||
res++;
|
res++;
|
||||||
fi->Q()=0;
|
fi->Q()=0;
|
||||||
}
|
}
|
||||||
|
@ -361,17 +341,14 @@ int BitQuadMarkSinglets(Mesh &m)
|
||||||
/*
|
/*
|
||||||
deletes singlets, reutrns number of
|
deletes singlets, reutrns number of
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static int RemoveSinglets(MeshType &m)
|
||||||
int BitQuadRemoveSinglets(Mesh &m)
|
|
||||||
{
|
{
|
||||||
int res=0;
|
int res=0;
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::FaceType FaceType;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
for (int k=0; k<3; k++) {
|
for (int k=0; k<3; k++) {
|
||||||
if ( IsSinglet(*fi,k) ){
|
if ( BQ::IsSinglet(*fi,k) ){
|
||||||
res++;
|
res++;
|
||||||
RemoveSinglet(*fi,k,m);
|
BQ::RemoveSinglet(*fi,k,m);
|
||||||
return res;
|
return res;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -383,19 +360,17 @@ int BitQuadRemoveSinglets(Mesh &m)
|
||||||
|
|
||||||
/* returns average quad quality, and assigns it to triangle quality
|
/* returns average quad quality, and assigns it to triangle quality
|
||||||
*/
|
*/
|
||||||
template <class Mesh>
|
static ScalarType MeasureQuality(MeshType &m)
|
||||||
typename Mesh::ScalarType MeasureBitQuadQuality(Mesh &m)
|
|
||||||
{
|
{
|
||||||
assert(Mesh::HasPerFaceFlags());
|
assert(MeshType::HasPerFaceFlags());
|
||||||
typename Mesh::ScalarType res = 0;
|
ScalarType res = 0;
|
||||||
int div = 0;
|
int div = 0;
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||||
if (fi->IsAnyF()) {
|
if (fi->IsAnyF()) {
|
||||||
|
|
||||||
typename Mesh::ScalarType q = quadQuality( &*fi, FauxIndex(&*fi) );
|
ScalarType q = BQ::quadQuality( &*fi, BQ::FauxIndex(&*fi) );
|
||||||
|
|
||||||
if (Mesh::HasPerFaceQuality()) fi->Q() = q;
|
if (MeshType::HasPerFaceQuality()) fi->Q() = q;
|
||||||
res += q;
|
res += q;
|
||||||
div++;
|
div++;
|
||||||
}
|
}
|
||||||
|
@ -403,4 +378,5 @@ typename Mesh::ScalarType MeasureBitQuadQuality(Mesh &m)
|
||||||
if (!div) return 0; else return res / div;
|
if (!div) return 0; else return res / div;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
};
|
||||||
}} // end namespace vcg::tri
|
}} // end namespace vcg::tri
|
||||||
|
|
|
@ -10,23 +10,23 @@
|
||||||
|
|
||||||
[ basic operations: ]
|
[ basic operations: ]
|
||||||
|
|
||||||
bool IsDoublet(const Face& f, int wedge)
|
bool IsDoublet(const FaceType& f, int wedge)
|
||||||
void RemoveDoublet(Face &f, int wedge, Mesh& m)
|
void RemoveDoublet(FaceType &f, int wedge, MeshType& m)
|
||||||
- identifies and removed "Doublets" (pair of quads sharing two consecutive edges)
|
- identifies and removed "Doublets" (pair of quads sharing two consecutive edges)
|
||||||
|
|
||||||
bool IsSinglet(const Face& f, int wedge)
|
bool IsSinglet(const FaceType& f, int wedge)
|
||||||
void RemoveSinglet(Face &f, int wedge, Mesh& m)
|
void RemoveSinglet(FaceType &f, int wedge, MeshType& m)
|
||||||
|
|
||||||
void FlipBitQuadDiag(Face &f)
|
void FlipDiag(FaceType &f)
|
||||||
- rotates the faux edge of a quad (quad only change internally)
|
- rotates the faux edge of a quad (quad only change internally)
|
||||||
|
|
||||||
bool RotateBitQuadEdge(Face& f, int w0a);
|
bool RotateEdge(FaceType& f, int w0a);
|
||||||
- rotate a quad edge (clockwise or counterclockwise, specified via template)
|
- rotate a quad edge (clockwise or counterclockwise, specified via template)
|
||||||
|
|
||||||
bool RotateBitQuadVertex(FaceType &f, int w0)
|
bool RotateVertex(FaceType &f, int w0)
|
||||||
- rotate around a quad vertex ("wind-mill" operation)
|
- rotate around a quad vertex ("wind-mill" operation)
|
||||||
|
|
||||||
void CollapseQuadDiag(Face &f, ... p , Mesh& m)
|
void CollapseDiag(FaceType &f, ... p , MeshType& m)
|
||||||
- collapses a quad on its diagonal.
|
- collapses a quad on its diagonal.
|
||||||
- p identifies the pos of collapsed point
|
- p identifies the pos of collapsed point
|
||||||
(as either the parametric pos on the diagonal, or a fresh coordtype)
|
(as either the parametric pos on the diagonal, or a fresh coordtype)
|
||||||
|
@ -39,10 +39,10 @@
|
||||||
- (should be made into a template parameter for methods using it)
|
- (should be made into a template parameter for methods using it)
|
||||||
- currently measures how squared each angle is
|
- currently measures how squared each angle is
|
||||||
|
|
||||||
int FauxIndex(const Face* f);
|
int FauxIndex(const FaceType* f);
|
||||||
- returns index of the only faux edge of a quad (otherwise, assert)
|
- returns index of the only faux edge of a quad (otherwise, assert)
|
||||||
|
|
||||||
int CountBitPolygonInternalValency(const Face& f, int wedge)
|
int CountBitPolygonInternalValency(const FaceType& f, int wedge)
|
||||||
- returns valency of vertex in terms of polygons (quads, tris...)
|
- returns valency of vertex in terms of polygons (quads, tris...)
|
||||||
|
|
||||||
|
|
||||||
|
@ -55,134 +55,59 @@
|
||||||
|
|
||||||
namespace vcg{namespace tri{
|
namespace vcg{namespace tri{
|
||||||
|
|
||||||
// helper function:
|
/* simple geometric-interpolation mono-function class used
|
||||||
// cos of angle abc. This should probably go elsewhere
|
as a default template parameter to BitQuad class */
|
||||||
template<class CoordType>
|
template <class VertexType>
|
||||||
static typename CoordType::ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
|
class GeometricInterpolator{
|
||||||
{
|
public:
|
||||||
CoordType
|
typedef typename VertexType::ScalarType ScalarType;
|
||||||
e0 = b - a,
|
static void Apply( const VertexType &a, const VertexType &b, ScalarType t, VertexType &res){
|
||||||
e1 = b - c;
|
assert (&a != &b);
|
||||||
typename CoordType::ScalarType d = (e0.Norm()*e1.Norm());
|
res.P() = a.P()*(1-t) + b.P()*(t);
|
||||||
if (d==0) return 0.0;
|
|
||||||
return (e0*e1)/d;
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function:
|
|
||||||
// returns quality of a quad formed by points a,b,c,d
|
|
||||||
// quality is computed as "how squared angles are"
|
|
||||||
template <class Coord>
|
|
||||||
inline static typename Coord::ScalarType quadQuality(const Coord &a, const Coord &b, const Coord &c, const Coord &d){
|
|
||||||
typename Coord::ScalarType score = 0;
|
|
||||||
score += 1 - math::Abs( Cos( a,b,c) );
|
|
||||||
score += 1 - math::Abs( Cos( b,c,d) );
|
|
||||||
score += 1 - math::Abs( Cos( c,d,a) );
|
|
||||||
score += 1 - math::Abs( Cos( d,a,b) );
|
|
||||||
return score / 4;
|
|
||||||
}
|
|
||||||
|
|
||||||
// helper function:
|
|
||||||
// returns quality of a given (potential) quad
|
|
||||||
template <class Face>
|
|
||||||
static typename Face::ScalarType quadQuality(Face *f, int edge){
|
|
||||||
|
|
||||||
typedef typename Face::CoordType CoordType;
|
|
||||||
|
|
||||||
CoordType
|
|
||||||
a = f->V0(edge)->P(),
|
|
||||||
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
|
|
||||||
c = f->V1(edge)->P(),
|
|
||||||
d = f->V2(edge)->P();
|
|
||||||
|
|
||||||
return quadQuality(a,b,c,d);
|
|
||||||
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
helper function:
|
|
||||||
given a quad edge, retruns:
|
|
||||||
0 if that edge should not be rotated
|
|
||||||
+1 if it should be rotated clockwise (+1)
|
|
||||||
-1 if it should be rotated counterclockwise (-1)
|
|
||||||
Currently an edge is rotated iff it is shortened by that rotations
|
|
||||||
(shortcut criterion)
|
|
||||||
*/
|
|
||||||
template <class Face>
|
|
||||||
int TestBitQuadEdgeRotation(const Face &f, int w0)
|
|
||||||
{
|
|
||||||
const Face *fa = &f;
|
|
||||||
assert(! fa->IsF(w0) );
|
|
||||||
typename Face::ScalarType q0,q1,q2;
|
|
||||||
typename Face::CoordType v0,v1,v2,v3,v4,v5;
|
|
||||||
int w1 = (w0+1)%3;
|
|
||||||
int w2 = (w0+2)%3;
|
|
||||||
|
|
||||||
v0 = fa->P(w0);
|
|
||||||
v3 = fa->P(w1);
|
|
||||||
|
|
||||||
if (fa->IsF(w2) ) {
|
|
||||||
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
|
|
||||||
v2 = fa->P(w2);
|
|
||||||
} else {
|
|
||||||
v1 = fa->P(w2);
|
|
||||||
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
|
|
||||||
}
|
}
|
||||||
|
};
|
||||||
|
|
||||||
const Face *fb = fa->cFFp(w0);
|
template <
|
||||||
w0 = fa->cFFi(w0);
|
// first template parameter: the tri mesh (with face-edges flagged)
|
||||||
|
class _MeshType,
|
||||||
|
// second template parameter: used to define interpolations between points
|
||||||
|
class Interpolator = GeometricInterpolator<typename _MeshType::VertexType>
|
||||||
|
>
|
||||||
|
class BitQuad{
|
||||||
|
public:
|
||||||
|
|
||||||
w1 = (w0+1)%3;
|
typedef _MeshType MeshType;
|
||||||
w2 = (w0+2)%3;
|
typedef typename MeshType::ScalarType ScalarType;
|
||||||
if (fb->IsF(w2) ) {
|
typedef typename MeshType::CoordType CoordType;
|
||||||
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
|
typedef typename MeshType::FaceType FaceType;
|
||||||
v5 = fb->P(w2);
|
typedef typename MeshType::FaceType* FaceTypeP;
|
||||||
} else {
|
typedef typename MeshType::VertexType VertexType;
|
||||||
v4 = fb->P(w2);
|
typedef typename MeshType::FaceIterator FaceIterator;
|
||||||
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
|
typedef typename MeshType::VertexIterator VertexIterator;
|
||||||
}
|
|
||||||
|
|
||||||
/*
|
|
||||||
// max overall quality criterion:
|
|
||||||
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
|
|
||||||
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
|
|
||||||
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
|
|
||||||
|
|
||||||
if (q0>=q1 && q0>=q2) return 0;
|
|
||||||
if (q1>=q2) return 1;*/
|
|
||||||
|
|
||||||
// min distance (shortcut criterion)
|
|
||||||
q0 = (v0 - v3).SquaredNorm();
|
|
||||||
q1 = (v1 - v4).SquaredNorm();
|
|
||||||
q2 = (v5 - v2).SquaredNorm();
|
|
||||||
if (q0<=q1 && q0<=q2) return 0;
|
|
||||||
if (q1<=q2) return 1;
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
|
template <bool verse>
|
||||||
template <class Face, bool verse>
|
static bool RotateEdge(FaceType& f, int w0a){
|
||||||
bool RotateBitQuadEdge(Face& f, int w0a){
|
FaceType *fa = &f;
|
||||||
Face *fa = &f;
|
|
||||||
assert(! fa->IsF(w0a) );
|
assert(! fa->IsF(w0a) );
|
||||||
|
|
||||||
typename Face::VertexType *v0, *v1;
|
VertexType *v0, *v1;
|
||||||
v0= fa->V0(w0a);
|
v0= fa->V0(w0a);
|
||||||
v1= fa->V1(w0a);
|
v1= fa->V1(w0a);
|
||||||
|
|
||||||
int w1a = (w0a+1)%3;
|
int w1a = (w0a+1)%3;
|
||||||
int w2a = (w0a+2)%3;
|
int w2a = (w0a+2)%3;
|
||||||
|
|
||||||
Face *fb = fa->FFp(w0a);
|
FaceType *fb = fa->FFp(w0a);
|
||||||
int w0b = fa->FFi(w0a);
|
int w0b = fa->FFi(w0a);
|
||||||
int w1b = (w0b+1)%3;
|
int w1b = (w0b+1)%3;
|
||||||
int w2b = (w0b+2)%3;
|
int w2b = (w0b+2)%3;
|
||||||
|
|
||||||
if (fa->IsF(w2a) == verse) {
|
if (fa->IsF(w2a) == verse) {
|
||||||
if (!CheckFlipBitQuadDiag(*fa)) return false;
|
if (!CheckFlipDiag(*fa)) return false;
|
||||||
FlipBitQuadDiag(*fa);
|
FlipDiag(*fa);
|
||||||
// recover edge index, so that (f, w0a) identifies the same edge as before
|
// recover edge index, so that (f, w0a) identifies the same edge as before
|
||||||
Face *fc = fa->FFp(FauxIndex(fa));
|
FaceType *fc = fa->FFp(FauxIndex(fa));
|
||||||
for (int i=0; i<3; i++){
|
for (int i=0; i<3; i++){
|
||||||
if ( v0==fa->V0(i) && v1==fa->V1(i) ) w0a = i;
|
if ( v0==fa->V0(i) && v1==fa->V1(i) ) w0a = i;
|
||||||
if ( v0==fc->V0(i) && v1==fc->V1(i) ) { fa = fc; w0a = i; }
|
if ( v0==fc->V0(i) && v1==fc->V1(i) ) { fa = fc; w0a = i; }
|
||||||
|
@ -190,20 +115,19 @@ bool RotateBitQuadEdge(Face& f, int w0a){
|
||||||
}
|
}
|
||||||
|
|
||||||
if (fb->IsF(w2b) == verse) {
|
if (fb->IsF(w2b) == verse) {
|
||||||
if (!CheckFlipBitQuadDiag(*fb)) return false;
|
if (!CheckFlipDiag(*fb)) return false;
|
||||||
FlipBitQuadDiag(*fb);
|
FlipDiag(*fb);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!CheckFlipEdge(*fa,w0a)) return false;
|
if (!CheckFlipEdge(*fa,w0a)) return false;
|
||||||
FlipBitQuadEdge(*fa,w0a);
|
FlipEdge(*fa,w0a);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
/* small helper function which returns the index of the only
|
/* small helper function which returns the index of the only
|
||||||
faux index, assuming there is exactly one (asserts out otherwise)
|
faux index, assuming there is exactly one (asserts out otherwise)
|
||||||
*/
|
*/
|
||||||
template <class Face>
|
static int FauxIndex(const FaceType* f){
|
||||||
int FauxIndex(const Face* f){
|
|
||||||
if (f->IsF(0)) return 0;
|
if (f->IsF(0)) return 0;
|
||||||
if (f->IsF(1)) return 1;
|
if (f->IsF(1)) return 1;
|
||||||
assert(f->IsF(2));
|
assert(f->IsF(2));
|
||||||
|
@ -211,11 +135,10 @@ int FauxIndex(const Face* f){
|
||||||
}
|
}
|
||||||
|
|
||||||
// rotates the diagonal of a quad
|
// rotates the diagonal of a quad
|
||||||
template <class Face>
|
static void FlipDiag(FaceType &f){
|
||||||
void FlipBitQuadDiag(Face &f){
|
|
||||||
int faux = FauxIndex(&f);
|
int faux = FauxIndex(&f);
|
||||||
Face* fa = &f;
|
FaceType* fa = &f;
|
||||||
Face* fb = f.FFp(faux);
|
FaceType* fb = f.FFp(faux);
|
||||||
vcg::face::FlipEdge(f, faux);
|
vcg::face::FlipEdge(f, faux);
|
||||||
// ripristinate faux flags
|
// ripristinate faux flags
|
||||||
fb->ClearAllF();
|
fb->ClearAllF();
|
||||||
|
@ -230,11 +153,9 @@ void FlipBitQuadDiag(Face &f){
|
||||||
// given a vertex (i.e. a face and a wedge),
|
// given a vertex (i.e. a face and a wedge),
|
||||||
// this function tells us how the average edge lenght around a vertex would change
|
// this function tells us how the average edge lenght around a vertex would change
|
||||||
// if that vertex is rotated
|
// if that vertex is rotated
|
||||||
template <class Face>
|
static ScalarType AvgEdgeLenghtVariationIfVertexRotated(const FaceType &f, int w0)
|
||||||
typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Face &f, int w0)
|
|
||||||
{
|
{
|
||||||
assert(!f.IsD());
|
assert(!f.IsD());
|
||||||
typedef typename Face::ScalarType ScalarType;
|
|
||||||
|
|
||||||
ScalarType
|
ScalarType
|
||||||
before=0, // sum of quad edges (originating from v)
|
before=0, // sum of quad edges (originating from v)
|
||||||
|
@ -242,7 +163,7 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
|
||||||
int guard = 0;
|
int guard = 0;
|
||||||
|
|
||||||
// rotate arond vertex
|
// rotate arond vertex
|
||||||
const Face* pf = &f;
|
const FaceType* pf = &f;
|
||||||
int pi = w0;
|
int pi = w0;
|
||||||
int n = 0; // vertex valency
|
int n = 0; // vertex valency
|
||||||
int na = 0;
|
int na = 0;
|
||||||
|
@ -252,11 +173,11 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
|
||||||
else { before+= triEdge; n++; }
|
else { before+= triEdge; n++; }
|
||||||
if ( pf->IsF((pi+1)%3)) { after += CounterDiag( pf ).Norm(); na++; }
|
if ( pf->IsF((pi+1)%3)) { after += CounterDiag( pf ).Norm(); na++; }
|
||||||
|
|
||||||
const Face *t = pf;
|
const FaceType *t = pf;
|
||||||
t = pf->FFp( pi );
|
t = pf->FFp( pi );
|
||||||
if (pf == t ) return std::numeric_limits<ScalarType>::max(); // it's a mesh border! flee!
|
if (pf == t ) return std::numeric_limits<ScalarType>::max(); // it's a mesh border! flee!
|
||||||
pi = pf->cFFi( pi );
|
pi = pf->cFFi( pi );
|
||||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
||||||
pf = t;
|
pf = t;
|
||||||
assert(guard++<100);
|
assert(guard++<100);
|
||||||
} while (pf != &f);
|
} while (pf != &f);
|
||||||
|
@ -265,17 +186,17 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
const Face* pf = &f;
|
const FaceType* pf = &f;
|
||||||
int pi = wedge;
|
int pi = wedge;
|
||||||
int res = 0, guard=0;
|
int res = 0, guard=0;
|
||||||
do {
|
do {
|
||||||
if (!pf->IsAnyF()) return false; // there's a triangle!
|
if (!pf->IsAnyF()) return false; // there's a triangle!
|
||||||
if (!pf->IsF(pi)) res++;
|
if (!pf->IsF(pi)) res++;
|
||||||
const Face *t = pf;
|
const FaceType *t = pf;
|
||||||
t = pf->FFp( pi );
|
t = pf->FFp( pi );
|
||||||
if (pf == t ) return false;
|
if (pf == t ) return false;
|
||||||
pi = pf->cFFi( pi );
|
pi = pf->cFFi( pi );
|
||||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
||||||
pf = t;
|
pf = t;
|
||||||
assert(guard++<100);
|
assert(guard++<100);
|
||||||
} while (pf != &f);
|
} while (pf != &f);
|
||||||
|
@ -284,19 +205,16 @@ typename Face::ScalarType AvgBitQuadEdgeLenghtVariationIfVertexRotated(const Fac
|
||||||
// given a vertex (i.e. a face and a wedge),
|
// given a vertex (i.e. a face and a wedge),
|
||||||
// this function tells us if it should be rotated or not
|
// this function tells us if it should be rotated or not
|
||||||
// (currently, we should iff it is shortened)
|
// (currently, we should iff it is shortened)
|
||||||
template <class Face>
|
static bool TestVertexRotation(const FaceType &f, int w0)
|
||||||
bool TestBitQuadVertexRotation(const Face &f, int w0)
|
|
||||||
{
|
{
|
||||||
assert(!f.IsD());
|
assert(!f.IsD());
|
||||||
// rotate quad IFF this way edges become shorter:
|
// rotate quad IFF this way edges become shorter:
|
||||||
return AvgBitQuadEdgeLenghtVariationIfVertexRotated(f,w0)<0;
|
return AvgEdgeLenghtVariationIfVertexRotated(f,w0)<0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template <class FaceType>
|
static bool RotateVertex(FaceType &f, int w0)
|
||||||
bool RotateBitQuadVertex(FaceType &f, int w0)
|
|
||||||
{
|
{
|
||||||
typedef typename FaceType::ScalarType ScalarType;
|
|
||||||
|
|
||||||
int guard = 0;
|
int guard = 0;
|
||||||
|
|
||||||
|
@ -330,8 +248,8 @@ bool RotateBitQuadVertex(FaceType &f, int w0)
|
||||||
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
|
int tmp = (pf->FFi(pi)+1)%3; pf = pf->FFp(pi); pi = tmp; // flipF
|
||||||
|
|
||||||
if (mustFlip) {
|
if (mustFlip) {
|
||||||
if (!CheckFlipBitQuadDiag(*lastF)) return false; // cannot flip??
|
if (!CheckFlipDiag(*lastF)) return false; // cannot flip??
|
||||||
FlipBitQuadDiag(*lastF);
|
FlipDiag(*lastF);
|
||||||
}
|
}
|
||||||
|
|
||||||
} while (pf != stopA && pf!= stopB);
|
} while (pf != stopA && pf!= stopB);
|
||||||
|
@ -354,16 +272,15 @@ bool RotateBitQuadVertex(FaceType &f, int w0)
|
||||||
|
|
||||||
|
|
||||||
// flips the faux edge of a quad
|
// flips the faux edge of a quad
|
||||||
template <class Face>
|
static void FlipEdge(FaceType &f, int k){
|
||||||
void FlipBitQuadEdge(Face &f, int k){
|
|
||||||
assert(!f.IsF(k));
|
assert(!f.IsF(k));
|
||||||
Face* fa = &f;
|
FaceType* fa = &f;
|
||||||
Face* fb = f.FFp(k);
|
FaceType* fb = f.FFp(k);
|
||||||
assert(fa!=fb); // else, rotating a border edge
|
assert(fa!=fb); // else, rotating a border edge
|
||||||
|
|
||||||
// backup prev other-quads-halves
|
// backup prev other-quads-halves
|
||||||
Face* fa2 = fa->FFp( FauxIndex(fa) );
|
FaceType* fa2 = fa->FFp( FauxIndex(fa) );
|
||||||
Face* fb2 = fb->FFp( FauxIndex(fb) );
|
FaceType* fb2 = fb->FFp( FauxIndex(fb) );
|
||||||
|
|
||||||
vcg::face::FlipEdge(*fa, k);
|
vcg::face::FlipEdge(*fa, k);
|
||||||
|
|
||||||
|
@ -379,22 +296,19 @@ void FlipBitQuadEdge(Face &f, int k){
|
||||||
}
|
}
|
||||||
|
|
||||||
// check if a quad diagonal can be topologically flipped
|
// check if a quad diagonal can be topologically flipped
|
||||||
template <class Face>
|
static bool CheckFlipDiag(FaceType &f){
|
||||||
bool CheckFlipBitQuadDiag(Face &f){
|
|
||||||
return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) );
|
return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) );
|
||||||
}
|
}
|
||||||
|
|
||||||
// given a face (part of a quad), returns its diagonal
|
// given a face (part of a quad), returns its diagonal
|
||||||
template <class Face>
|
static CoordType Diag(const FaceType* f){
|
||||||
typename Face::CoordType Diag(const Face* f){
|
|
||||||
int i = FauxIndex(f);
|
int i = FauxIndex(f);
|
||||||
return f->P1( i ) - f->P0( i );
|
return f->P1( i ) - f->P0( i );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// given a face (part of a quad), returns other diagonal
|
// given a face (part of a quad), returns other diagonal
|
||||||
template <class Face>
|
static CoordType CounterDiag(const FaceType* f){
|
||||||
typename Face::CoordType CounterDiag(const Face* f){
|
|
||||||
int i = FauxIndex(f);
|
int i = FauxIndex(f);
|
||||||
return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ;
|
return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ;
|
||||||
}
|
}
|
||||||
|
@ -402,22 +316,20 @@ typename Face::CoordType CounterDiag(const Face* f){
|
||||||
/* helper function:
|
/* helper function:
|
||||||
collapses a single face along its faux edge.
|
collapses a single face along its faux edge.
|
||||||
Updates FF adj of other edges. */
|
Updates FF adj of other edges. */
|
||||||
template <class Mesh>
|
static void _CollapseDiagHalf(FaceType &f, int faux, MeshType& m)
|
||||||
void _CollapseQuadDiagHalf(typename Mesh::FaceType &f, int faux, Mesh& m)
|
|
||||||
{
|
{
|
||||||
typedef typename Mesh::FaceType Face;
|
|
||||||
int faux1 = (faux+1)%3;
|
int faux1 = (faux+1)%3;
|
||||||
int faux2 = (faux+2)%3;
|
int faux2 = (faux+2)%3;
|
||||||
|
|
||||||
Face* fA = f.FFp( faux1 );
|
FaceType* fA = f.FFp( faux1 );
|
||||||
Face* fB = f.FFp( faux2 );
|
FaceType* fB = f.FFp( faux2 );
|
||||||
int iA = f.FFi( faux1 );
|
int iA = f.FFi( faux1 );
|
||||||
int iB = f.FFi( faux2 );
|
int iB = f.FFi( faux2 );
|
||||||
|
|
||||||
if (fA==&f && fB==&f) {
|
if (fA==&f && fB==&f) {
|
||||||
// both non-faux edges are borders: tri-face disappears, just remove the vertex
|
// both non-faux edges are borders: tri-face disappears, just remove the vertex
|
||||||
if (DELETE_VERTICES)
|
if (DELETE_VERTICES)
|
||||||
Allocator<Mesh>::DeleteVertex(m,*(f.V(faux2)));
|
Allocator<MeshType>::DeleteVertex(m,*(f.V(faux2)));
|
||||||
} else {
|
} else {
|
||||||
if (fA==&f) {
|
if (fA==&f) {
|
||||||
fB->FFp(iB) = fB; fB->FFi(iB) = iB;
|
fB->FFp(iB) = fB; fB->FFi(iB) = iB;
|
||||||
|
@ -432,15 +344,14 @@ void _CollapseQuadDiagHalf(typename Mesh::FaceType &f, int faux, Mesh& m)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Allocator<Mesh>::DeleteFace(m,f);
|
Allocator<MeshType>::DeleteFace(m,f);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static void RemoveDoublet(FaceType &f, int wedge, MeshType& m){
|
||||||
void RemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
|
||||||
if (f.IsF((wedge+1)%3) ) {
|
if (f.IsF((wedge+1)%3) ) {
|
||||||
typename Mesh::VertexType *v = f.V(wedge);
|
VertexType *v = f.V(wedge);
|
||||||
FlipBitQuadDiag(f);
|
FlipDiag(f);
|
||||||
// quick hack: recover wedge index after flip
|
// quick hack: recover wedge index after flip
|
||||||
if (f.V(0)==v) wedge = 0;
|
if (f.V(0)==v) wedge = 0;
|
||||||
else if (f.V(1)==v) wedge = 1;
|
else if (f.V(1)==v) wedge = 1;
|
||||||
|
@ -449,15 +360,14 @@ void RemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||||
wedge = 2;
|
wedge = 2;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
typename Mesh::ScalarType k=(f.IsF(wedge))?1:0;
|
ScalarType k=(f.IsF(wedge))?1:0;
|
||||||
CollapseQuadDiag(f, k, m);
|
CollapseDiag(f, k, m);
|
||||||
typename Mesh::VertexType *v = f.V(wedge);
|
VertexType *v = f.V(wedge);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static void RemoveSinglet(FaceType &f, int wedge, MeshType& m){
|
||||||
void RemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
FaceType *fa, *fb; // these will die
|
||||||
typename Mesh::FaceType *fa, *fb; // these will die
|
FaceType *fc, *fd; // their former neight
|
||||||
typename Mesh::FaceType *fc, *fd; // their former neight
|
|
||||||
fa = & f;
|
fa = & f;
|
||||||
fb = fa->FFp(wedge);
|
fb = fa->FFp(wedge);
|
||||||
int wa0 = wedge;
|
int wa0 = wedge;
|
||||||
|
@ -478,15 +388,14 @@ void RemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||||
// faux status of survivors: unchanged
|
// faux status of survivors: unchanged
|
||||||
assert( ! ( fc->IsF( wc) ) );
|
assert( ! ( fc->IsF( wc) ) );
|
||||||
assert( ! ( fd->IsF( wd) ) );
|
assert( ! ( fd->IsF( wd) ) );
|
||||||
Allocator<Mesh>::DeleteFace( m,*fa );
|
Allocator<MeshType>::DeleteFace( m,*fa );
|
||||||
Allocator<Mesh>::DeleteFace( m,*fb );
|
Allocator<MeshType>::DeleteFace( m,*fb );
|
||||||
if (DELETE_VERTICES)
|
if (DELETE_VERTICES)
|
||||||
Allocator<Mesh>::DeleteVertex( m,*fa->V(wedge) );
|
Allocator<MeshType>::DeleteVertex( m,*fa->V(wedge) );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template <class Mesh>
|
static bool TestAndRemoveDoublet(FaceType &f, int wedge, MeshType& m){
|
||||||
bool TestAndRemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
|
||||||
if (IsDoublet(f,wedge)) {
|
if (IsDoublet(f,wedge)) {
|
||||||
RemoveDoublet(f,wedge,m);
|
RemoveDoublet(f,wedge,m);
|
||||||
return true;
|
return true;
|
||||||
|
@ -494,32 +403,31 @@ bool TestAndRemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static bool TestAndRemoveSinglet(FaceType &f, int wedge, MeshType& m){
|
||||||
bool TestAndRemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
|
||||||
if (IsSinglet(f,wedge)) {
|
if (IsSinglet(f,wedge)) {
|
||||||
RemoveSinglet(f,wedge,m);
|
RemoveSinglet(f,wedge,m);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
template <class Face, int verse>
|
|
||||||
void RotateBitQuadEdge(const Face& f, int wedge){
|
template <int verse>
|
||||||
|
static void RotateEdge(const FaceType& f, int wedge){
|
||||||
}
|
}
|
||||||
|
|
||||||
// given a face and a wedge, counts its valency in terms of quads (and triangles)
|
// given a face and a wedge, counts its valency in terms of quads (and triangles)
|
||||||
// uses only FF, assumes twomanyfold
|
// uses only FF, assumes twomanyfold
|
||||||
// returns -1 if border
|
// returns -1 if border
|
||||||
template <class Face>
|
static int CountBitPolygonInternalValency(const FaceType& f, int wedge){
|
||||||
int CountBitPolygonInternalValency(const Face& f, int wedge){
|
const FaceType* pf = &f;
|
||||||
const Face* pf = &f;
|
|
||||||
int pi = wedge;
|
int pi = wedge;
|
||||||
int res = 0;
|
int res = 0;
|
||||||
do {
|
do {
|
||||||
if (!pf->IsF(pi)) res++;
|
if (!pf->IsF(pi)) res++;
|
||||||
const Face *t = pf;
|
const FaceType *t = pf;
|
||||||
t = pf->FFp( pi );
|
t = pf->FFp( pi );
|
||||||
if (pf == t ) return -1;
|
if (pf == t ) return -1;
|
||||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
||||||
pf = t;
|
pf = t;
|
||||||
} while (pf != &f);
|
} while (pf != &f);
|
||||||
return res;
|
return res;
|
||||||
|
@ -527,38 +435,36 @@ int CountBitPolygonInternalValency(const Face& f, int wedge){
|
||||||
|
|
||||||
// given a face and a wedge, returns if it host a doubet
|
// given a face and a wedge, returns if it host a doubet
|
||||||
// assumes tri and quad only. uses FF topology only.
|
// assumes tri and quad only. uses FF topology only.
|
||||||
template <class Face>
|
static bool IsDoublet(const FaceType& f, int wedge){
|
||||||
bool IsDoublet(const Face& f, int wedge){
|
const FaceType* pf = &f;
|
||||||
const Face* pf = &f;
|
|
||||||
int pi = wedge;
|
int pi = wedge;
|
||||||
int res = 0, guard=0;
|
int res = 0, guard=0;
|
||||||
do {
|
do {
|
||||||
if (!pf->IsAnyF()) return false; // there's a triangle!
|
if (!pf->IsAnyF()) return false; // there's a triangle!
|
||||||
if (!pf->IsF(pi)) res++;
|
if (!pf->IsF(pi)) res++;
|
||||||
const Face *t = pf;
|
const FaceType *t = pf;
|
||||||
t = pf->FFp( pi );
|
t = pf->FFp( pi );
|
||||||
if (pf == t ) return false;
|
if (pf == t ) return false;
|
||||||
pi = pf->cFFi( pi );
|
pi = pf->cFFi( pi );
|
||||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
||||||
pf = t;
|
pf = t;
|
||||||
assert(guard++<100);
|
assert(guard++<100);
|
||||||
} while (pf != &f);
|
} while (pf != &f);
|
||||||
return (res == 2);
|
return (res == 2);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Face>
|
static bool IsSinglet(const FaceType& f, int wedge){
|
||||||
bool IsSinglet(const Face& f, int wedge){
|
const FaceType* pf = &f;
|
||||||
const Face* pf = &f;
|
|
||||||
int pi = wedge;
|
int pi = wedge;
|
||||||
int res = 0, guard=0;
|
int res = 0, guard=0;
|
||||||
do {
|
do {
|
||||||
if (!pf->IsAnyF()) return false; // there's a triangle!
|
if (!pf->IsAnyF()) return false; // there's a triangle!
|
||||||
if (!pf->IsF(pi)) res++;
|
if (!pf->IsF(pi)) res++;
|
||||||
const Face *t = pf;
|
const FaceType *t = pf;
|
||||||
t = pf->FFp( pi );
|
t = pf->FFp( pi );
|
||||||
if (pf == t ) return false;
|
if (pf == t ) return false;
|
||||||
pi = pf->cFFi( pi );
|
pi = pf->cFFi( pi );
|
||||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
pi = (pi+1)%3; // FaceType::Next( pf->FFi( pi ) );
|
||||||
pf = t;
|
pf = t;
|
||||||
assert(guard++<100);
|
assert(guard++<100);
|
||||||
} while (pf != &f);
|
} while (pf != &f);
|
||||||
|
@ -566,32 +472,16 @@ bool IsSinglet(const Face& f, int wedge){
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static bool CollapseEdgeDirect(FaceType &f, int w0, MeshType& m){
|
||||||
/** collapses a quad diagonal a-b
|
FaceType * f0 = &f;
|
||||||
forming the new vertex in between the two old vertices.
|
|
||||||
if k == 0, new vertex is in a
|
|
||||||
if k == 1, new vertex is in b
|
|
||||||
if k == 0.5, new vertex in the middle, etc
|
|
||||||
*/
|
|
||||||
template <class Mesh>
|
|
||||||
void CollapseQuadDiag(typename Mesh::FaceType &f, typename Mesh::ScalarType k, Mesh& m){
|
|
||||||
typename Mesh::CoordType p;
|
|
||||||
int fauxa = FauxIndex(&f);
|
|
||||||
p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k);
|
|
||||||
CollapseQuadDiag(f,p,m);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class Mesh>
|
|
||||||
bool CollapseQuadEdgeDirect(typename Mesh::FaceType &f, int w0, Mesh& m){
|
|
||||||
typename Mesh::FaceType * f0 = &f;
|
|
||||||
|
|
||||||
assert( !f0->IsF(w0) );
|
assert( !f0->IsF(w0) );
|
||||||
|
|
||||||
typename Mesh::VertexType *v0, *v1;
|
VertexType *v0, *v1;
|
||||||
v0 = f0->V0(w0);
|
v0 = f0->V0(w0);
|
||||||
v1 = f0->V1(w0);
|
v1 = f0->V1(w0);
|
||||||
|
|
||||||
if (!RotateBitQuadVertex(*f0,w0)) return false;
|
if (!RotateVertex(*f0,w0)) return false;
|
||||||
|
|
||||||
|
|
||||||
// quick hack: recover original wedge
|
// quick hack: recover original wedge
|
||||||
|
@ -603,13 +493,11 @@ bool CollapseQuadEdgeDirect(typename Mesh::FaceType &f, int w0, Mesh& m){
|
||||||
assert( f0->V1(w0) == v1 );
|
assert( f0->V1(w0) == v1 );
|
||||||
assert( f0->IsF(w0) );
|
assert( f0->IsF(w0) );
|
||||||
|
|
||||||
CollapseQuadDiag(*f0,PosOnDiag(*f0,false), m);
|
CollapseDiag(*f0,PosOnDiag(*f0,false), m);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static bool CollapseEdge(FaceType &f, int w0, MeshType& m){
|
||||||
bool CollapseQuadEdge(typename Mesh::FaceType &f, int w0, Mesh& m){
|
|
||||||
typedef typename Mesh::FaceType * FaceTypeP;
|
|
||||||
FaceTypeP f0 = &f;
|
FaceTypeP f0 = &f;
|
||||||
|
|
||||||
assert(!f0->IsF(w0)); // don't use this to collapse diag.
|
assert(!f0->IsF(w0)); // don't use this to collapse diag.
|
||||||
|
@ -621,39 +509,69 @@ bool CollapseQuadEdge(typename Mesh::FaceType &f, int w0, Mesh& m){
|
||||||
|
|
||||||
// choose: rotate around V0 or around V1?
|
// choose: rotate around V0 or around V1?
|
||||||
if (
|
if (
|
||||||
AvgBitQuadEdgeLenghtVariationIfVertexRotated(*f0,w0)
|
AvgEdgeLenghtVariationIfVertexRotated(*f0,w0)
|
||||||
<
|
<
|
||||||
AvgBitQuadEdgeLenghtVariationIfVertexRotated(*f1,w1)
|
AvgEdgeLenghtVariationIfVertexRotated(*f1,w1)
|
||||||
) return CollapseQuadEdgeDirect(*f0,w0,m);
|
) return CollapseEdgeDirect(*f0,w0,m);
|
||||||
else return CollapseQuadEdgeDirect(*f1,w1,m);
|
else return CollapseEdgeDirect(*f1,w1,m);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template <class Mesh>
|
|
||||||
void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType &p, Mesh& m){
|
|
||||||
|
|
||||||
typedef typename Mesh::FaceType Face;
|
/** collapses a quad diagonal a-b
|
||||||
typedef typename Mesh::VertexType Vert;
|
forming the new vertex in between the two old vertices.
|
||||||
|
if k == 0, new vertex is in a
|
||||||
|
if k == 1, new vertex is in b
|
||||||
|
if k == 0.5, new vertex in the middle, etc
|
||||||
|
*/
|
||||||
|
|
||||||
Face* fa = &f;
|
static void CollapseCounterDiag(FaceType &f, ScalarType interpol, MeshType& m){
|
||||||
|
//CoordType p;
|
||||||
|
//int fauxa = FauxIndex(&f);
|
||||||
|
//p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k);
|
||||||
|
|
||||||
|
FlipDiag(f);
|
||||||
|
CollapseDiag(f,interpol,m);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
static void CollapseCounterDiag(FaceType &f, ScalarType k, MeshType& m){
|
||||||
|
CoordType p;
|
||||||
|
int fauxa = FauxIndex(&f);
|
||||||
|
p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k);
|
||||||
|
CollapseCounterDiag(f,p,m);
|
||||||
|
}
|
||||||
|
*/
|
||||||
|
|
||||||
|
//static void CollapseCounterDiag(FaceType &f, const CoordType &p, MeshType& m){
|
||||||
|
// FlipDiag(f);
|
||||||
|
// CollapseDiag(f,p,m);
|
||||||
|
//}
|
||||||
|
|
||||||
|
|
||||||
|
static void CollapseDiag(FaceType &f, ScalarType interpol, MeshType& m){
|
||||||
|
|
||||||
|
FaceType* fa = &f;
|
||||||
int fauxa = FauxIndex(fa);
|
int fauxa = FauxIndex(fa);
|
||||||
Face* fb = fa->FFp(fauxa);
|
FaceType* fb = fa->FFp(fauxa);
|
||||||
assert (fb!=fa);
|
assert (fb!=fa);
|
||||||
int fauxb = FauxIndex(fb);
|
int fauxb = FauxIndex(fb);
|
||||||
|
|
||||||
Vert* va = fa->V(fauxa); // va lives
|
VertexType* va = fa->V(fauxa); // va lives
|
||||||
Vert* vb = fb->V(fauxb); // vb dies
|
VertexType* vb = fb->V(fauxb); // vb dies
|
||||||
|
|
||||||
|
Interpolator::Apply( *(f.V0(fauxa)), *(f.V1(fauxa)), interpol, *va);
|
||||||
|
|
||||||
// update FV...
|
// update FV...
|
||||||
bool border = false;
|
bool border = false;
|
||||||
int pi = fauxb;
|
int pi = fauxb;
|
||||||
Face* pf = fb; /* pf, pi could be a Pos<Face> p(pf, pi) */
|
FaceType* pf = fb; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
|
||||||
// rotate around vb, (same-sense-as-face)-wise
|
// rotate around vb, (same-sense-as-face)-wise
|
||||||
do {
|
do {
|
||||||
pf->V(pi) = va;
|
pf->V(pi) = va;
|
||||||
|
|
||||||
pi=(pi+2)%3;
|
pi=(pi+2)%3;
|
||||||
Face *t = pf->FFp(pi);
|
FaceType *t = pf->FFp(pi);
|
||||||
if (t==pf) { border= true; break; }
|
if (t==pf) { border= true; break; }
|
||||||
pi = pf->FFi(pi);
|
pi = pf->FFi(pi);
|
||||||
pf = t;
|
pf = t;
|
||||||
|
@ -662,11 +580,11 @@ void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType
|
||||||
// rotate around va, (counter-sense-as-face)-wise
|
// rotate around va, (counter-sense-as-face)-wise
|
||||||
if (border) {
|
if (border) {
|
||||||
int pi = fauxa;
|
int pi = fauxa;
|
||||||
Face* pf = fa; /* pf, pi could be a Pos<Face> p(pf, pi) */
|
FaceType* pf = fa; /* pf, pi could be a Pos<FaceType> p(pf, pi) */
|
||||||
do {
|
do {
|
||||||
pi=(pi+1)%3;
|
pi=(pi+1)%3;
|
||||||
pf->V(pi) = va;
|
pf->V(pi) = va;
|
||||||
Face *t = pf->FFp(pi);
|
FaceType *t = pf->FFp(pi);
|
||||||
if (t==pf) break;
|
if (t==pf) break;
|
||||||
pi = pf->FFi(pi);
|
pi = pf->FFi(pi);
|
||||||
pf = t;
|
pf = t;
|
||||||
|
@ -674,39 +592,32 @@ void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType
|
||||||
}
|
}
|
||||||
|
|
||||||
// update FF, delete faces
|
// update FF, delete faces
|
||||||
_CollapseQuadDiagHalf(*fb, fauxb, m);
|
_CollapseDiagHalf(*fb, fauxb, m);
|
||||||
_CollapseQuadDiagHalf(*fa, fauxa, m);
|
_CollapseDiagHalf(*fa, fauxa, m);
|
||||||
|
|
||||||
if (DELETE_VERTICES) Allocator<Mesh>::DeleteVertex(m,*vb);
|
if (DELETE_VERTICES) Allocator<MeshType>::DeleteVertex(m,*vb);
|
||||||
va->P() = p;
|
|
||||||
|
|
||||||
|
|
||||||
|
// for diagonals
|
||||||
|
|
||||||
|
// for counterdiagonals
|
||||||
|
//Inpterpolator::Apply( *(f.V2(fauxa)), *(f.FFp( fauxa )->V2(fauxa)), interpol, va);
|
||||||
|
//va->P() = p;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
template <class Mesh>
|
|
||||||
void CollapseQuadCounterDiag(typename Mesh::FaceType &f, typename Mesh::ScalarType k, Mesh& m){
|
|
||||||
typename Mesh::CoordType p;
|
|
||||||
int fauxa = FauxIndex(&f);
|
|
||||||
p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k);
|
|
||||||
CollapseQuadCounterDiag(f,p,m);
|
|
||||||
}
|
|
||||||
|
|
||||||
template <class Mesh>
|
|
||||||
void CollapseQuadCounterDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType &p, Mesh& m){
|
|
||||||
FlipBitQuadDiag(f);
|
|
||||||
CollapseQuadDiag(f,p,m);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// helper function: find a good position on a diag to collapse a point
|
// helper function: find a good position on a diag to collapse a point
|
||||||
// currently, it is point in the middle,
|
// currently, it is point in the middle,
|
||||||
// unless a mixed border-non border edge is collapsed, then it is an exreme
|
// unless a mixed border-non border edge is collapsed, then it is an exreme
|
||||||
template <class Face>
|
static ScalarType PosOnDiag(const FaceType& f, bool counterDiag){
|
||||||
typename Face::ScalarType PosOnDiag(const Face& f, bool counterDiag){
|
|
||||||
bool b0, b1, b2, b3; // which side of the quads are border
|
bool b0, b1, b2, b3; // which side of the quads are border
|
||||||
|
|
||||||
const Face* fa=&f;
|
const FaceType* fa=&f;
|
||||||
int ia = FauxIndex(fa);
|
int ia = FauxIndex(fa);
|
||||||
const Face* fb=fa->cFFp(ia);
|
const FaceType* fb=fa->cFFp(ia);
|
||||||
int ib = fa->cFFi(ia);
|
int ib = fa->cFFi(ia);
|
||||||
|
|
||||||
b0 = fa->FFp((ia+1)%3) == fa;
|
b0 = fa->FFp((ia+1)%3) == fa;
|
||||||
|
@ -715,8 +626,8 @@ typename Face::ScalarType PosOnDiag(const Face& f, bool counterDiag){
|
||||||
b3 = fb->FFp((ib+2)%3) == fb;
|
b3 = fb->FFp((ib+2)%3) == fb;
|
||||||
|
|
||||||
if (counterDiag) {
|
if (counterDiag) {
|
||||||
if ( (b0||b1) && !(b2||b3) ) return 0;
|
if ( (b0||b1) && !(b2||b3) ) return 1;
|
||||||
if ( !(b0||b1) && (b2||b3) ) return 1;
|
if ( !(b0||b1) && (b2||b3) ) return 0;
|
||||||
} else {
|
} else {
|
||||||
if ( (b1||b2) && !(b3||b0) ) return 0;
|
if ( (b1||b2) && !(b3||b0) ) return 0;
|
||||||
if ( !(b1||b2) && (b3||b0) ) return 1;
|
if ( !(b1||b2) && (b3||b0) ) return 1;
|
||||||
|
@ -725,10 +636,7 @@ typename Face::ScalarType PosOnDiag(const Face& f, bool counterDiag){
|
||||||
return 0.5f;
|
return 0.5f;
|
||||||
}
|
}
|
||||||
|
|
||||||
template <class Mesh>
|
static void UpdateQualityAsValency(MeshType& m){
|
||||||
void UpdateQualityAsBitQuadValency(Mesh& m){
|
|
||||||
typedef typename Mesh::FaceIterator FaceIterator;
|
|
||||||
typedef typename Mesh::VertexIterator VertexIterator;
|
|
||||||
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
|
for (VertexIterator vi = m.vert.begin(); vi!=m.vert.end(); vi++) if (!vi->IsD()) {
|
||||||
vi->Q() = 0;
|
vi->Q() = 0;
|
||||||
}
|
}
|
||||||
|
@ -739,4 +647,106 @@ void UpdateQualityAsBitQuadValency(Mesh& m){
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
// helper function:
|
||||||
|
// cos of angle abc. This should probably go elsewhere
|
||||||
|
static ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
|
||||||
|
{
|
||||||
|
CoordType
|
||||||
|
e0 = b - a,
|
||||||
|
e1 = b - c;
|
||||||
|
ScalarType d = (e0.Norm()*e1.Norm());
|
||||||
|
if (d==0) return 0.0;
|
||||||
|
return (e0*e1)/d;
|
||||||
|
}
|
||||||
|
|
||||||
|
// helper function:
|
||||||
|
// returns quality of a quad formed by points a,b,c,d
|
||||||
|
// quality is computed as "how squared angles are"
|
||||||
|
static ScalarType quadQuality(const CoordType &a, const CoordType &b, const CoordType &c, const CoordType &d){
|
||||||
|
ScalarType score = 0;
|
||||||
|
score += 1 - math::Abs( Cos( a,b,c) );
|
||||||
|
score += 1 - math::Abs( Cos( b,c,d) );
|
||||||
|
score += 1 - math::Abs( Cos( c,d,a) );
|
||||||
|
score += 1 - math::Abs( Cos( d,a,b) );
|
||||||
|
return score / 4;
|
||||||
|
}
|
||||||
|
|
||||||
|
// helper function:
|
||||||
|
// returns quality of a given (potential) quad
|
||||||
|
static ScalarType quadQuality(FaceType *f, int edge){
|
||||||
|
|
||||||
|
CoordType
|
||||||
|
a = f->V0(edge)->P(),
|
||||||
|
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
|
||||||
|
c = f->V1(edge)->P(),
|
||||||
|
d = f->V2(edge)->P();
|
||||||
|
|
||||||
|
return quadQuality(a,b,c,d);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
helper function:
|
||||||
|
given a quad edge, retruns:
|
||||||
|
0 if that edge should not be rotated
|
||||||
|
+1 if it should be rotated clockwise (+1)
|
||||||
|
-1 if it should be rotated counterclockwise (-1)
|
||||||
|
Currently an edge is rotated iff it is shortened by that rotations
|
||||||
|
(shortcut criterion)
|
||||||
|
*/
|
||||||
|
static int TestEdgeRotation(const FaceType &f, int w0)
|
||||||
|
{
|
||||||
|
const FaceType *fa = &f;
|
||||||
|
assert(! fa->IsF(w0) );
|
||||||
|
ScalarType q0,q1,q2;
|
||||||
|
CoordType v0,v1,v2,v3,v4,v5;
|
||||||
|
int w1 = (w0+1)%3;
|
||||||
|
int w2 = (w0+2)%3;
|
||||||
|
|
||||||
|
v0 = fa->P(w0);
|
||||||
|
v3 = fa->P(w1);
|
||||||
|
|
||||||
|
if (fa->IsF(w2) ) {
|
||||||
|
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
|
||||||
|
v2 = fa->P(w2);
|
||||||
|
} else {
|
||||||
|
v1 = fa->P(w2);
|
||||||
|
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
|
||||||
|
}
|
||||||
|
|
||||||
|
const FaceType *fb = fa->cFFp(w0);
|
||||||
|
w0 = fa->cFFi(w0);
|
||||||
|
|
||||||
|
w1 = (w0+1)%3;
|
||||||
|
w2 = (w0+2)%3;
|
||||||
|
if (fb->IsF(w2) ) {
|
||||||
|
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
|
||||||
|
v5 = fb->P(w2);
|
||||||
|
} else {
|
||||||
|
v4 = fb->P(w2);
|
||||||
|
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
// max overall quality criterion:
|
||||||
|
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
|
||||||
|
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
|
||||||
|
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
|
||||||
|
|
||||||
|
if (q0>=q1 && q0>=q2) return 0;
|
||||||
|
if (q1>=q2) return 1;*/
|
||||||
|
|
||||||
|
// min distance (shortcut criterion)
|
||||||
|
q0 = (v0 - v3).SquaredNorm();
|
||||||
|
q1 = (v1 - v4).SquaredNorm();
|
||||||
|
q2 = (v5 - v2).SquaredNorm();
|
||||||
|
if (q0<=q1 && q0<=q2) return 0;
|
||||||
|
if (q1<=q2) return 1;
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
};
|
||||||
}} // end namespace vcg::tri
|
}} // end namespace vcg::tri
|
||||||
|
|
Loading…
Reference in New Issue