Slight change of the PoissonDiskPruning interface. Removed a useless parameter (the original surface mesh)
This commit is contained in:
parent
0f34456c92
commit
d61c5c24a1
|
@ -23,14 +23,14 @@
|
|||
/****************************************************************************
|
||||
|
||||
The sampling Class has a set of static functions, that you can call to sample the surface of a mesh.
|
||||
Each function is templated on the mesh and on a Sampler object s.
|
||||
Each function is templated on the mesh and on a Sampler object s.
|
||||
Each function calls many time the sample object with the sampling point as parameter.
|
||||
|
||||
Sampler Classes and Sampling algorithms are independent.
|
||||
|
||||
Sampler Classes and Sampling algorithms are independent.
|
||||
Sampler classes exploits the sample that are generated with various algorithms.
|
||||
For example, you can compute Hausdorff distance (that is a sampler) using various
|
||||
For example, you can compute Hausdorff distance (that is a sampler) using various
|
||||
sampling strategies (montecarlo, stratified etc).
|
||||
|
||||
|
||||
****************************************************************************/
|
||||
#ifndef __VCGLIB_POINT_SAMPLING
|
||||
#define __VCGLIB_POINT_SAMPLING
|
||||
|
@ -50,15 +50,15 @@ namespace vcg
|
|||
namespace tri
|
||||
{
|
||||
|
||||
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
|
||||
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
|
||||
/// Most of the sampling classes call the AddFace method with the face containing the sample and its barycentric coord.
|
||||
/// Beside being an example of how to write a sampler it provides a simple way to use the various sampling classes.
|
||||
/// Beside being an example of how to write a sampler it provides a simple way to use the various sampling classes.
|
||||
// For example if you just want to get a vector with positions over the surface You have just to write
|
||||
//
|
||||
// vector<Point3f> myVec;
|
||||
// TrivialSampler<MyMesh> ts(myVec)
|
||||
// TrivialSampler<MyMesh> ts(myVec)
|
||||
// SurfaceSampling<MyMesh, TrivialSampler<MyMesh> >::Montecarlo(M, ts, SampleNum);
|
||||
//
|
||||
//
|
||||
//
|
||||
|
||||
template <class MeshType>
|
||||
|
@ -67,7 +67,7 @@ class TrivialSampler
|
|||
public:
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
|
||||
TrivialSampler()
|
||||
{
|
||||
|
@ -86,26 +86,26 @@ class TrivialSampler
|
|||
{
|
||||
if(vectorOwner) delete sampleVec;
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
std::vector<CoordType> *sampleVec;
|
||||
bool vectorOwner;
|
||||
public:
|
||||
|
||||
void AddVert(const VertexType &p)
|
||||
|
||||
void AddVert(const VertexType &p)
|
||||
{
|
||||
sampleVec->push_back(p.cP());
|
||||
}
|
||||
void AddFace(const FaceType &f, const CoordType &p)
|
||||
void AddFace(const FaceType &f, const CoordType &p)
|
||||
{
|
||||
sampleVec->push_back(f.cP(0)*p[0] + f.cP(1)*p[1] +f.cP(2)*p[2] );
|
||||
}
|
||||
|
||||
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &, float )
|
||||
|
||||
void AddTextureSample(const FaceType &, const CoordType &, const Point2i &, float )
|
||||
{
|
||||
// Retrieve the color of the sample from the face f using the barycentric coord p
|
||||
// and write that color in a texture image at position <tp[0], texHeight-tp[1]>
|
||||
// if edgeDist is > 0 then the corrisponding point is affecting face color even if outside the face area (in texture space)
|
||||
// Retrieve the color of the sample from the face f using the barycentric coord p
|
||||
// and write that color in a texture image at position <tp[0], texHeight-tp[1]>
|
||||
// if edgeDist is > 0 then the corrisponding point is affecting face color even if outside the face area (in texture space)
|
||||
}
|
||||
}; // end class TrivialSampler
|
||||
|
||||
|
@ -132,7 +132,7 @@ class SurfaceSampling
|
|||
|
||||
public:
|
||||
|
||||
static math::MarsenneTwisterRNG &SamplingRandomGenerator()
|
||||
static math::MarsenneTwisterRNG &SamplingRandomGenerator()
|
||||
{
|
||||
static math::MarsenneTwisterRNG rnd;
|
||||
return rnd;
|
||||
|
@ -147,7 +147,7 @@ static unsigned int RandomInt(unsigned int i)
|
|||
// Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method.
|
||||
static double RandomDouble01()
|
||||
{
|
||||
return SamplingRandomGenerator().generate01();
|
||||
return SamplingRandomGenerator().generate01();
|
||||
}
|
||||
|
||||
static Point3f RandomPoint3fBall01()
|
||||
|
@ -288,28 +288,28 @@ static void AllVertex(MetroMesh & m, VertexSampler &ps)
|
|||
}
|
||||
|
||||
/// Sample the vertices in a weighted way. Each vertex has a probability of being chosen
|
||||
/// that is proportional to its quality.
|
||||
/// that is proportional to its quality.
|
||||
/// It assumes that you are asking a number of vertices smaller than nv;
|
||||
/// Algorithm:
|
||||
/// Algorithm:
|
||||
/// 1) normalize quality so that sum q == 1;
|
||||
/// 2) shuffle vertices.
|
||||
/// 3) for each vertices choose it if rand > thr;
|
||||
|
||||
|
||||
static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
||||
{
|
||||
ScalarType qSum = 0;
|
||||
VertexIterator vi;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD())
|
||||
if(!(*vi).IsD())
|
||||
qSum += (*vi).Q();
|
||||
|
||||
|
||||
ScalarType samplePerUnit = sampleNum/qSum;
|
||||
ScalarType floatSampleNum =0;
|
||||
std::vector<VertexPointer> vertVec;
|
||||
FillAndShuffleVertexPointerVector(m,vertVec);
|
||||
|
||||
std::vector<bool> vertUsed(m.vn,false);
|
||||
|
||||
|
||||
int i=0; int cnt=0;
|
||||
while(cnt < sampleNum)
|
||||
{
|
||||
|
@ -317,8 +317,8 @@ static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|||
{
|
||||
floatSampleNum += vertVec[i]->Q() * samplePerUnit;
|
||||
int vertSampleNum = (int) floatSampleNum;
|
||||
floatSampleNum -= (float) vertSampleNum;
|
||||
|
||||
floatSampleNum -= (float) vertSampleNum;
|
||||
|
||||
// for every sample p_i in T...
|
||||
if(vertSampleNum > 1)
|
||||
{
|
||||
|
@ -327,66 +327,66 @@ static void VertexWeighted(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|||
vertUsed[i]=true;
|
||||
}
|
||||
}
|
||||
i = (i+1)%m.vn;
|
||||
i = (i+1)%m.vn;
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample the vertices in a uniform way. Each vertex has a probability of being chosen
|
||||
/// that is proportional to the area it represent.
|
||||
/// that is proportional to the area it represent.
|
||||
static void VertexAreaUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
||||
{
|
||||
VertexIterator vi;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if(!(*vi).IsD())
|
||||
if(!(*vi).IsD())
|
||||
(*vi).Q() = 0;
|
||||
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
ScalarType areaThird = DoubleArea(*fi)/6.0;
|
||||
(*fi).V(0)->Q()+=areaThird;
|
||||
(*fi).V(1)->Q()+=areaThird;
|
||||
(*fi).V(2)->Q()+=areaThird;
|
||||
}
|
||||
|
||||
|
||||
VertexWeighted(m,ps,sampleNum);
|
||||
}
|
||||
|
||||
|
||||
static void FillAndShuffleFacePointerVector(MetroMesh & m, std::vector<FacePointer> &faceVec)
|
||||
{
|
||||
FaceIterator fi;
|
||||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if(!(*fi).IsD()) faceVec.push_back(&*fi);
|
||||
|
||||
|
||||
assert((int)faceVec.size()==m.fn);
|
||||
|
||||
|
||||
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
||||
std::random_shuffle(faceVec.begin(),faceVec.end(), p_myrandom);
|
||||
}
|
||||
static void FillAndShuffleVertexPointerVector(MetroMesh & m, std::vector<VertexPointer> &vertVec)
|
||||
{
|
||||
VertexIterator vi;
|
||||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
for(vi=m.vert.begin();vi!=m.vert.end();++vi)
|
||||
if(!(*vi).IsD()) vertVec.push_back(&*vi);
|
||||
|
||||
assert((int)vertVec.size()==m.vn);
|
||||
|
||||
|
||||
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
||||
std::random_shuffle(vertVec.begin(),vertVec.end(), p_myrandom);
|
||||
}
|
||||
|
||||
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
|
||||
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
|
||||
static void VertexUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
||||
{
|
||||
if(sampleNum>=m.vn) {
|
||||
AllVertex(m,ps);
|
||||
return;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
std::vector<VertexPointer> vertVec;
|
||||
FillAndShuffleVertexPointerVector(m,vertVec);
|
||||
|
||||
|
||||
for(int i =0; i< sampleNum; ++i)
|
||||
ps.AddVert(*vertVec[i]);
|
||||
}
|
||||
|
@ -397,7 +397,7 @@ static void FaceUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|||
if(sampleNum>=m.fn) {
|
||||
AllFace(m,ps);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<FacePointer> faceVec;
|
||||
FillAndShuffleFacePointerVector(m,faceVec);
|
||||
|
@ -409,7 +409,7 @@ static void FaceUniform(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
|||
static void AllFace(MetroMesh & m, VertexSampler &ps)
|
||||
{
|
||||
FaceIterator fi;
|
||||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
for(fi=m.face.begin();fi!=m.face.end();++fi)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
ps.AddFace(*fi,Barycenter(*fi));
|
||||
|
@ -419,16 +419,16 @@ static void AllFace(MetroMesh & m, VertexSampler &ps)
|
|||
|
||||
static void AllEdge(MetroMesh & m, VertexSampler &ps)
|
||||
{
|
||||
// Edge sampling.
|
||||
// Edge sampling.
|
||||
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
|
||||
std::vector< SimpleEdge > Edges;
|
||||
typename std::vector< SimpleEdge >::iterator ei;
|
||||
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges);
|
||||
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges);
|
||||
|
||||
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
||||
{
|
||||
Point3f interp(0,0,0);
|
||||
interp[ (*ei).z ]=.5;
|
||||
interp[ (*ei).z ]=.5;
|
||||
interp[((*ei).z+1)%3]=.5;
|
||||
ps.AddFace(*(*ei).f,interp);
|
||||
}
|
||||
|
@ -442,13 +442,13 @@ static void EdgeUniform(MetroMesh & m, VertexSampler &ps,int sampleNum, bool sam
|
|||
{
|
||||
typedef typename UpdateTopology<MetroMesh>::PEdge SimpleEdge;
|
||||
std::vector< SimpleEdge > Edges;
|
||||
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges,sampleFauxEdge);
|
||||
UpdateTopology<MetroMesh>::FillUniqueEdgeVector(m,Edges,sampleFauxEdge);
|
||||
// First loop compute total edge length;
|
||||
float edgeSum=0;
|
||||
typename std::vector< SimpleEdge >::iterator ei;
|
||||
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
||||
edgeSum+=Distance((*ei).v[0]->P(),(*ei).v[1]->P());
|
||||
|
||||
|
||||
float sampleLen = edgeSum/sampleNum;
|
||||
float rest=0;
|
||||
for(ei=Edges.begin(); ei!=Edges.end(); ++ei)
|
||||
|
@ -460,16 +460,16 @@ static void EdgeUniform(MetroMesh & m, VertexSampler &ps,int sampleNum, bool sam
|
|||
for(int i=0;i<samplePerEdge;++i)
|
||||
{
|
||||
Point3f interp(0,0,0);
|
||||
interp[ (*ei).z ]=step*(i+1);
|
||||
interp[ (*ei).z ]=step*(i+1);
|
||||
interp[((*ei).z+1)%3]=1.0-step*(i+1);
|
||||
ps.AddFace(*(*ei).f,interp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Generate the barycentric coords of a random point over a single face,
|
||||
// with a uniform distribution over the triangle.
|
||||
// It uses the parallelogram folding trick.
|
||||
// Generate the barycentric coords of a random point over a single face,
|
||||
// with a uniform distribution over the triangle.
|
||||
// It uses the parallelogram folding trick.
|
||||
static CoordType RandomBarycentric()
|
||||
{
|
||||
CoordType interp;
|
||||
|
@ -480,7 +480,7 @@ static CoordType RandomBarycentric()
|
|||
interp[1] = 1.0 - interp[1];
|
||||
interp[2] = 1.0 - interp[2];
|
||||
}
|
||||
|
||||
|
||||
assert(interp[1] + interp[2] <= 1.0);
|
||||
interp[0]=1.0-(interp[1] + interp[2]);
|
||||
return interp;
|
||||
|
@ -500,19 +500,19 @@ static void StratifiedMontecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|||
ScalarType samplePerAreaUnit = sampleNum/area;
|
||||
// Montecarlo sampling.
|
||||
double floatSampleNum = 0.0;
|
||||
|
||||
FaceIterator fi;
|
||||
|
||||
FaceIterator fi;
|
||||
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
// compute # samples in the current face (taking into account of the remainders)
|
||||
floatSampleNum += 0.5*DoubleArea(*fi) * samplePerAreaUnit;
|
||||
int faceSampleNum = (int) floatSampleNum;
|
||||
|
||||
|
||||
// for every sample p_i in T...
|
||||
for(int i=0; i < faceSampleNum; i++)
|
||||
ps.AddFace(*fi,RandomBarycentric());
|
||||
floatSampleNum -= (double) faceSampleNum;
|
||||
floatSampleNum -= (double) faceSampleNum;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -557,7 +557,7 @@ static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|||
{
|
||||
typedef std::pair<ScalarType, FacePointer> IntervalType;
|
||||
std::vector< IntervalType > intervals (m.fn+1);
|
||||
FaceIterator fi;
|
||||
FaceIterator fi;
|
||||
int i=0;
|
||||
intervals[i]=std::make_pair(0,FacePointer(0));
|
||||
// First loop: build a sequence of consecutive segments proportional to the triangle areas.
|
||||
|
@ -581,7 +581,7 @@ static void Montecarlo(MetroMesh & m, VertexSampler &ps,int sampleNum)
|
|||
ps.AddFace( *(*it).second, RandomBarycentric() );
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static ScalarType WeightedArea(FaceType f)
|
||||
{
|
||||
ScalarType averageQ = ( f.V(0)->Q() + f.V(1)->Q() + f.V(2)->Q() ) /3.0;
|
||||
|
@ -589,38 +589,38 @@ static ScalarType WeightedArea(FaceType f)
|
|||
}
|
||||
|
||||
/// Compute a sampling of the surface that is weighted by the quality
|
||||
/// the area of each face is multiplied by the average of the quality of the vertices.
|
||||
/// the area of each face is multiplied by the average of the quality of the vertices.
|
||||
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
|
||||
static void WeightedMontecarlo(MetroMesh & m, VertexSampler &ps, int sampleNum)
|
||||
{
|
||||
assert(tri::HasPerVertexQuality(m));
|
||||
|
||||
|
||||
ScalarType weightedArea = 0;
|
||||
FaceIterator fi;
|
||||
for(fi = m.face.begin(); fi != m.face.end(); ++fi)
|
||||
if(!(*fi).IsD())
|
||||
if(!(*fi).IsD())
|
||||
weightedArea += WeightedArea(*fi);
|
||||
|
||||
|
||||
ScalarType samplePerAreaUnit = sampleNum/weightedArea;
|
||||
// Montecarlo sampling.
|
||||
double floatSampleNum = 0.0;
|
||||
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
||||
if(!(*fi).IsD())
|
||||
{
|
||||
{
|
||||
// compute # samples in the current face (taking into account of the remainders)
|
||||
floatSampleNum += WeightedArea(*fi) * samplePerAreaUnit;
|
||||
int faceSampleNum = (int) floatSampleNum;
|
||||
|
||||
|
||||
// for every sample p_i in T...
|
||||
for(int i=0; i < faceSampleNum; i++)
|
||||
ps.AddFace(*fi,RandomBarycentric());
|
||||
|
||||
floatSampleNum -= (double) faceSampleNum;
|
||||
|
||||
floatSampleNum -= (double) faceSampleNum;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Subdivision sampling of a single face.
|
||||
// Subdivision sampling of a single face.
|
||||
// return number of added samples
|
||||
|
||||
static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const CoordType & v1, const CoordType & v2, VertexSampler &ps, FacePointer fp, bool randSample)
|
||||
|
@ -630,7 +630,7 @@ static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const Coor
|
|||
{
|
||||
// ground case.
|
||||
CoordType SamplePoint;
|
||||
if(randSample)
|
||||
if(randSample)
|
||||
{
|
||||
CoordType rb=RandomBarycentric();
|
||||
SamplePoint=v0*rb[0]+v1*rb[1]+v2*rb[2];
|
||||
|
@ -640,12 +640,12 @@ static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const Coor
|
|||
ps.AddFace(*fp,SamplePoint);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int s0 = sampleNum /2;
|
||||
int s1 = sampleNum-s0;
|
||||
assert(s0>0);
|
||||
assert(s1>0);
|
||||
|
||||
|
||||
ScalarType w0 = ScalarType(s1)/ScalarType(sampleNum);
|
||||
ScalarType w1 = 1.0-w0;
|
||||
// compute the longest edge.
|
||||
|
@ -659,7 +659,7 @@ static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const Coor
|
|||
else
|
||||
if(maxd12 > maxd20) res = 1;
|
||||
else res = 2;
|
||||
|
||||
|
||||
int faceSampleNum=0;
|
||||
// break the input triangle along the midpoint of the longest edge.
|
||||
CoordType pp;
|
||||
|
@ -685,7 +685,7 @@ static int SingleFaceSubdivision(int sampleNum, const CoordType & v0, const Coor
|
|||
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
|
||||
static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum, bool randSample)
|
||||
{
|
||||
|
||||
|
||||
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
||||
ScalarType samplePerAreaUnit = sampleNum/area;
|
||||
std::vector<FacePointer> faceVec;
|
||||
|
@ -693,20 +693,20 @@ static void FaceSubdivision(MetroMesh & m, VertexSampler &ps,int sampleNum, bool
|
|||
vcg::tri::UpdateNormal<MetroMesh>::PerFaceNormalized(m);
|
||||
double floatSampleNum = 0.0;
|
||||
int faceSampleNum;
|
||||
// Subdivision sampling.
|
||||
// Subdivision sampling.
|
||||
typename std::vector<FacePointer>::iterator fi;
|
||||
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
|
||||
{
|
||||
const CoordType b0(1.0, 0.0, 0.0);
|
||||
const CoordType b1(0.0, 1.0, 0.0);
|
||||
const CoordType b2(0.0, 0.0, 1.0);
|
||||
// compute # samples in the current face.
|
||||
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
|
||||
faceSampleNum = (int) floatSampleNum;
|
||||
if(faceSampleNum>0)
|
||||
faceSampleNum = SingleFaceSubdivision(faceSampleNum,b0,b1,b2,ps,*fi,randSample);
|
||||
floatSampleNum -= (double) faceSampleNum;
|
||||
}
|
||||
for(fi=faceVec.begin(); fi!=faceVec.end(); fi++)
|
||||
{
|
||||
const CoordType b0(1.0, 0.0, 0.0);
|
||||
const CoordType b1(0.0, 1.0, 0.0);
|
||||
const CoordType b2(0.0, 0.0, 1.0);
|
||||
// compute # samples in the current face.
|
||||
floatSampleNum += 0.5*DoubleArea(**fi) * samplePerAreaUnit;
|
||||
faceSampleNum = (int) floatSampleNum;
|
||||
if(faceSampleNum>0)
|
||||
faceSampleNum = SingleFaceSubdivision(faceSampleNum,b0,b1,b2,ps,*fi,randSample);
|
||||
floatSampleNum -= (double) faceSampleNum;
|
||||
}
|
||||
}
|
||||
//---------
|
||||
// Subdivision sampling of a single face.
|
||||
|
@ -802,44 +802,44 @@ static void FaceSubdivisionOld(MetroMesh & m, VertexSampler &ps,int sampleNum, b
|
|||
|
||||
// Similar Triangles sampling.
|
||||
// Skip vertex and edges
|
||||
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
|
||||
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
|
||||
|
||||
static int SingleFaceSimilar(FacePointer fp, VertexSampler &ps, int n_samples_per_edge)
|
||||
{
|
||||
int n_samples=0;
|
||||
int n_samples=0;
|
||||
int i, j;
|
||||
float segmentNum=n_samples_per_edge -1 ;
|
||||
float segmentLen = 1.0/segmentNum;
|
||||
// face sampling.
|
||||
float segmentLen = 1.0/segmentNum;
|
||||
// face sampling.
|
||||
for(i=1; i < n_samples_per_edge-1; i++)
|
||||
for(j=1; j < n_samples_per_edge-1-i; j++)
|
||||
{
|
||||
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
|
||||
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
|
||||
CoordType sampleBary(i*segmentLen,j*segmentLen, 1.0 - (i*segmentLen+j*segmentLen) ) ;
|
||||
n_samples++;
|
||||
ps.AddFace(*fp,sampleBary);
|
||||
ps.AddFace(*fp,sampleBary);
|
||||
}
|
||||
return n_samples;
|
||||
return n_samples;
|
||||
}
|
||||
static int SingleFaceSimilarDual(FacePointer fp, VertexSampler &ps, int n_samples_per_edge, bool randomFlag)
|
||||
{
|
||||
int n_samples=0;
|
||||
int n_samples=0;
|
||||
float i, j;
|
||||
float segmentNum=n_samples_per_edge -1 ;
|
||||
float segmentLen = 1.0/segmentNum;
|
||||
// face sampling.
|
||||
float segmentLen = 1.0/segmentNum;
|
||||
// face sampling.
|
||||
for(i=0; i < n_samples_per_edge-1; i++)
|
||||
for(j=0; j < n_samples_per_edge-1-i; j++)
|
||||
{
|
||||
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
|
||||
CoordType V0((i+0)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+0)*segmentLen) ) ;
|
||||
CoordType V1((i+1)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+0)*segmentLen) ) ;
|
||||
CoordType V2((i+0)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+1)*segmentLen) ) ;
|
||||
n_samples++;
|
||||
if(randomFlag) {
|
||||
CoordType rb=RandomBarycentric();
|
||||
ps.AddFace(*fp, V0*rb[0]+V1*rb[1]+V2*rb[2]);
|
||||
} else ps.AddFace(*fp,(V0+V1+V2)/3.0);
|
||||
CoordType V0((i+0)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+0)*segmentLen) ) ;
|
||||
CoordType V1((i+1)*segmentLen,(j+0)*segmentLen, 1.0 - ((i+1)*segmentLen+(j+0)*segmentLen) ) ;
|
||||
CoordType V2((i+0)*segmentLen,(j+1)*segmentLen, 1.0 - ((i+0)*segmentLen+(j+1)*segmentLen) ) ;
|
||||
n_samples++;
|
||||
if(randomFlag) {
|
||||
CoordType rb=RandomBarycentric();
|
||||
ps.AddFace(*fp, V0*rb[0]+V1*rb[1]+V2*rb[2]);
|
||||
} else ps.AddFace(*fp,(V0+V1+V2)/3.0);
|
||||
|
||||
if( j < n_samples_per_edge-i-2 )
|
||||
{
|
||||
|
@ -848,47 +848,47 @@ static int SingleFaceSimilarDual(FacePointer fp, VertexSampler &ps, int n_sample
|
|||
if(randomFlag) {
|
||||
CoordType rb=RandomBarycentric();
|
||||
ps.AddFace(*fp, V3*rb[0]+V1*rb[1]+V2*rb[2]);
|
||||
} else ps.AddFace(*fp,(V3+V1+V2)/3.0);
|
||||
} else ps.AddFace(*fp,(V3+V1+V2)/3.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
return n_samples;
|
||||
}
|
||||
|
||||
// Similar sampling
|
||||
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
|
||||
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
|
||||
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
|
||||
// Similar sampling
|
||||
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
|
||||
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
|
||||
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
|
||||
// 1) you have already sampled both edges and vertices
|
||||
// 2) you are not going to take samples on edges and vertices.
|
||||
//
|
||||
// 2) you are not going to take samples on edges and vertices.
|
||||
//
|
||||
// In the first case you have to consider only internal vertices of the subdivided triangles (to avoid multiple sampling of edges and vertices).
|
||||
// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of points on an edge (vertex included)
|
||||
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
|
||||
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
|
||||
// into 9 smaller triangles and you get (1*2)/2 == 1 only a single internal point.
|
||||
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
|
||||
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
|
||||
// from which you get:
|
||||
//
|
||||
// 5 + sqrt( 1 + 8N )
|
||||
// k = -------------------
|
||||
// 5 + sqrt( 1 + 8N )
|
||||
// k = -------------------
|
||||
// 2
|
||||
//
|
||||
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
|
||||
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
|
||||
// So if you want N samples in a triangle, the number <k> of points on an edge (vertex included) should be simply:
|
||||
// k = 1 + sqrt(N)
|
||||
// examples:
|
||||
// k = 1 + sqrt(N)
|
||||
// examples:
|
||||
// N = 4 -> k = 3
|
||||
// N = 9 -> k = 4
|
||||
// N = 9 -> k = 4
|
||||
|
||||
|
||||
|
||||
//template <class MetroMesh>
|
||||
//void Sampling<MetroMesh>::SimilarFaceSampling()
|
||||
static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dualFlag, bool randomFlag)
|
||||
{
|
||||
{
|
||||
ScalarType area = Stat<MetroMesh>::ComputeMeshArea(m);
|
||||
ScalarType samplePerAreaUnit = sampleNum/area;
|
||||
|
||||
// Similar Triangles sampling.
|
||||
// Similar Triangles sampling.
|
||||
int n_samples_per_edge;
|
||||
double n_samples_decimal = 0.0;
|
||||
FaceIterator fi;
|
||||
|
@ -901,14 +901,14 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
if(n_samples>0)
|
||||
{
|
||||
// face sampling.
|
||||
if(dualFlag)
|
||||
{
|
||||
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); // original for non dual case
|
||||
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
|
||||
} else {
|
||||
n_samples_per_edge = (int)(sqrt((double)n_samples) +1.0);
|
||||
n_samples = SingleFaceSimilarDual(&*fi,ps, n_samples_per_edge,randomFlag);
|
||||
}
|
||||
if(dualFlag)
|
||||
{
|
||||
n_samples_per_edge = (int)((sqrt(1.0+8.0*(double)n_samples) +5.0)/2.0); // original for non dual case
|
||||
n_samples = SingleFaceSimilar(&*fi,ps, n_samples_per_edge);
|
||||
} else {
|
||||
n_samples_per_edge = (int)(sqrt((double)n_samples) +1.0);
|
||||
n_samples = SingleFaceSimilarDual(&*fi,ps, n_samples_per_edge,randomFlag);
|
||||
}
|
||||
}
|
||||
n_samples_decimal -= (double) n_samples;
|
||||
}
|
||||
|
@ -916,7 +916,7 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
|
||||
|
||||
// Rasterization fuction
|
||||
// Take a triangle
|
||||
// Take a triangle
|
||||
// T deve essere una classe funzionale che ha l'operatore ()
|
||||
// con due parametri x,y di tipo S esempio:
|
||||
// class Foo { public void operator()(int x, int y ) { ??? } };
|
||||
|
@ -933,16 +933,16 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
typedef typename MetroMesh::ScalarType S;
|
||||
// Calcolo bounding box
|
||||
Box2i bbox;
|
||||
Box2<S> bboxf;
|
||||
bboxf.Add(v0);
|
||||
bboxf.Add(v1);
|
||||
bboxf.Add(v2);
|
||||
|
||||
Box2<S> bboxf;
|
||||
bboxf.Add(v0);
|
||||
bboxf.Add(v1);
|
||||
bboxf.Add(v2);
|
||||
|
||||
bbox.min[0] = floor(bboxf.min[0]);
|
||||
bbox.min[1] = floor(bboxf.min[1]);
|
||||
bbox.max[0] = ceil(bboxf.max[0]);
|
||||
bbox.max[1] = ceil(bboxf.max[1]);
|
||||
|
||||
|
||||
// Calcolo versori degli spigoli
|
||||
Point2<S> d10 = v1 - v0;
|
||||
Point2<S> d21 = v2 - v1;
|
||||
|
@ -974,7 +974,7 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
edgeLength[0] = borderEdges[0].Length();
|
||||
edgeMask |= 1;
|
||||
}
|
||||
if (f.IsB(1)) {
|
||||
if (f.IsB(1)) {
|
||||
borderEdges[1] = Segment2<S>(v1, v2);
|
||||
edgeLength[1] = borderEdges[1].Length();
|
||||
edgeMask |= 2;
|
||||
|
@ -991,7 +991,7 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
for(int x=bbox.min[0]-1;x<=bbox.max[0]+1;++x)
|
||||
{
|
||||
bool in = false;
|
||||
S n[3] = { b0-db0-dn0, b1-db1-dn1, b2-db2-dn2};
|
||||
S n[3] = { b0-db0-dn0, b1-db1-dn1, b2-db2-dn2};
|
||||
for(int y=bbox.min[1]-1;y<=bbox.max[1]+1;++y)
|
||||
{
|
||||
if( ((n[0]>=0 && n[1]>=0 && n[2]>=0) || (n[0]<=0 && n[1]<=0 && n[2]<=0)) && (de != 0))
|
||||
|
@ -1013,10 +1013,10 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
// find the closest point (on some edge) that lies on the 2x2 squared neighborhood of the considered point
|
||||
for (int i=0; i<3; ++i)
|
||||
{
|
||||
if (edgeMask & (1 << i))
|
||||
{
|
||||
Point2<S> close;
|
||||
S dst;
|
||||
if (edgeMask & (1 << i))
|
||||
{
|
||||
Point2<S> close;
|
||||
S dst;
|
||||
if ( ((!flipped) && (n[i]<0)) ||
|
||||
( flipped && (n[i]>0)) )
|
||||
{
|
||||
|
@ -1030,7 +1030,7 @@ static void FaceSimilar(MetroMesh & m, VertexSampler &ps,int sampleNum, bool dua
|
|||
closeEdge = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (closeEdge >= 0)
|
||||
|
@ -1094,11 +1094,11 @@ static bool checkPoissonDisk(SampleSHT & sht, const Point3<ScalarType> & p, Scal
|
|||
GridGetInBox(sht, mv, bb, closests);
|
||||
|
||||
ScalarType r2 = radius*radius;
|
||||
for(int i=0; i<closests.size(); ++i)
|
||||
if(SquaredDistance(p,closests[i]->cP()) < r2)
|
||||
return false;
|
||||
for(int i=0; i<closests.size(); ++i)
|
||||
if(SquaredDistance(p,closests[i]->cP()) < r2)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
struct PoissonDiskParam
|
||||
|
@ -1141,15 +1141,15 @@ struct PoissonDiskParam
|
|||
static ScalarType ComputePoissonDiskRadius(MetroMesh &origMesh, int sampleNum)
|
||||
{
|
||||
ScalarType meshArea = Stat<MetroMesh>::ComputeMeshArea(origMesh);
|
||||
// Manage approximately the PointCloud Case, use the half a area of the bbox.
|
||||
// Manage approximately the PointCloud Case, use the half a area of the bbox.
|
||||
// TODO: If you had the radius a much better approximation could be done.
|
||||
if(meshArea ==0)
|
||||
if(meshArea ==0)
|
||||
{
|
||||
meshArea = (origMesh.bbox.DimX()*origMesh.bbox.DimY() +
|
||||
origMesh.bbox.DimX()*origMesh.bbox.DimZ() +
|
||||
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
|
||||
origMesh.bbox.DimY()*origMesh.bbox.DimZ());
|
||||
}
|
||||
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
|
||||
ScalarType diskRadius = sqrt(meshArea / (0.7 * M_PI * sampleNum)); // 0.7 is a density factor
|
||||
return diskRadius;
|
||||
}
|
||||
|
||||
|
@ -1175,7 +1175,7 @@ static void ComputePoissonSampleRadii(MetroMesh &sampleMesh, ScalarType diskRadi
|
|||
}
|
||||
|
||||
// Trivial approach that puts all the samples in a UG and removes all the ones that surely do not fit the
|
||||
static void PoissonDiskPruning(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh,
|
||||
static void PoissonDiskPruning(VertexSampler &ps, MetroMesh &montecarloMesh,
|
||||
ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
|
||||
{
|
||||
// spatial index of montecarlo samples - used to choose a new sample to insert
|
||||
|
@ -1187,7 +1187,8 @@ static void PoissonDiskPruning(MetroMesh &origMesh, VertexSampler &ps, MetroMesh
|
|||
int t0 = clock();
|
||||
|
||||
// inflating
|
||||
BoxType bb=origMesh.bbox;
|
||||
BoxType bb=montecarloMesh.bbox;
|
||||
assert(!bb.IsNull());
|
||||
bb.Offset(cellsize);
|
||||
|
||||
int sizeX = std::max(1.0f,bb.DimX() / cellsize);
|
||||
|
@ -1255,7 +1256,7 @@ static void PoissonDiskPruning(MetroMesh &origMesh, VertexSampler &ps, MetroMesh
|
|||
*
|
||||
* This algorithm is an adaptation of the algorithm of White et al. :
|
||||
*
|
||||
* "Poisson Disk Point Set by Hierarchical Dart Throwing"
|
||||
* "Poisson Disk Point Set by Hierarchical Dart Throwing"
|
||||
* K. B. White, D. Cline, P. K. Egbert,
|
||||
* IEEE Symposium on Interactive Ray Tracing, 2007,
|
||||
* 10-12 Sept. 2007, pp. 129-132.
|
||||
|
@ -1263,12 +1264,12 @@ static void PoissonDiskPruning(MetroMesh &origMesh, VertexSampler &ps, MetroMesh
|
|||
static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &montecarloMesh, ScalarType diskRadius, const struct PoissonDiskParam pp=PoissonDiskParam())
|
||||
{
|
||||
// int t0=clock();
|
||||
// spatial index of montecarlo samples - used to choose a new sample to insert
|
||||
// spatial index of montecarlo samples - used to choose a new sample to insert
|
||||
MontecarloSHT montecarloSHTVec[5];
|
||||
|
||||
|
||||
|
||||
// initialize spatial hash table for searching
|
||||
// initialize spatial hash table for searching
|
||||
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
|
||||
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
|
||||
ScalarType cellsize = 2.0f* diskRadius / sqrt(3.0);
|
||||
|
@ -1280,7 +1281,7 @@ static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &monte
|
|||
int sizeX = std::max(1.0f,bb.DimX() / cellsize);
|
||||
int sizeY = std::max(1.0f,bb.DimY() / cellsize);
|
||||
int sizeZ = std::max(1.0f,bb.DimZ() / cellsize);
|
||||
Point3i gridsize(sizeX, sizeY, sizeZ);
|
||||
Point3i gridsize(sizeX, sizeY, sizeZ);
|
||||
|
||||
// spatial hash table of the generated samples - used to check the radius constrain
|
||||
SampleSHT checkSHT;
|
||||
|
@ -1298,7 +1299,7 @@ static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &monte
|
|||
//
|
||||
|
||||
int level = 0;
|
||||
|
||||
|
||||
// initialize spatial hash to index pre-generated samples
|
||||
montecarloSHTVec[0].InitEmpty(bb, gridsize);
|
||||
// create active cell list
|
||||
|
@ -1307,12 +1308,12 @@ static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &monte
|
|||
montecarloSHTVec[0].UpdateAllocatedCells();
|
||||
|
||||
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
|
||||
if(pp.adaptiveRadiusFlag)
|
||||
ComputePoissonSampleRadii(montecarloMesh, diskRadius, pp.radiusVariance, pp.invertQuality);
|
||||
|
||||
if(pp.adaptiveRadiusFlag)
|
||||
ComputePoissonSampleRadii(montecarloMesh, diskRadius, pp.radiusVariance, pp.invertQuality);
|
||||
|
||||
do
|
||||
{
|
||||
MontecarloSHT &montecarloSHT = montecarloSHTVec[level];
|
||||
MontecarloSHT &montecarloSHT = montecarloSHTVec[level];
|
||||
|
||||
if(level>0)
|
||||
{// initialize spatial hash with the remaining points
|
||||
|
@ -1322,29 +1323,29 @@ static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &monte
|
|||
montecarloSHT.Add((*hi).second);
|
||||
montecarloSHT.UpdateAllocatedCells();
|
||||
}
|
||||
// shuffle active cells
|
||||
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
||||
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
|
||||
// shuffle active cells
|
||||
unsigned int (*p_myrandom)(unsigned int) = RandomInt;
|
||||
std::random_shuffle(montecarloSHT.AllocatedCells.begin(),montecarloSHT.AllocatedCells.end(), p_myrandom);
|
||||
|
||||
// generate a sample inside C by choosing one of the contained pre-generated samples
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
int removedCnt=montecarloSHT.hash_table.size();
|
||||
int addedCnt=checkSHT.hash_table.size();
|
||||
for (int i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
|
||||
int removedCnt=montecarloSHT.hash_table.size();
|
||||
int addedCnt=checkSHT.hash_table.size();
|
||||
for (int i = 0; i < montecarloSHT.AllocatedCells.size(); i++)
|
||||
{
|
||||
for(int j=0;j<4;j++)
|
||||
{
|
||||
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
|
||||
for(int j=0;j<4;j++)
|
||||
{
|
||||
if( montecarloSHT.EmptyCell(montecarloSHT.AllocatedCells[i]) ) continue;
|
||||
|
||||
// generate a sample chosen from the pre-generated one
|
||||
// generate a sample chosen from the pre-generated one
|
||||
typename MontecarloSHT::HashIterator hi = montecarloSHT.hash_table.find(montecarloSHT.AllocatedCells[i]);
|
||||
|
||||
if(hi==montecarloSHT.hash_table.end()) {break;}
|
||||
VertexPointer sp = (*hi).second;
|
||||
// vr spans between 3.0*r and r / 4.0 according to vertex quality
|
||||
ScalarType sampleRadius = diskRadius;
|
||||
if(pp.adaptiveRadiusFlag) sampleRadius = sp->Q();
|
||||
if (checkPoissonDisk(checkSHT, sp->cP(), sampleRadius))
|
||||
// vr spans between 3.0*r and r / 4.0 according to vertex quality
|
||||
ScalarType sampleRadius = diskRadius;
|
||||
if(pp.adaptiveRadiusFlag) sampleRadius = sp->Q();
|
||||
if (checkPoissonDisk(checkSHT, sp->cP(), sampleRadius))
|
||||
{
|
||||
ps.AddVert(*sp);
|
||||
montecarloSHT.RemoveCell(sp);
|
||||
|
@ -1354,17 +1355,17 @@ static void PoissonDisk(MetroMesh &origMesh, VertexSampler &ps, MetroMesh &monte
|
|||
else
|
||||
montecarloSHT.RemovePunctual(sp);
|
||||
}
|
||||
}
|
||||
}
|
||||
addedCnt = checkSHT.hash_table.size()-addedCnt;
|
||||
removedCnt = removedCnt-montecarloSHT.hash_table.size();
|
||||
|
||||
// proceed to the next level of subdivision
|
||||
// proceed to the next level of subdivision
|
||||
// increase grid resolution
|
||||
gridsize *= 2;
|
||||
|
||||
//
|
||||
//
|
||||
level++;
|
||||
} while(level < 5);
|
||||
} while(level < 5);
|
||||
}
|
||||
|
||||
//template <class MetroMesh>
|
||||
|
@ -1386,12 +1387,12 @@ static void Texture(MetroMesh & m, VertexSampler &ps, int textureWidth, int text
|
|||
|
||||
printf("Similar Triangles face sampling\n");
|
||||
for(fi=m.face.begin(); fi != m.face.end(); fi++)
|
||||
if (!fi->IsD())
|
||||
{
|
||||
Point2f ti[3];
|
||||
for(int i=0;i<3;++i)
|
||||
ti[i]=Point2f((*fi).WT(i).U() * textureWidth - 0.5, (*fi).WT(i).V() * textureHeight - 0.5);
|
||||
// - 0.5 constants are used to obtain correct texture mapping
|
||||
if (!fi->IsD())
|
||||
{
|
||||
Point2f ti[3];
|
||||
for(int i=0;i<3;++i)
|
||||
ti[i]=Point2f((*fi).WT(i).U() * textureWidth - 0.5, (*fi).WT(i).V() * textureHeight - 0.5);
|
||||
// - 0.5 constants are used to obtain correct texture mapping
|
||||
|
||||
SingleFaceRaster(*fi, ps, ti[0],ti[1],ti[2], correctSafePointsBaryCoords);
|
||||
}
|
||||
|
@ -1412,13 +1413,13 @@ static void RegularRecursiveOffset(MetroMesh & m, std::vector<Point3f> &pvec, Sc
|
|||
{
|
||||
Box3<ScalarType> bb=m.bbox;
|
||||
bb.Offset(offset*2.0);
|
||||
|
||||
|
||||
RRParam rrp;
|
||||
|
||||
rrp.markerFunctor.SetMesh(&m);
|
||||
|
||||
rrp.gM.Set(m.face.begin(),m.face.end(),bb);
|
||||
|
||||
|
||||
|
||||
rrp.offset=offset;
|
||||
rrp.minDiag=minDiag;
|
||||
|
@ -1428,9 +1429,9 @@ static void RegularRecursiveOffset(MetroMesh & m, std::vector<Point3f> &pvec, Sc
|
|||
static void SubdivideAndSample(MetroMesh & m, std::vector<Point3f> &pvec, const Box3<ScalarType> bb, RRParam &rrp, float curDiag)
|
||||
{
|
||||
Point3f startPt = bb.Center();
|
||||
|
||||
ScalarType dist;
|
||||
// Compute mesh point nearest to bb center
|
||||
|
||||
ScalarType dist;
|
||||
// Compute mesh point nearest to bb center
|
||||
FaceType *nearestF=0;
|
||||
float dist_upper_bound = curDiag+rrp.offset;
|
||||
Point3f closestPt;
|
||||
|
@ -1438,32 +1439,32 @@ static void SubdivideAndSample(MetroMesh & m, std::vector<Point3f> &pvec, const
|
|||
dist=dist_upper_bound;
|
||||
nearestF = rrp.gM.GetClosest(PDistFunct,rrp.markerFunctor,startPt,dist_upper_bound,dist,closestPt);
|
||||
curDiag /=2;
|
||||
if(dist < dist_upper_bound)
|
||||
{
|
||||
if(curDiag/3 < rrp.minDiag) //store points only for the last level of recursion (?)
|
||||
{
|
||||
if(rrp.offset==0)
|
||||
pvec.push_back(closestPt);
|
||||
else
|
||||
{
|
||||
if(dist>rrp.offset) // points below the offset threshold cannot be displaced at the right offset distance, we can only make points nearer.
|
||||
{
|
||||
Point3f delta = startPt-closestPt;
|
||||
pvec.push_back(closestPt+delta*(rrp.offset/dist));
|
||||
}
|
||||
}
|
||||
}
|
||||
if(curDiag < rrp.minDiag) return;
|
||||
Point3f hs = (bb.max-bb.min)/2;
|
||||
for(int i=0;i<2;i++)
|
||||
for(int j=0;j<2;j++)
|
||||
for(int k=0;k<2;k++)
|
||||
SubdivideAndSample(m,pvec,
|
||||
Box3f(Point3f( bb.min[0]+i*hs[0], bb.min[1]+j*hs[1], bb.min[2]+k*hs[2]),
|
||||
Point3f(startPt[0]+i*hs[0],startPt[1]+j*hs[1],startPt[2]+k*hs[2])),rrp,curDiag);
|
||||
|
||||
}
|
||||
}
|
||||
if(dist < dist_upper_bound)
|
||||
{
|
||||
if(curDiag/3 < rrp.minDiag) //store points only for the last level of recursion (?)
|
||||
{
|
||||
if(rrp.offset==0)
|
||||
pvec.push_back(closestPt);
|
||||
else
|
||||
{
|
||||
if(dist>rrp.offset) // points below the offset threshold cannot be displaced at the right offset distance, we can only make points nearer.
|
||||
{
|
||||
Point3f delta = startPt-closestPt;
|
||||
pvec.push_back(closestPt+delta*(rrp.offset/dist));
|
||||
}
|
||||
}
|
||||
}
|
||||
if(curDiag < rrp.minDiag) return;
|
||||
Point3f hs = (bb.max-bb.min)/2;
|
||||
for(int i=0;i<2;i++)
|
||||
for(int j=0;j<2;j++)
|
||||
for(int k=0;k<2;k++)
|
||||
SubdivideAndSample(m,pvec,
|
||||
Box3f(Point3f( bb.min[0]+i*hs[0], bb.min[1]+j*hs[1], bb.min[2]+k*hs[2]),
|
||||
Point3f(startPt[0]+i*hs[0],startPt[1]+j*hs[1],startPt[2]+k*hs[2])),rrp,curDiag);
|
||||
|
||||
}
|
||||
}
|
||||
}; // end class
|
||||
|
||||
|
||||
|
@ -1522,4 +1523,4 @@ void PoissonSampling(MeshType &m, // the mesh that has to be sampled
|
|||
} // end namespace vcg
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue