Timing functions and stat collecting for voronoi atlas

This commit is contained in:
Paolo Cignoni 2012-07-03 09:13:07 +00:00
parent b08fda7641
commit e362d54a25
1 changed files with 42 additions and 21 deletions

View File

@ -4,6 +4,7 @@
#include<vcg/complex/algorithms/parametrization/uv_utils.h> #include<vcg/complex/algorithms/parametrization/uv_utils.h>
#include<vcg/complex/algorithms/parametrization/distortion.h> #include<vcg/complex/algorithms/parametrization/distortion.h>
#include<vcg/space/poly_packer.h> #include<vcg/space/poly_packer.h>
#include<vcg/complex/append.h>
#include<vcg/complex/algorithms/update/texture.h> #include<vcg/complex/algorithms/update/texture.h>
#include<vcg/complex/algorithms/point_sampling.h> #include<vcg/complex/algorithms/point_sampling.h>
#include<vcg/complex/algorithms/voronoi_clustering.h> #include<vcg/complex/algorithms/voronoi_clustering.h>
@ -28,8 +29,6 @@ public:
class VoroEdge : public Edge< VoroUsedTypes>{}; class VoroEdge : public Edge< VoroUsedTypes>{};
class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {}; class VoroMesh : public tri::TriMesh< std::vector<VoroVertex>, std::vector<VoroFace> , std::vector<VoroEdge> > {};
typedef typename VoroMesh::FaceIterator FaceIterator; typedef typename VoroMesh::FaceIterator FaceIterator;
typedef typename VoroMesh::VertexType VertexType; typedef typename VoroMesh::VertexType VertexType;
typedef typename VoroMesh::FaceType FaceType; typedef typename VoroMesh::FaceType FaceType;
@ -80,12 +79,36 @@ public:
public: public:
struct VoronoiAtlasParam
{
VoronoiAtlasParam()
{
sampleNum=10;
overlap=false;
}
struct Stat
{
void clear() { totalTime=unwrapTime=voronoiTime=samplingTime=0;}
int totalTime;
int unwrapTime;
int voronoiTime;
int samplingTime;
};
int sampleNum;
bool overlap;
Stat vas;
};
// Main parametrization function: // Main parametrization function:
// it takes a startMesh, copy it and // it takes a startMesh, copy it and
static void Build( MeshType &startMesh, MeshType &paraMesh, int sampleNum, bool overlap) static void Build( MeshType &startMesh, MeshType &paraMesh, VoronoiAtlasParam &pp)
{ {
pp.vas.clear();
int t0=clock();
VoroMesh m; // the mesh used for the processing is a copy of the passed one. VoroMesh m; // the mesh used for the processing is a copy of the passed one.
tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh); tri::Append<VoroMesh, MeshType>::Mesh(m, startMesh);
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m); tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
@ -95,11 +118,16 @@ public:
tri::UpdateBounding<VoroMesh>::Box(m); tri::UpdateBounding<VoroMesh>::Box(m);
std::vector<VoroMesh *> meshRegionVec; std::vector<VoroMesh *> meshRegionVec;
std::vector< std::vector<Point2f> > uvBorders; std::vector< std::vector<Point2f> > uvBorders;
// Main processing loop
do do
{ {
int st0=clock();
std::vector<Point3f> PoissonSamples; std::vector<Point3f> PoissonSamples;
float diskRadius=0; float diskRadius=0;
tri::PoissonSampling(m,PoissonSamples,sampleNum,diskRadius); tri::PoissonSampling(m,PoissonSamples,pp.sampleNum,diskRadius);
int st1=clock();
pp.vas.samplingTime+= st1-st0;
printf("Sampling created a new mesh of %lu points\n",PoissonSamples.size()); printf("Sampling created a new mesh of %lu points\n",PoissonSamples.size());
std::vector<VertexType *> seedVec; std::vector<VertexType *> seedVec;
tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec); tri::VoronoiProcessing<VoroMesh>::SeedToVertexConversion(m,PoissonSamples,seedVec);
@ -107,23 +135,20 @@ public:
tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec); tri::VoronoiProcessing<VoroMesh>::ComputePerVertexSources(m,seedVec);
tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m); tri::VoronoiProcessing<VoroMesh>::FaceAssociateRegion(m);
tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,seedVec,true); tri::VoronoiProcessing<VoroMesh>::VoronoiColoring(m,seedVec,true);
tri::io::ExporterPLY<VoroMesh>::Save(m,"dd.ply",tri::io::Mask::IOM_VERTCOLOR);
std::vector<VoroMesh *> badRegionVec; std::vector<VoroMesh *> badRegionVec;
int st2=clock();
pp.vas.voronoiTime+=st2-st1;
for(size_t i=0; i<seedVec.size();++i) for(size_t i=0; i<seedVec.size();++i)
{ {
VoroMesh *rm = new VoroMesh(); VoroMesh *rm = new VoroMesh();
int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]); int selCnt = tri::VoronoiProcessing<VoroMesh>::FaceSelectAssociateRegion(m,seedVec[i]);
assert(selCnt>0); assert(selCnt>0);
if(overlap){ if(pp.overlap){
tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m); tri::UpdateSelection<VoroMesh>::VertexFromFaceLoose(m);
tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m); tri::UpdateSelection<VoroMesh>::FaceFromVertexLoose(m);
} }
tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true); tri::Append<VoroMesh,VoroMesh>::Mesh(*rm, m, true);
char buf[100]; sprintf(buf,"reg%02i.ply",i); int tp0=clock();
tri::io::ExporterPLY<VoroMesh>::Save(*rm,buf,tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
tri::PoissonSolver<VoroMesh> PS(*rm); tri::PoissonSolver<VoroMesh> PS(*rm);
if(PS.IsFeaseable()) if(PS.IsFeaseable())
{ {
@ -142,6 +167,8 @@ public:
qDebug("ACH - mesh %i is NOT homeomorphic to a disk\n",i); qDebug("ACH - mesh %i is NOT homeomorphic to a disk\n",i);
badRegionVec.push_back(rm); badRegionVec.push_back(rm);
} }
int tp1=clock();
pp.vas.unwrapTime +=tp1-tp0;
} }
VoroMesh *rm = new VoroMesh(); VoroMesh *rm = new VoroMesh();
@ -154,24 +181,19 @@ public:
badRegionVec.push_back(rm); badRegionVec.push_back(rm);
} }
m.Clear(); m.Clear();
sampleNum = 10; pp.sampleNum = 10;
if(!badRegionVec.empty()) if(!badRegionVec.empty())
{ {
for(size_t i=0;i<badRegionVec.size();++i) for(size_t i=0;i<badRegionVec.size();++i)
if(badRegionVec[i]->fn>10) if(badRegionVec[i]->fn>10)
tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false); tri::Append<VoroMesh,VoroMesh>::Mesh(m, *badRegionVec[i], false);
// tri::io::ExporterPLY<VoroMesh>::Save(m,"buf.ply",tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
tri::Clean<VoroMesh>::RemoveDuplicateFace(m); tri::Clean<VoroMesh>::RemoveDuplicateFace(m);
tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m); tri::Clean<VoroMesh>::RemoveUnreferencedVertex(m);
tri::UpdateNormals<VoroMesh>::PerVertexPerFace(m);
tri::Allocator<VoroMesh>::CompactVertexVector(m); tri::Allocator<VoroMesh>::CompactVertexVector(m);
tri::Allocator<VoroMesh>::CompactFaceVector(m); tri::Allocator<VoroMesh>::CompactFaceVector(m);
qDebug("Still %i faces (from %i regions) to process\n",m.fn,badRegionVec.size());
} }
} while (m.fn>0); } while (m.fn>0);
// tri::io::ExporterPLY<VoroMesh>::Save(m,"vorocolor.ply",tri::io::Mask::IOM_VERTCOLOR);
std::vector<Similarity2f> trVec; std::vector<Similarity2f> trVec;
Point2f finalSize; Point2f finalSize;
@ -190,13 +212,12 @@ public:
fi->WT(j).V()=newpp[1]/1024.0f; fi->WT(j).V()=newpp[1]/1024.0f;
} }
} }
char buf[32]; sprintf(buf,"region_aa_%03i.ply",i);
// tri::io::ExporterPLY<VoroMesh>::Save(*rm,buf,tri::io::Mask::IOM_VERTCOLOR|tri::io::Mask::IOM_WEDGTEXCOORD );
tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false); tri::Append<MeshType,VoroMesh>::Mesh(paraMesh, *rm, false);
} }
int t2=clock();
pp.vas.totalTime=t2-t0;
} }
}; }; //end
} // end namespace vcg } // end namespace vcg