Added an implementation of the Dave Rusin’s Disco Ball algorithm for the generation of regular points on a sphere.
This commit is contained in:
parent
a90b2a79ef
commit
e6e7999c6c
|
@ -8,7 +8,7 @@
|
|||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
|
@ -34,7 +34,7 @@ $Log: gen_normal.h,v $
|
|||
namespace vcg {
|
||||
|
||||
template <class ScalarType>
|
||||
class GenNormal
|
||||
class GenNormal
|
||||
{
|
||||
public:
|
||||
typedef Point3<ScalarType> Point3x;
|
||||
|
@ -45,8 +45,8 @@ static void Random(int vn, std::vector<Point3<ScalarType > > &NN)
|
|||
while(NN.size()<vn)
|
||||
{
|
||||
Point3x pp(((float)rand())/RAND_MAX,
|
||||
((float)rand())/RAND_MAX,
|
||||
((float)rand())/RAND_MAX);
|
||||
((float)rand())/RAND_MAX,
|
||||
((float)rand())/RAND_MAX);
|
||||
pp=pp*2.0-Point3x(1,1,1);
|
||||
if(pp.SquaredNorm()<1)
|
||||
{
|
||||
|
@ -69,7 +69,7 @@ static void UniformCone(int vn, std::vector<Point3<ScalarType > > &NN, ScalarTyp
|
|||
Uniform(vn/Ratio,NNT);
|
||||
printf("asked %i got %i (expecting %i instead of %i)\n", int(vn/Ratio), NNT.size(), int(NNT.size()*Ratio), vn);
|
||||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||||
|
||||
|
||||
ScalarType DotProd = cos(AngleRad);
|
||||
for(vi=NNT.begin();vi!=NNT.end();++vi)
|
||||
{
|
||||
|
@ -77,6 +77,51 @@ static void UniformCone(int vn, std::vector<Point3<ScalarType > > &NN, ScalarTyp
|
|||
}
|
||||
}
|
||||
|
||||
// This is an Implementation of the Dave Rusin’s Disco Ball algorithm
|
||||
// You can spread the points as follows:
|
||||
// Put N+1 points on the meridian from north to south poles, equally spaced.
|
||||
// If you swing this meridian around the sphere, you'll sweep out the entire
|
||||
// surface; in the process, each of the points will sweep out a circle. You
|
||||
// can show that the ith point will sweep out a circle of radius sin(pi i/N).
|
||||
// If you space points equally far apart on this circle, keeping the
|
||||
// displacement roughly the same as on that original meridian, you'll be
|
||||
// able to fit about 2N sin(pi i/N) points here. This process will put points
|
||||
// pretty evenly spaced on the sphere; the number of such points is about
|
||||
// 2+ 2N*Sum(i=1 to N-1) sin(pi i/N).
|
||||
// The closed form of this summation
|
||||
// 2.0 - ( (2.0*N * sin (M_PI/N))/(cos(M_PI/N) - 1.0));
|
||||
static void Regular(int vn, std::vector<Point3<ScalarType > > &NN)
|
||||
{
|
||||
// Guess the right N
|
||||
ScalarType N=0;
|
||||
|
||||
for(N=1;N<vn;++N)
|
||||
{
|
||||
ScalarType expectedPoints = 2.0 - ( (2.0*N * sin (M_PI/N))/(cos(M_PI/N) - 1.0));
|
||||
qDebug("N %f -> %f",N,expectedPoints);
|
||||
if(expectedPoints >= vn) break;
|
||||
}
|
||||
|
||||
|
||||
ScalarType VerticalAngle = M_PI / N;
|
||||
NN.push_back(Point3<ScalarType>(0,0,1.0));
|
||||
for (int i =1; i<N; ++i)
|
||||
{
|
||||
// Z is the north/south axis
|
||||
ScalarType HorizRadius = sin(i*VerticalAngle);
|
||||
ScalarType CircleLength = 2.0 * M_PI * HorizRadius;
|
||||
ScalarType Z = cos(i*VerticalAngle);
|
||||
ScalarType PointNumPerCircle = floor( CircleLength / VerticalAngle);
|
||||
ScalarType HorizontalAngle = 2.0*M_PI/PointNumPerCircle;
|
||||
for(ScalarType j=0;j<PointNumPerCircle;++j)
|
||||
{
|
||||
ScalarType X = cos(j*HorizontalAngle)*HorizRadius;
|
||||
ScalarType Y = sin(j*HorizontalAngle)*HorizRadius;
|
||||
NN.push_back(Point3<ScalarType>(X,Y,Z));
|
||||
}
|
||||
}
|
||||
NN.push_back(Point3<ScalarType>(0,0,-1.0));
|
||||
}
|
||||
|
||||
static void Uniform(int vn, std::vector<Point3<ScalarType > > &NN)
|
||||
{
|
||||
|
@ -99,11 +144,11 @@ static void Perturb(std::vector<Point3<ScalarType > > &NN)
|
|||
float width=0.2f/sqrt(float(NN.size()));
|
||||
|
||||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||||
for(vi=NN.begin(); vi!=NN.end();++vi)
|
||||
for(vi=NN.begin(); vi!=NN.end();++vi)
|
||||
{
|
||||
Point3x pp(((float)rand())/RAND_MAX,
|
||||
((float)rand())/RAND_MAX,
|
||||
((float)rand())/RAND_MAX);
|
||||
((float)rand())/RAND_MAX,
|
||||
((float)rand())/RAND_MAX);
|
||||
pp=pp*2.0-Point3x(1,1,1);
|
||||
pp*=width;
|
||||
(*vi)+=pp;
|
||||
|
@ -118,20 +163,20 @@ Assume che tutte normale in ingresso sia normalizzata;
|
|||
*/
|
||||
static int BestMatchingNormal(const Point3x &n, std::vector<Point3x> &nv)
|
||||
{
|
||||
int ret=-1;
|
||||
ScalarType bestang=-1;
|
||||
ScalarType cosang;
|
||||
typename std::vector<Point3x>::iterator ni;
|
||||
for(ni=nv.begin();ni!=nv.end();++ni)
|
||||
{
|
||||
cosang=(*ni).dot(n);
|
||||
if(cosang>bestang) {
|
||||
bestang=cosang;
|
||||
ret=ni-nv.begin();
|
||||
}
|
||||
}
|
||||
int ret=-1;
|
||||
ScalarType bestang=-1;
|
||||
ScalarType cosang;
|
||||
typename std::vector<Point3x>::iterator ni;
|
||||
for(ni=nv.begin();ni!=nv.end();++ni)
|
||||
{
|
||||
cosang=(*ni).dot(n);
|
||||
if(cosang>bestang) {
|
||||
bestang=cosang;
|
||||
ret=ni-nv.begin();
|
||||
}
|
||||
}
|
||||
assert(ret>=0 && ret <int(nv.size()));
|
||||
return ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
@ -156,7 +201,7 @@ class OctaLevel
|
|||
if(lev==0)
|
||||
{
|
||||
Val(0,0)=Point3x( 0, 0,-1); Val(0,1)=Point3x( 0, 1, 0); Val(0,2)=Point3x( 0, 0,-1);
|
||||
|
||||
|
||||
Val(1,0)=Point3x(-1, 0, 0); Val(1,1)=Point3x( 0, 0, 1); Val(1,2)=Point3x( 1, 0, 0);
|
||||
|
||||
Val(2,0)=Point3x( 0, 0,-1); Val(2,1)=Point3x( 0,-1, 0); Val(2,2)=Point3x( 0, 0,-1);
|
||||
|
@ -169,19 +214,19 @@ class OctaLevel
|
|||
for(i=0;i<sz;++i)
|
||||
for(j=0;j<sz;++j)
|
||||
{
|
||||
if((i%2)==0 && (j%2)==0)
|
||||
if((i%2)==0 && (j%2)==0)
|
||||
Val(i,j)=tmp.Val(i/2,j/2);
|
||||
if((i%2)!=0 && (j%2)==0)
|
||||
if((i%2)!=0 && (j%2)==0)
|
||||
Val(i,j)=(tmp.Val(i/2+0,j/2)+tmp.Val(i/2+1,j/2))/2.0;
|
||||
if((i%2)==0 && (j%2)!=0)
|
||||
if((i%2)==0 && (j%2)!=0)
|
||||
Val(i,j)=(tmp.Val(i/2,j/2+0)+tmp.Val(i/2,j/2+1))/2.0;
|
||||
if((i%2)!=0 && (j%2)!=0)
|
||||
if((i%2)!=0 && (j%2)!=0)
|
||||
Val(i,j)=(tmp.Val(i/2+0,j/2+0)+tmp.Val(i/2+0,j/2+1)+tmp.Val(i/2+1,j/2+0)+tmp.Val(i/2+1,j/2+1))/4.0;
|
||||
}
|
||||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||||
for(vi=v.begin(); vi!=v.end();++vi)
|
||||
typename std::vector<Point3<ScalarType> >::iterator vi;
|
||||
for(vi=v.begin(); vi!=v.end();++vi)
|
||||
(*vi).Normalize();
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue