Add methods to detect and remove the outliers from a point cloud
This commit is contained in:
parent
e04ee78f74
commit
ea23077621
|
@ -0,0 +1,132 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004-2015 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
#ifndef VCG_TRI_OUTLIERS__H
|
||||
#define VCG_TRI_OUTLIERS_H
|
||||
|
||||
#include <vcg/space/index/kdtree/kdtree.h>
|
||||
|
||||
|
||||
namespace vcg
|
||||
{
|
||||
|
||||
namespace tri
|
||||
{
|
||||
|
||||
template <class MeshType>
|
||||
class OutlierRemoval
|
||||
{
|
||||
public:
|
||||
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename vcg::KdTree<ScalarType> KdTreeType;
|
||||
typedef typename vcg::KdTree<ScalarType>::PriorityQueue PriorityQueue;
|
||||
|
||||
|
||||
/**
|
||||
Compute an outlier probability value for each vertex of the mesh using the approch
|
||||
in the paper "LoOP: Local Outlier Probabilities". The outlier probability is stored in the
|
||||
vertex attribute "outlierScore". It use the input kdtree to find the kNearest of each vertex.
|
||||
|
||||
"LoOP: local outlier probabilities" by Hans-Peter Kriegel et al.
|
||||
Proceedings of the 18th ACM conference on Information and knowledge management
|
||||
*/
|
||||
static void ComputeLoOPScore(MeshType& mesh, KdTreeType& kdTree, int kNearest)
|
||||
{
|
||||
vcg::tri::RequireCompactness(mesh);
|
||||
CMesh::PerVertexAttributeHandle<ScalarType> outlierScore = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
|
||||
CMesh::PerVertexAttributeHandle<ScalarType> sigma = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("sigma"));
|
||||
CMesh::PerVertexAttributeHandle<ScalarType> plof = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("plof"));
|
||||
|
||||
#pragma omp parallel for schedule(dynamic, 10)
|
||||
for (int i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
PriorityQueue queue;
|
||||
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
|
||||
ScalarType sum = 0;
|
||||
for (int j = 0; j < queue.getNofElements(); j++)
|
||||
sum += queue.getWeight(j);
|
||||
sum /= (queue.getNofElements());
|
||||
sigma[i] = sqrt(sum);
|
||||
}
|
||||
|
||||
float mean = 0;
|
||||
#pragma omp parallel for reduction(+: mean) schedule(dynamic, 10)
|
||||
for (int i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
PriorityQueue queue;
|
||||
kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue);
|
||||
ScalarType sum = 0;
|
||||
for (int j = 0; j < queue.getNofElements(); j++)
|
||||
sum += sigma[queue.getIndex(j)];
|
||||
sum /= (queue.getNofElements());
|
||||
plof[i] = sigma[i] / sum - 1.0f;
|
||||
mean += plof[i] * plof[i];
|
||||
}
|
||||
|
||||
mean /= mesh.vert.size();
|
||||
mean = sqrt(mean);
|
||||
|
||||
#pragma omp parallel for schedule(dynamic, 10)
|
||||
for (int i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
ScalarType value = plof[i] / (mean * sqrt(2.0f));
|
||||
double dem = 1.0 + 0.278393 * value;
|
||||
dem += 0.230389 * value * value;
|
||||
dem += 0.000972 * value * value * value;
|
||||
dem += 0.078108 * value * value * value * value;
|
||||
ScalarType op = max(0.0, 1.0 - 1.0 / dem);
|
||||
outlierScore[i] = op;
|
||||
}
|
||||
|
||||
vcg::tri::Allocator<CMesh>::DeletePerVertexAttribute(mesh, std::string("sigma"));
|
||||
vcg::tri::Allocator<CMesh>::DeletePerVertexAttribute(mesh, std::string("plof"));
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
Delete all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0].
|
||||
*/
|
||||
static int DeleteLoOPOutliers(MeshType& mesh, KdTreeType& kdTree, int kNearest, float threshold)
|
||||
{
|
||||
ComputeLoOPScore(mesh, kdTree, kNearest);
|
||||
int count = 0;
|
||||
CMesh::PerVertexAttributeHandle<ScalarType> outlierScore = vcg::tri::Allocator<MeshType>::GetPerVertexAttribute<ScalarType>(mesh, std::string("outlierScore"));
|
||||
for (int i = 0; i < mesh.vert.size(); i++)
|
||||
{
|
||||
if (outlierScore[i] > threshold)
|
||||
{
|
||||
vcg::tri::Allocator<CMesh>::DeleteVertex(mesh, mesh.vert[i]);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
vcg::tri::Allocator<CMesh>::CompactVertexVector(mesh);
|
||||
vcg::tri::Allocator<CMesh>::DeletePerVertexAttribute(mesh, std::string("outlierScore"));
|
||||
return count;
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace tri
|
||||
|
||||
} // end namespace vcg
|
||||
|
||||
#endif // VCG_TRI_OUTLIERS_H
|
Loading…
Reference in New Issue