Bitquad_* first version.
This commit is contained in:
parent
54f5418be2
commit
f4bc92f6f7
|
@ -0,0 +1,698 @@
|
|||
|
||||
//#include <vcg/complex/trimesh/bitquad_support.h>
|
||||
|
||||
/** BIT-QUAD creation support:
|
||||
a collection of methods that,
|
||||
starting from a triangular mesh, will create your quad-only or quad-domainant mesh.
|
||||
|
||||
They all require:
|
||||
- per face Q, and FF connectivity, 2-manyfold meshes,
|
||||
- and tri- or quad- meshes (no penta, etc) (if in need, use MakeBitTriOnly)
|
||||
|
||||
|
||||
[ list of available methods: ]
|
||||
|
||||
void MakeBitQuadOnlyByRefine(Mesh &m)
|
||||
- adds a vertex for each tri or quad present
|
||||
- thus, miminal complexity increase is the mesh is quad-dominant already
|
||||
- old non-border edges are made faux
|
||||
- never fails
|
||||
|
||||
void MakeBitQuadOnlyByCatmullClark(Mesh &m)
|
||||
- adds a vertex in each (non-faux) edge.
|
||||
- twice complexity increase w.r.t. "ByRefine" method.
|
||||
- preserves edges: old edges are still edges
|
||||
- never fails
|
||||
|
||||
bool MakeBitQuadOnlyByFlip(Mesh &m [, int maxdist] )
|
||||
- does not increase # vertices, just flips edges
|
||||
- call in a loop until it returns true (temporary hack)
|
||||
- fails if number of triangle is odd (only happens in open meshes)
|
||||
- add "StepByStep" to method name if you want it to make a single step (debugging purposes)
|
||||
|
||||
bool MakeTriEvenBySplit(Mesh& m)
|
||||
bool MakeTriEvenByDelete(Mesh& m)
|
||||
- two simple variants that either delete or split *at most one* border face
|
||||
so that the number of tris will be made even. Return true if it did it.
|
||||
- useful to use the previous method, when mesh is still all triangle
|
||||
|
||||
void MakeBitQuadDominant(Mesh &m, int level)
|
||||
- just merges traingle pairs into quads, trying its best
|
||||
- various heuristic available, see descr. for parameter "level"
|
||||
- provides good starting point for make-Quad-Only methods
|
||||
- uses an ad-hoc measure for "quad quality" (which is hard-wired, for now)
|
||||
|
||||
void MakeBitTriOnly(Mesh &m)
|
||||
- inverse process: returns to tri-only mesh
|
||||
|
||||
|
||||
(more info in comments before each method)
|
||||
|
||||
*/
|
||||
|
||||
namespace vcg{namespace tri{
|
||||
|
||||
|
||||
// helper function:
|
||||
// given a triangle, merge it with its best neightboord to form a quad
|
||||
template <class Face, bool override>
|
||||
static void selectBestQuadDiag(Face *fi){
|
||||
|
||||
typedef typename Face::ScalarType ScalarType;
|
||||
typedef typename Face::VertexType VertexType;
|
||||
if (!override) {
|
||||
if (fi->IsAnyF()) return;
|
||||
}
|
||||
|
||||
// select which edge to make faux (if any)...
|
||||
int whichEdge = -1;
|
||||
ScalarType bestScore = fi->Q();
|
||||
|
||||
whichEdge=-1;
|
||||
|
||||
for (int k=0; k<3; k++){
|
||||
|
||||
// todo: check creases? (continue if edge k is a crease)
|
||||
|
||||
if (!override) {
|
||||
if (fi->FFp(k)->IsAnyF()) continue;
|
||||
}
|
||||
if (fi->FFp(k)==fi) continue; // never make a border faux
|
||||
|
||||
ScalarType score = quadQuality( &*fi, k );
|
||||
if (override) {
|
||||
// don't override anyway iff other face has a better match
|
||||
if (score < fi->FFp(k)->Q()) continue;
|
||||
}
|
||||
if (score>bestScore) {
|
||||
bestScore = score;
|
||||
whichEdge = k;
|
||||
}
|
||||
}
|
||||
|
||||
// ...and make it faux
|
||||
if (whichEdge>=0) {
|
||||
//if (override && fi->FFp(whichEdge)->IsAnyF()) {
|
||||
// new score is the average of both scores
|
||||
// fi->Q() = fi->FFp(whichEdge)->Q() = ( bestScore + fi->FFp(whichEdge)->Q() ) /2;
|
||||
//} else {
|
||||
//}
|
||||
|
||||
if (override) {
|
||||
// clear any faux edge of the other face
|
||||
for (int k=0; k<3; k++)
|
||||
if (fi->FFp(whichEdge)->IsF(k)) {
|
||||
fi->FFp(whichEdge)->ClearF(k);
|
||||
fi->FFp(whichEdge)->FFp(k)->ClearF( fi->FFp(whichEdge)->FFi(k) );
|
||||
fi->FFp(whichEdge)->FFp(k)->Q()=0.0; // other face's ex-buddy is now single and sad :(
|
||||
}
|
||||
|
||||
// clear all faux edges of this face...
|
||||
for (int k=0; k<3; k++)
|
||||
if (fi->IsF(k)) {
|
||||
fi->ClearF(k);
|
||||
fi->FFp(k)->ClearF( fi->FFi(k) );
|
||||
fi->FFp(k)->Q()= 0.0; // my ex-buddy is now sad
|
||||
}
|
||||
}
|
||||
// set (new?) quad
|
||||
fi->SetF(whichEdge);
|
||||
fi->FFp(whichEdge)->SetF( fi->FFi(whichEdge) );
|
||||
fi->Q() = fi->FFp(whichEdge)->Q() = bestScore;
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
// helper funcion:
|
||||
// a pass though all triangles to merge triangle pairs into quads
|
||||
template <class Mesh, bool override> // override previous decisions?
|
||||
static void MakeQuadDominantPass(Mesh &m){
|
||||
typedef typename Mesh::FaceType Face;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
selectBestQuadDiag<Face,override>(&(*fi));
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// make tri count even by splitting a single triangle...
|
||||
template <class Mesh>
|
||||
bool MakeTriEvenBySplit(Mesh& m){
|
||||
if (m.fn%2==0) return false; // it's already Even
|
||||
assert(0); // todo!
|
||||
}
|
||||
|
||||
// make tri count even by delete...
|
||||
template <class Mesh>
|
||||
bool MakeTriEvenByDelete(Mesh& m)
|
||||
{
|
||||
|
||||
if (m.fn%2==0) return false; // it's already Even
|
||||
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::FaceType Face;
|
||||
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||||
for (int k=0; k<3; k++) {
|
||||
if (fi->FFp(k) == &* fi) {
|
||||
|
||||
// mark the two old neight as border and not faux
|
||||
for (int h=1; h<3; h++) {
|
||||
int kh=(k+h)%3;
|
||||
int j = fi->FFi( kh );
|
||||
Face *f = fi->FFp(kh);
|
||||
if (f != &* fi) {
|
||||
f->FFp( j ) = f;
|
||||
f->FFi( j ) = j;
|
||||
f->ClearF(j);
|
||||
}
|
||||
}
|
||||
|
||||
// delete found face
|
||||
Allocator<Mesh>::DeleteFace(m,*fi);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert(0); // no border face found? then how could the number of tri be Odd?
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
Given a mesh, makes it bit trianglular (makes all edges NOT faux)
|
||||
*/
|
||||
template <class Mesh>
|
||||
void MakeBitTriOnly(Mesh &m){
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||||
fi->ClearAllF();
|
||||
}
|
||||
}
|
||||
|
||||
/** given a quad-and-tree mesh, enforces the "faux edge is 2nd edge" convention.
|
||||
* Requires (and updates): FV and FF structure
|
||||
* Updates: faux flags
|
||||
* Updates: per wedge attributes, if any
|
||||
* Other connectivity structures, and per edge and per wedge flags are ignored
|
||||
*/
|
||||
template <class Mesh>
|
||||
bool MakeBitTriQuadConventional(Mesh &m){
|
||||
assert(0); // todo
|
||||
}
|
||||
|
||||
/* returns true if mesh is a "conventional" quad mesh.
|
||||
I.e. if it is all quads, with third edge faux fora all triangles*/
|
||||
template <class Mesh>
|
||||
bool IsBitTriQuadConventional(Mesh &m){
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::FaceType FaceType;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
if (fi->IsAnyF())
|
||||
if ( fi->Flags() & ( FaceType::FAUX012 ) != FaceType::FAUX2 ) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
makes any mesh quad only by refining it so that a quad is created over all
|
||||
previous diags
|
||||
requires that the mesh is made only of quads and tris.
|
||||
*/
|
||||
template <class Mesh>
|
||||
void MakeBitQuadOnlyByRefine(Mesh &m){
|
||||
|
||||
// todo: update VF connectivity if present
|
||||
|
||||
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::VertexIterator VertexIterator;
|
||||
typedef typename Mesh::FaceType Face;
|
||||
typedef typename Mesh::VertexType Vert;
|
||||
|
||||
int ev = 0; // EXTRA vertices (times 2)
|
||||
int ef = 0; // EXTRA faces
|
||||
|
||||
// first pass: count triangles to be added
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
int k=0; // number of borders
|
||||
if (fi->FFp(0) == &*fi) k++;
|
||||
if (fi->FFp(1) == &*fi) k++;
|
||||
if (fi->FFp(2) == &*fi) k++;
|
||||
|
||||
if (!fi->IsAnyF()) {
|
||||
// it's a triangle
|
||||
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
||||
{ ev+=2; ef+=2; }
|
||||
if (k==1) // add a vertex in the border edge, splitting it in 2
|
||||
{ }
|
||||
if (k==2) // do nothing, just mark the non border edge as faux
|
||||
{ }
|
||||
if (k==3) // disconnected single triangle (all borders): make one edge as faus
|
||||
{ }
|
||||
}
|
||||
else {
|
||||
// assuming is a quad (not a penta, etc), i.e. only one faux
|
||||
// add a vertex in the center of the faux edge, splitting the face in 2
|
||||
ev+=1; ef+=1;
|
||||
assert(k!=3);
|
||||
}
|
||||
}
|
||||
assert(ev%2==0); // should be even by now
|
||||
ev/=2; // I was counting each of them twice
|
||||
|
||||
int originalFaceNum = m.fn;
|
||||
FaceIterator nfi = tri::Allocator<Mesh>::AddFaces(m,ef);
|
||||
VertexIterator nvi = tri::Allocator<Mesh>::AddVertices(m,ev);
|
||||
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) fi->ClearV();
|
||||
|
||||
|
||||
// second pass: add faces and vertices
|
||||
int nsplit=0; // spits to be done on border in the third pass
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD() && !fi->IsV() ) {
|
||||
|
||||
fi->SetV();
|
||||
|
||||
if (!fi->IsAnyF()) {
|
||||
// it's a triangle
|
||||
|
||||
int k=0; // number of borders
|
||||
if (fi->FFp(0) == &*fi) k++;
|
||||
if (fi->FFp(1) == &*fi) k++;
|
||||
if (fi->FFp(2) == &*fi) k++;
|
||||
if (k==0) // add a vertex in the center of the face, splitting it in 3
|
||||
{
|
||||
assert(nvi!=m.vert.end());
|
||||
Vert *nv = &*nvi; nvi++;
|
||||
*nv = *fi->V0( 0 ); // lazy: copy everything from the old vertex
|
||||
nv->P() = ( fi->V(0)->P() + fi->V(1)->P() + fi->V(2)->P() ) /3.0;
|
||||
Face *fa = &*fi;
|
||||
Face *fb = &*nfi; nfi++;
|
||||
Face *fc = &*nfi; nfi++;
|
||||
*fb = *fc = *fa; // lazy: copy everything from the old faces
|
||||
fa->V(0) = nv;
|
||||
fb->V(1) = nv;
|
||||
fc->V(2) = nv;
|
||||
|
||||
assert( fa->FFp(1)->FFp(fa->FFi(1)) == fa );
|
||||
/* */fb->FFp(2)->FFp(fb->FFi(2)) = fb;
|
||||
/* */fc->FFp(0)->FFp(fc->FFi(0)) = fc;
|
||||
|
||||
fa->FFp(0) = fc; fa->FFp(2) = fb; fa->FFi(0) = fa->FFi(2) = 1;
|
||||
fb->FFp(1) = fa; fb->FFp(0) = fc; fb->FFi(0) = fb->FFi(1) = 2;
|
||||
fc->FFp(1) = fa; fc->FFp(2) = fb; fc->FFi(1) = fc->FFi(2) = 0;
|
||||
|
||||
if (fb->FFp(2)==fa) fb->FFp(2)=fb; // recover border status
|
||||
if (fc->FFp(0)==fa) fc->FFp(0)=fc;
|
||||
|
||||
fa->ClearAllF();
|
||||
fb->ClearAllF();
|
||||
fc->ClearAllF();
|
||||
fa->SetF(1);
|
||||
fb->SetF(2);
|
||||
fc->SetF(0);
|
||||
|
||||
fa->SetV();fb->SetV();fc->SetV();
|
||||
}
|
||||
if (k==1) { // make a border face faux, anf other two as well
|
||||
fi->SetF(0);
|
||||
fi->SetF(1);
|
||||
fi->SetF(2);
|
||||
nsplit++;
|
||||
}
|
||||
if (k==2) // do nothing, just mark the non border edge as faux
|
||||
{
|
||||
fi->ClearAllF();
|
||||
for (int w=0; w<3; w++) if (fi->FFp(w) != &*fi) fi->SetF(w);
|
||||
}
|
||||
if (k==3) // disconnected single triangle (all borders): use catmull-clark (tree vertices, split it in 6
|
||||
{
|
||||
fi->ClearAllF();
|
||||
fi->SetF(2);
|
||||
nsplit++;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// assuming is a part of quad (not a penta, etc), i.e. only one faux
|
||||
Face *fa = &*fi;
|
||||
int ea2 = FauxIndex(fa); // index of the only faux edge
|
||||
Face *fb = fa->FFp(ea2);
|
||||
int eb2 = fa->FFi(ea2);
|
||||
assert(fb->FFp(eb2)==fa) ;
|
||||
assert(fa->IsF(ea2));
|
||||
//assert(fb->IsF(eb2)); // reciprocal faux edge
|
||||
|
||||
int ea0 = (ea2+1) %3;
|
||||
int ea1 = (ea2+2) %3;
|
||||
int eb0 = (eb2+1) %3;
|
||||
int eb1 = (eb2+2) %3;
|
||||
|
||||
// create new vert in center of faux edge
|
||||
assert(nvi!=m.vert.end());
|
||||
Vert *nv = &*nvi; nvi++;
|
||||
*nv = * fa->V0( ea2 );
|
||||
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
||||
|
||||
// split faces: add 2 faces (one per side)
|
||||
assert(nfi!=m.face.end());
|
||||
Face *fc = &*nfi; nfi++;
|
||||
assert(nfi!=m.face.end());
|
||||
Face *fd = &*nfi; nfi++;
|
||||
*fc = *fa;
|
||||
*fd = *fb;
|
||||
|
||||
fa->V(ea2) = fc->V(ea0) =
|
||||
fb->V(eb2) = fd->V(eb0) = nv ;
|
||||
|
||||
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
|
||||
fb->FFp(eb1)->FFp( fb->FFi(eb1) ) = fd;
|
||||
|
||||
fa->FFp(ea1) = fc ; fa->FFp(ea2) = fd;
|
||||
fa->FFi(ea1) = ea0; fa->FFi(ea2) = eb2;
|
||||
fb->FFp(eb1) = fd ; fb->FFp(eb2) = fc;
|
||||
fb->FFi(eb1) = eb0; fb->FFi(eb2) = ea2;
|
||||
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fb;
|
||||
fc->FFi(ea0) = ea1; fc->FFi(ea2) = eb2;
|
||||
fd->FFp(eb0) = fb ; fd->FFp(eb2) = fa;
|
||||
fd->FFi(eb0) = eb1; fd->FFi(eb2) = ea2;
|
||||
|
||||
// detect boundaries
|
||||
bool ba = fa->FFp(ea0)==fa;
|
||||
bool bc = fc->FFp(ea1)==fa;
|
||||
bool bb = fb->FFp(eb0)==fb;
|
||||
bool bd = fd->FFp(eb1)==fb;
|
||||
|
||||
if (bc) fc->FFp(ea1)=fc; // repristinate boundary status
|
||||
if (bd) fd->FFp(eb1)=fd; // of new faces
|
||||
|
||||
fa->SetV();
|
||||
fb->SetV();
|
||||
fc->SetV();
|
||||
fd->SetV();
|
||||
|
||||
fa->ClearAllF();
|
||||
fb->ClearAllF();
|
||||
fc->ClearAllF();
|
||||
fd->ClearAllF();
|
||||
|
||||
fa->SetF( ea0 );
|
||||
fb->SetF( eb0 );
|
||||
fc->SetF( ea1 );
|
||||
fd->SetF( eb1 );
|
||||
|
||||
// fix faux mesh boundary... if two any consecutive, merge it in a quad
|
||||
if (ba&&bc) {
|
||||
fa->ClearAllF(); fa->SetF(ea1);
|
||||
fc->ClearAllF(); fc->SetF(ea0);
|
||||
ba = bc = false;
|
||||
}
|
||||
if (bc&&bb) {
|
||||
fc->ClearAllF(); fc->SetF(ea2);
|
||||
fb->ClearAllF(); fb->SetF(eb2);
|
||||
bc = bb = false;
|
||||
}
|
||||
if (bb&&bd) {
|
||||
fb->ClearAllF(); fb->SetF(eb1);
|
||||
fd->ClearAllF(); fd->SetF(eb0);
|
||||
bb = bd = false;
|
||||
}
|
||||
if (bd&&ba) {
|
||||
fd->ClearAllF(); fd->SetF(eb2);
|
||||
fa->ClearAllF(); fa->SetF(ea2);
|
||||
bd = ba = false;
|
||||
}
|
||||
// remaninig boudaries will be fixed by splitting in the last pass
|
||||
if (ba) nsplit++;
|
||||
if (bb) nsplit++;
|
||||
if (bc) nsplit++;
|
||||
if (bd) nsplit++;
|
||||
}
|
||||
}
|
||||
assert(nfi==m.face.end());
|
||||
assert(nvi==m.vert.end());
|
||||
|
||||
// now and there are no tris left, but there can be faces with ONE edge border & faux ()
|
||||
|
||||
// last pass: add vertex on faux border faces... (if any)
|
||||
if (nsplit>0) {
|
||||
FaceIterator nfi = tri::Allocator<Mesh>::AddFaces(m,nsplit);
|
||||
VertexIterator nvi = tri::Allocator<Mesh>::AddVertices(m,nsplit);
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
Face* fa = &*fi;
|
||||
int ea2 = -1; // border and faux face (if any)
|
||||
if (fa->FFp(0)==fa && fa->IsF(0) ) ea2=0;
|
||||
if (fa->FFp(1)==fa && fa->IsF(1) ) ea2=1;
|
||||
if (fa->FFp(2)==fa && fa->IsF(2) ) ea2=2;
|
||||
|
||||
if (ea2 != -1) { // ea2 edge is naughty (border AND faux)
|
||||
|
||||
int ea0 = (ea2+1) %3;
|
||||
int ea1 = (ea2+2) %3;
|
||||
|
||||
// create new vert in center of faux edge
|
||||
Vert *nv = &*nvi; nvi++;
|
||||
*nv = * fa->V0( ea2 );
|
||||
nv->P() = ( fa->V(ea2)->P() + fa->V(ea0)->P() ) /2.0;
|
||||
|
||||
// split face: add 1 face
|
||||
Face *fc = &*nfi; nfi++;
|
||||
*fc = *fa;
|
||||
|
||||
fa->V(ea2) = fc->V(ea0) = nv ;
|
||||
|
||||
fc->FFp(ea2) = fc;
|
||||
|
||||
fa->FFp(ea1)->FFp( fa->FFi(ea1) ) = fc;
|
||||
|
||||
fa->FFp(ea1) = fc ;
|
||||
fa->FFi(ea1) = ea0;
|
||||
fc->FFp(ea0) = fa ; fc->FFp(ea2) = fc;
|
||||
fc->FFi(ea0) = ea1;
|
||||
|
||||
if (fc->FFp(ea1)==fa) fc->FFp(ea1)=fc; // recover border status
|
||||
|
||||
assert(fa->IsF(ea0) == fa->IsF(ea1) );
|
||||
bool b = fa->IsF(ea1);
|
||||
|
||||
fa->ClearAllF();
|
||||
fc->ClearAllF();
|
||||
|
||||
if (b) {
|
||||
fa->SetF( ea0 );
|
||||
fc->SetF( ea1 );
|
||||
} else {
|
||||
fa->SetF( ea1 );
|
||||
fc->SetF( ea0 );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
|
||||
// uses Catmull Clark to enforce quad only meshes
|
||||
// each old edge (but not faux) is split in two.
|
||||
template <class Mesh>
|
||||
void MakeBitQuadOnlyByCatmullClark(Mesh &m){
|
||||
MakeBitQuadOnlyByRefine(m);
|
||||
MakeBitQuadOnlyByRefine(m);
|
||||
// et-voilà!!!
|
||||
}
|
||||
|
||||
// Helper funcion:
|
||||
// marks edge distance froma a given face.
|
||||
// Stops at maxDist or at the distance when a triangle is found
|
||||
template <class Mesh>
|
||||
typename Mesh::FaceType * MarkEdgeDistance(Mesh &m, typename Mesh::FaceType *f, int maxDist){
|
||||
typedef typename Mesh::FaceType Face;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::VertexIterator VertexIterator;
|
||||
assert(Mesh::HasPerFaceQuality());
|
||||
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!f->IsD()) {
|
||||
fi->Q()=maxDist;
|
||||
}
|
||||
|
||||
Face * firstTriangleFound = NULL;
|
||||
|
||||
f->Q() = 0;
|
||||
std::vector<Face*> stack;
|
||||
int stackPos=0;
|
||||
stack.push_back(f);
|
||||
|
||||
while ( stackPos<stack.size() ) {
|
||||
Face *f = stack[stackPos++];
|
||||
for (int k=0; k<3; k++) {
|
||||
Face *fk = f->FFp(k);
|
||||
int fq = int(f->Q()) + ( ! f->IsF(k) );
|
||||
if (fk->Q()> fq && fq <= maxDist) {
|
||||
if (!fk->IsAnyF()) { firstTriangleFound = fk; maxDist = fq;}
|
||||
fk->Q() = fq;
|
||||
stack.push_back(fk);
|
||||
}
|
||||
}
|
||||
}
|
||||
return firstTriangleFound;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
given a tri-quad mesh,
|
||||
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
|
||||
|
||||
Retunrs number of surviving triangles (0, or 1), or -1 if not done yet.
|
||||
StepbyStep: makes just one step!
|
||||
use it in a loop as long as it returns 0 or 1.
|
||||
|
||||
maxdist is the maximal edge distance where to look for a companion triangle
|
||||
*/
|
||||
template <class Mesh>
|
||||
int MakeBitQuadOnlyByFlipStepByStep(Mesh &m, int maxdist=10000, int restart=false){
|
||||
typedef typename Mesh::FaceType Face;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::VertexIterator VertexIterator;
|
||||
|
||||
static Face *ta, *tb; // faces to be matched into a quad
|
||||
|
||||
static int step = 0; // hack
|
||||
|
||||
if (restart) { step=0; return false; }
|
||||
if (step==0) {
|
||||
|
||||
// find a triangular face ta
|
||||
ta = NULL;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
if (!fi->IsAnyF()) { ta=&*fi; break; }
|
||||
}
|
||||
if (!ta) return 0; // success: no triangle left (done?)
|
||||
|
||||
|
||||
tb = MarkEdgeDistance(m,ta,maxdist);
|
||||
if (!tb) return 1; // fail: no matching triagle found (increase maxdist?)
|
||||
|
||||
step=1;
|
||||
|
||||
} else {
|
||||
int marriageEdge=-1;
|
||||
bool done = false;
|
||||
while (!done) {
|
||||
|
||||
int bestScore = int(tb->Q());
|
||||
int edge = -1;
|
||||
bool mustDoFlip;
|
||||
|
||||
// select which edge to use
|
||||
for (int k=0; k<3; k++) {
|
||||
if (tb->FFp(k) == tb) continue; // border
|
||||
|
||||
Face* tbk = tb->FFp(k);
|
||||
|
||||
if (!tbk->IsAnyF()) {done=true; marriageEdge=k; break; } // found my match
|
||||
|
||||
int back = tb->FFi(k);
|
||||
int faux = FauxIndex(tbk);
|
||||
int other = 3-back-faux;
|
||||
|
||||
int scoreA = int(tbk->FFp(other)->Q());
|
||||
|
||||
Face* tbh = tbk->FFp(faux);
|
||||
int fauxh = FauxIndex(tbh);
|
||||
|
||||
int scoreB = int(tbh->FFp( (fauxh+1)%3 )->Q());
|
||||
int scoreC = int(tbh->FFp( (fauxh+2)%3 )->Q());
|
||||
|
||||
int scoreABC = std::min( scoreC, std::min( scoreA, scoreB ) );
|
||||
if (scoreABC<bestScore) {
|
||||
bestScore = scoreABC;
|
||||
edge = k;
|
||||
mustDoFlip = !(scoreB == scoreABC || scoreC == scoreABC);
|
||||
}
|
||||
}
|
||||
|
||||
if (done) break;
|
||||
|
||||
// use that edge to proceed
|
||||
if (mustDoFlip) {
|
||||
FlipBitQuadDiag( *(tb->FFp(edge)) );
|
||||
}
|
||||
|
||||
Face* next = tb->FFp(edge)->FFp( FauxIndex(tb->FFp(edge)) );
|
||||
|
||||
// create new edge
|
||||
next->ClearAllF();
|
||||
tb->FFp(edge)->ClearAllF();
|
||||
|
||||
// dissolve old edge
|
||||
tb->SetF(edge);
|
||||
tb->FFp(edge)->SetF( tb->FFi(edge) );
|
||||
tb->FFp(edge)->Q() = tb->Q();
|
||||
|
||||
tb = next;
|
||||
break;
|
||||
}
|
||||
|
||||
if (marriageEdge!=-1) {
|
||||
// consume the marriage (two tris = one quad)
|
||||
assert(!(tb->IsAnyF()));
|
||||
assert(!(tb->FFp(marriageEdge)->IsAnyF()));
|
||||
tb->SetF(marriageEdge);
|
||||
tb->FFp(marriageEdge)->SetF(tb->FFi(marriageEdge));
|
||||
|
||||
step=0;
|
||||
}
|
||||
}
|
||||
return -1; // not done yet
|
||||
}
|
||||
|
||||
/*
|
||||
given a tri-quad mesh,
|
||||
uses edge rotates to make a tri move toward another tri and to merges them into a quad.
|
||||
- maxdist is the maximal edge distance where to look for a companion triangle
|
||||
- retunrs true if all triangles are merged (always, unless they are odd, or maxdist not enough).
|
||||
*/
|
||||
template <class Mesh>
|
||||
bool MakeBitQuadOnlyByFlip(Mesh &m, int maxdist=10000)
|
||||
{
|
||||
MakeBitQuadOnlyByFlipStepByStep(m, maxdist, true); // restart
|
||||
int res=-1;
|
||||
while (res==-1) res = MakeBitQuadOnlyByFlipStepByStep(m, maxdist);
|
||||
return res==0;
|
||||
}
|
||||
|
||||
/**
|
||||
given a triangle mesh, makes it quad dominant by merging triangle pairs into quads
|
||||
various euristics:
|
||||
level = 0: maximally greedy. Leaves fewest triangles
|
||||
level = 1: smarter: leaves more triangles, but makes better quality quads
|
||||
level = 2: even more so (marginally)
|
||||
*/
|
||||
template <class Mesh>
|
||||
void MakeBitQuadDominant(Mesh &m, int level){
|
||||
|
||||
assert(Mesh::HasPerFaceQuality());
|
||||
assert(Mesh::HasPerFaceFlags());
|
||||
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) {
|
||||
fi->ClearAllF();
|
||||
fi->Q() = 0;
|
||||
}
|
||||
|
||||
|
||||
MakeQuadDominantPass<Mesh, false> (m);
|
||||
if (level>0) MakeQuadDominantPass<Mesh, true> (m);
|
||||
if (level>1) MakeQuadDominantPass<Mesh, true> (m);
|
||||
if (level>0) MakeQuadDominantPass<Mesh, false> (m);
|
||||
}
|
||||
|
||||
}} // end namespace vcg::tri
|
|
@ -0,0 +1,118 @@
|
|||
|
||||
namespace vcg{namespace tri{
|
||||
|
||||
/*
|
||||
seeks and removes all doublets (a pair of quads sharing two consecutive edges)
|
||||
by merging them into a single quad (thus removing one vertex and two tri faces)-
|
||||
Returns number of removed Doublets
|
||||
*/
|
||||
template <class Mesh>
|
||||
int BitQuadRemoveDoublets(Mesh &m)
|
||||
{
|
||||
int res=0;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::FaceType FaceType;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
fi->Q()=1;
|
||||
for (int k=0; k<3; k++) {
|
||||
if ( IsDoublet(*fi,k) ){
|
||||
res++;
|
||||
RemoveDoublet(*fi,k,m);
|
||||
if (fi->IsD()) break; // break wedge circle, if face disappeard
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/*
|
||||
marks (Quality=0) and approx. counts doublets (a pair of quads sharing two consecutive edges)
|
||||
*/
|
||||
template <class Mesh>
|
||||
int BitQuadMarkDoublets(Mesh &m)
|
||||
{
|
||||
int res=0;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::FaceType FaceType;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
fi->Q()=1;
|
||||
for (int k=0; k<3; k++) {
|
||||
if ( IsDoublet(*fi,k) ){
|
||||
res++;
|
||||
if (fi->IsF((k+1)%3)) res++; // counts for a quad
|
||||
fi->Q()=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert (res%2==0);
|
||||
return res/4; // return doublet pairs (approx, as a quad could be a part of many pairs)
|
||||
}
|
||||
|
||||
/*
|
||||
marks (Quality=0) and counts singlets (vertex B in an A-B-A-C quad)
|
||||
*/
|
||||
template <class Mesh>
|
||||
int BitQuadMarkSinglets(Mesh &m)
|
||||
{
|
||||
int res=0;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::FaceType FaceType;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
fi->Q()=1;
|
||||
for (int k=0; k<3; k++) {
|
||||
if ( IsSinglet(*fi,k) ){
|
||||
res++;
|
||||
fi->Q()=0;
|
||||
}
|
||||
}
|
||||
}
|
||||
assert (res%2==0);
|
||||
return res/2; // return number of singlet pairs
|
||||
}
|
||||
|
||||
/*
|
||||
deletes singlets, reutrns number of
|
||||
*/
|
||||
template <class Mesh>
|
||||
int BitQuadRemoveSinglets(Mesh &m)
|
||||
{
|
||||
int res=0;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
typedef typename Mesh::FaceType FaceType;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
for (int k=0; k<3; k++) {
|
||||
if ( IsSinglet(*fi,k) ){
|
||||
res++;
|
||||
RemoveSinglet(*fi,k,m);
|
||||
return res;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res; // return singlet pairs (approx, as a quad could be a part of many pairs)
|
||||
}
|
||||
|
||||
|
||||
/* returns average quad quality, and assigns it to triangle quality
|
||||
*/
|
||||
template <class Mesh>
|
||||
typename Mesh::ScalarType MeasureBitQuadQuality(Mesh &m)
|
||||
{
|
||||
assert(Mesh::HasPerFaceFlags());
|
||||
typename Mesh::ScalarType res = 0;
|
||||
int div = 0;
|
||||
typedef typename Mesh::FaceIterator FaceIterator;
|
||||
for (FaceIterator fi = m.face.begin(); fi!=m.face.end(); fi++) if (!fi->IsD()) {
|
||||
if (fi->IsAnyF()) {
|
||||
|
||||
typename Mesh::ScalarType q = quadQuality( &*fi, FauxIndex(&*fi) );
|
||||
|
||||
if (Mesh::HasPerFaceQuality()) fi->Q() = q;
|
||||
res += q;
|
||||
div++;
|
||||
}
|
||||
}
|
||||
if (!div) return 0; else return res / div;
|
||||
}
|
||||
|
||||
}} // end namespace vcg::tri
|
|
@ -0,0 +1,515 @@
|
|||
#include <vector>
|
||||
#include <vcg/complex/trimesh/subset.h>
|
||||
#include <vcg/simplex/face/jumping_pos.h>
|
||||
#include <vcg/space/planar_polygon_tessellation.h>
|
||||
|
||||
/** BIT-QUAD creation support:
|
||||
a few basic operations to work with bit-quads simplices
|
||||
(quads defined by faux edges over a tri mesh backbone)
|
||||
|
||||
|
||||
[ basic operations: ]
|
||||
|
||||
bool IsDoublet(const Face& f, int wedge)
|
||||
void RemoveDoublet(Face &f, int wedge, Mesh& m)
|
||||
- identifies and removed "Doublets" (pair of quads sharing two consecutive edges)
|
||||
|
||||
void FlipBitQuadDiag(Face &f)
|
||||
- rotates the faux edge of a quad
|
||||
|
||||
void CollapseQuadDiag(Face &f, ... p , Mesh& m)
|
||||
- collapses a quad on its diagonal.
|
||||
- p identifies the pos of collapsed point
|
||||
(as either the parametric pos on the diagonal, or a fresh coordtype)
|
||||
|
||||
|
||||
|
||||
[ helper functions: ]
|
||||
|
||||
ScalarType quadQuality( ... );
|
||||
- returns the quality for a given quad
|
||||
- (should be made into a template parameter for methods using it)
|
||||
- currently measures how squared each angle is
|
||||
|
||||
int FauxIndex(const Face* f);
|
||||
- returns index of the only faux edge of a quad (otherwise, assert)
|
||||
|
||||
int CountBitPolygonInternalValency(const Face& f, int wedge)
|
||||
- returns valency of vertex in terms of polygons (quads, tris...)
|
||||
|
||||
|
||||
*/
|
||||
|
||||
// this must become a parameter in the corresponding class
|
||||
#define DELETE_VERTICES 0
|
||||
// let's not remove them after all...
|
||||
// since TwoManyfold is weak, the vertex could still be used elsewhere...
|
||||
|
||||
namespace vcg{namespace tri{
|
||||
|
||||
// helper function:
|
||||
// cos of angle abc. This should probably go elsewhere
|
||||
template<class CoordType>
|
||||
static typename CoordType::ScalarType Cos(const CoordType &a, const CoordType &b, const CoordType &c )
|
||||
{
|
||||
CoordType
|
||||
e0 = b - a,
|
||||
e1 = b - c;
|
||||
typename CoordType::ScalarType d = (e0.Norm()*e1.Norm());
|
||||
if (d==0) return 0.0;
|
||||
return (e0*e1)/d;
|
||||
}
|
||||
|
||||
// helper function:
|
||||
// returns quality of a quad formed by points a,b,c,d
|
||||
// quality is computed as "how squared angles are"
|
||||
template <class Coord>
|
||||
inline static typename Coord::ScalarType quadQuality(const Coord &a, const Coord &b, const Coord &c, const Coord &d){
|
||||
typename Coord::ScalarType score = 0;
|
||||
score += 1 - math::Abs( Cos( a,b,c) );
|
||||
score += 1 - math::Abs( Cos( b,c,d) );
|
||||
score += 1 - math::Abs( Cos( c,d,a) );
|
||||
score += 1 - math::Abs( Cos( d,a,b) );
|
||||
return score / 4;
|
||||
}
|
||||
|
||||
// helper function:
|
||||
// returns quality of a given (potential) quad
|
||||
template <class Face>
|
||||
static typename Face::ScalarType quadQuality(Face *f, int edge){
|
||||
|
||||
typedef typename Face::CoordType CoordType;
|
||||
|
||||
CoordType
|
||||
a = f->V0(edge)->P(),
|
||||
b = f->FFp(edge)->V2( f->FFi(edge) )->P(),
|
||||
c = f->V1(edge)->P(),
|
||||
d = f->V2(edge)->P();
|
||||
|
||||
return quadQuality(a,b,c,d);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
helper function:
|
||||
given a quad edge, retruns:
|
||||
0 if that edge should not be rotated
|
||||
+1 if it should be rotated clockwise (+1)
|
||||
-1 if it should be rotated counterclockwise (-1)
|
||||
Uses the notion of quad-quailty
|
||||
*/
|
||||
template <class Face>
|
||||
int TestBitQuadEdgeRotation(const Face &f, int w0)
|
||||
{
|
||||
const Face *fa = &f;
|
||||
assert(! fa->IsF(w0) );
|
||||
typename Face::ScalarType q0,q1,q2;
|
||||
typename Face::CoordType v0,v1,v2,v3,v4,v5;
|
||||
int w1 = (w0+1)%3;
|
||||
int w2 = (w0+2)%3;
|
||||
|
||||
v0 = fa->P(w0);
|
||||
v3 = fa->P(w1);
|
||||
|
||||
if (fa->IsF(w2) ) {
|
||||
v1 = fa->cFFp(w2)->V2( fa->cFFi(w2) )->P();
|
||||
v2 = fa->P(w2);
|
||||
} else {
|
||||
v1 = fa->P(w2);
|
||||
v2 = fa->cFFp(w1)->V2( fa->cFFi(w1) )->P();
|
||||
}
|
||||
|
||||
const Face *fb = fa->cFFp(w0);
|
||||
w0 = fa->cFFi(w0);
|
||||
|
||||
w1 = (w0+1)%3;
|
||||
w2 = (w0+2)%3;
|
||||
if (fb->IsF(w2) ) {
|
||||
v4 = fb->cFFp(w2)->V2( fb->cFFi(w2) )->P();
|
||||
v5 = fb->P(w2);
|
||||
} else {
|
||||
v4 = fb->P(w2);
|
||||
v5 = fb->cFFp(w1)->V2( fb->cFFi(w1) )->P();
|
||||
}
|
||||
|
||||
/*
|
||||
// max overall quality criterion:
|
||||
q0 = quadQuality(v0,v1,v2,v3) + quadQuality(v3,v4,v5,v0); // keep as is?
|
||||
q1 = quadQuality(v1,v2,v3,v4) + quadQuality(v4,v5,v0,v1); // rotate CW?
|
||||
q2 = quadQuality(v5,v0,v1,v2) + quadQuality(v2,v3,v4,v5); // rotate CCW?
|
||||
|
||||
if (q0>=q1 && q0>=q2) return 0;
|
||||
if (q1>=q2) return 1;*/
|
||||
|
||||
// min distance (shortcut criterion)
|
||||
q0 = (v0 - v3).SquaredNorm();
|
||||
q1 = (v1 - v4).SquaredNorm();
|
||||
q2 = (v5 - v2).SquaredNorm();
|
||||
if (q0<=q1 && q0<=q2) return 0;
|
||||
if (q1<=q2) return 1;
|
||||
return -1;
|
||||
}
|
||||
|
||||
template <class Face, bool verse>
|
||||
bool RotateBitQuadEdge(Face& f, int w0a){
|
||||
Face *fa = &f;
|
||||
assert(! fa->IsF(w0a) );
|
||||
|
||||
typename Face::VertexType *v0, *v1;
|
||||
v0= fa->V0(w0a);
|
||||
v1= fa->V1(w0a);
|
||||
|
||||
int w1a = (w0a+1)%3;
|
||||
int w2a = (w0a+2)%3;
|
||||
|
||||
Face *fb = fa->FFp(w0a);
|
||||
int w0b = fa->FFi(w0a);
|
||||
int w1b = (w0b+1)%3;
|
||||
int w2b = (w0b+2)%3;
|
||||
|
||||
if (fa->IsF(w2a) == verse) {
|
||||
if (!CheckFlipBitQuadDiag(*fa)) return false;
|
||||
FlipBitQuadDiag(*fa);
|
||||
// recover edge index, so that (f, w0a) identifies the same edge as before
|
||||
Face *fc = fa->FFp(FauxIndex(fa));
|
||||
for (int i=0; i<3; i++){
|
||||
if ( v0==fa->V0(i) && v1==fa->V1(i) ) w0a = i;
|
||||
if ( v0==fc->V0(i) && v1==fc->V1(i) ) { fa = fc; w0a = i; }
|
||||
}
|
||||
}
|
||||
|
||||
if (fb->IsF(w2b) == verse) {
|
||||
if (!CheckFlipBitQuadDiag(*fb)) return false;
|
||||
FlipBitQuadDiag(*fb);
|
||||
}
|
||||
|
||||
if (!CheckFlipEdge(*fa,w0a)) return false;
|
||||
FlipBitQuadEdge(*fa,w0a);
|
||||
return true;
|
||||
}
|
||||
|
||||
/* small helper function which returns the index of the only
|
||||
faux index, assuming there is exactly one (asserts out otherwise)
|
||||
*/
|
||||
template <class Face>
|
||||
int FauxIndex(const Face* f){
|
||||
if (f->IsF(0)) return 0;
|
||||
if (f->IsF(1)) return 1;
|
||||
assert(f->IsF(2));
|
||||
return 2;
|
||||
}
|
||||
|
||||
// rotates the diagonal of a quad
|
||||
template <class Face>
|
||||
void FlipBitQuadDiag(Face &f){
|
||||
int faux = FauxIndex(&f);
|
||||
Face* fa = &f;
|
||||
Face* fb = f.FFp(faux);
|
||||
vcg::face::FlipEdge(f, faux);
|
||||
// ripristinate faux flags
|
||||
fb->ClearAllF();
|
||||
fa->ClearAllF();
|
||||
for (int k=0; k<3; k++) {
|
||||
if (fa->FFp(k) == fb) fa->SetF(k);
|
||||
if (fb->FFp(k) == fa) fb->SetF(k);
|
||||
}
|
||||
}
|
||||
|
||||
// flips the edge of a quad
|
||||
template <class Face>
|
||||
void FlipBitQuadEdge(Face &f, int k){
|
||||
assert(!f.IsF(k));
|
||||
Face* fa = &f;
|
||||
Face* fb = f.FFp(k);
|
||||
assert(fa!=fb); // else, rotating a border edge
|
||||
|
||||
// backup prev other-quads-halves
|
||||
Face* fa2 = fa->FFp( FauxIndex(fa) );
|
||||
Face* fb2 = fb->FFp( FauxIndex(fb) );
|
||||
|
||||
vcg::face::FlipEdge(*fa, k);
|
||||
|
||||
// ripristinate faux flags
|
||||
fb->ClearAllF();
|
||||
fa->ClearAllF();
|
||||
for (int k=0; k<3; k++) {
|
||||
//if (fa->FFp(k) == fa2) fa->SetF(k);
|
||||
//if (fb->FFp(k) == fb2) fb->SetF(k);
|
||||
if (fa->FFp(k)->IsF( fa->FFi(k) )) fa->SetF(k);
|
||||
if (fb->FFp(k)->IsF( fb->FFi(k) )) fb->SetF(k);
|
||||
}
|
||||
}
|
||||
|
||||
// check if a quad diagonal can be topologically flipped
|
||||
template <class Face>
|
||||
bool CheckFlipBitQuadDiag(Face &f){
|
||||
return (vcg::face::CheckFlipEdge(f, FauxIndex(&f) ) );
|
||||
}
|
||||
|
||||
// given a face (part of a quad), returns its diagonal
|
||||
template <class Face>
|
||||
typename Face::CoordType Diag(const Face* f){
|
||||
int i = FauxIndex(f);
|
||||
return f->P1( i ) - f->P0( i );
|
||||
}
|
||||
|
||||
|
||||
// given a face (part of a quad), returns other diagonal
|
||||
template <class Face>
|
||||
typename Face::CoordType CounterDiag(const Face* f){
|
||||
int i = FauxIndex(f);
|
||||
return f->cP2( i ) - f->cFFp( i )->cP2(f->cFFi(i) ) ;
|
||||
}
|
||||
|
||||
/* helper function:
|
||||
collapses a single face along its faux edge.
|
||||
Updates FF adj of other edges. */
|
||||
template <class Mesh>
|
||||
void _CollapseQuadDiagHalf(typename Mesh::FaceType &f, int faux, Mesh& m)
|
||||
{
|
||||
typedef typename Mesh::FaceType Face;
|
||||
int faux1 = (faux+1)%3;
|
||||
int faux2 = (faux+2)%3;
|
||||
|
||||
Face* fA = f.FFp( faux1 );
|
||||
Face* fB = f.FFp( faux2 );
|
||||
int iA = f.FFi( faux1 );
|
||||
int iB = f.FFi( faux2 );
|
||||
|
||||
if (fA==&f && fB==&f) {
|
||||
// both non-faux edges are borders: tri-face disappears, just remove the vertex
|
||||
if (DELETE_VERTICES)
|
||||
Allocator<Mesh>::DeleteVertex(m,*(f.V(faux2)));
|
||||
} else {
|
||||
if (fA==&f) {
|
||||
fB->FFp(iB) = fB; fB->FFi(iB) = iB;
|
||||
} else {
|
||||
fB->FFp(iB) = fA; fB->FFi(iB) = iA;
|
||||
}
|
||||
|
||||
if (fB==&f) {
|
||||
fA->FFp(iA) = fA; fA->FFi(iA) = iA;
|
||||
} else {
|
||||
fA->FFp(iA) = fB; fA->FFi(iA) = iB;
|
||||
}
|
||||
}
|
||||
|
||||
Allocator<Mesh>::DeleteFace(m,f);
|
||||
|
||||
}
|
||||
|
||||
template <class Mesh>
|
||||
void RemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||
if (f.IsF((wedge+1)%3) ) {
|
||||
typename Mesh::VertexType *v = f.V(wedge);
|
||||
FlipBitQuadDiag(f);
|
||||
// quick hack: recover wedge index after flip
|
||||
if (f.V(0)==v) wedge = 0;
|
||||
else if (f.V(1)==v) wedge = 1;
|
||||
else {
|
||||
assert(f.V(2)==v);
|
||||
wedge = 2;
|
||||
}
|
||||
}
|
||||
typename Mesh::ScalarType k=(f.IsF(wedge))?1:0;
|
||||
CollapseQuadDiag(f, k, m);
|
||||
typename Mesh::VertexType *v = f.V(wedge);
|
||||
}
|
||||
|
||||
template <class Mesh>
|
||||
void RemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||
typename Mesh::FaceType *fa, *fb; // these will die
|
||||
typename Mesh::FaceType *fc, *fd; // their former neight
|
||||
fa = & f;
|
||||
fb = fa->FFp(wedge);
|
||||
int wa0 = wedge;
|
||||
int wa1 = (wa0+1)%3 ;
|
||||
int wa2 = (wa0+2)%3 ;
|
||||
int wb0 = (fa->FFi(wa0)+1)%3;
|
||||
int wb1 = (wb0+1)%3 ;
|
||||
int wb2 = (wb0+2)%3 ;
|
||||
assert (fb == fa->FFp( wa2 ) ); // otherwise, not a singlet
|
||||
fc = fa->FFp(wa1);
|
||||
fd = fb->FFp(wb1);
|
||||
int wc = fa->FFi(wa1);
|
||||
int wd = fb->FFi(wb1);
|
||||
fc->FFp(wc) = fd;
|
||||
fc->FFi(wc) = wd;
|
||||
fd->FFp(wd) = fc;
|
||||
fd->FFi(wd) = wc;
|
||||
// faux status of survivors: unchanged
|
||||
assert( ! ( fc->IsF( wc) ) );
|
||||
assert( ! ( fd->IsF( wd) ) );
|
||||
Allocator<Mesh>::DeleteFace( m,*fa );
|
||||
Allocator<Mesh>::DeleteFace( m,*fb );
|
||||
if (DELETE_VERTICES)
|
||||
Allocator<Mesh>::DeleteVertex( m,*fa->V(wedge) );
|
||||
}
|
||||
|
||||
|
||||
template <class Mesh>
|
||||
bool TestAndRemoveDoublet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||
if (IsDoublet(f,wedge)) {
|
||||
RemoveDoublet(f,wedge,m);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class Mesh>
|
||||
bool TestAndRemoveSinglet(typename Mesh::FaceType &f, int wedge, Mesh& m){
|
||||
if (IsSinglet(f,wedge)) {
|
||||
RemoveSinglet(f,wedge,m);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
template <class Face, int verse>
|
||||
void RotateBitQuadEdge(const Face& f, int wedge){
|
||||
}
|
||||
|
||||
// given a face and a wedge, counts its valency in terms of quads (and triangles)
|
||||
// uses only FF, assumes twomanyfold
|
||||
// returns -1 if border
|
||||
template <class Face>
|
||||
int CountBitPolygonInternalValency(const Face& f, int wedge){
|
||||
const Face* pf = &f;
|
||||
int pi = wedge;
|
||||
int res = 0;
|
||||
do {
|
||||
if (!pf->IsF(pi)) res++;
|
||||
const Face *t = pf;
|
||||
t = pf->FFp( pi );
|
||||
if (pf == t ) return -1;
|
||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
||||
pf = t;
|
||||
} while (pf != &f);
|
||||
return res;
|
||||
}
|
||||
|
||||
// given a face and a wedge, returns if it host a doubet
|
||||
// assumes tri and quad only. uses FF topology only.
|
||||
template <class Face>
|
||||
bool IsDoublet(const Face& f, int wedge){
|
||||
const Face* pf = &f;
|
||||
int pi = wedge;
|
||||
int res = 0, guard=0;
|
||||
do {
|
||||
if (!pf->IsAnyF()) return false; // there's a triangle!
|
||||
if (!pf->IsF(pi)) res++;
|
||||
const Face *t = pf;
|
||||
t = pf->FFp( pi );
|
||||
if (pf == t ) return false;
|
||||
pi = pf->cFFi( pi );
|
||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
||||
pf = t;
|
||||
assert(guard++<100);
|
||||
} while (pf != &f);
|
||||
return (res == 2);
|
||||
}
|
||||
|
||||
template <class Face>
|
||||
bool IsSinglet(const Face& f, int wedge){
|
||||
const Face* pf = &f;
|
||||
int pi = wedge;
|
||||
int res = 0, guard=0;
|
||||
do {
|
||||
if (!pf->IsAnyF()) return false; // there's a triangle!
|
||||
if (!pf->IsF(pi)) res++;
|
||||
const Face *t = pf;
|
||||
t = pf->FFp( pi );
|
||||
if (pf == t ) return false;
|
||||
pi = pf->cFFi( pi );
|
||||
pi = (pi+1)%3; // Face::Next( pf->FFi( pi ) );
|
||||
pf = t;
|
||||
assert(guard++<100);
|
||||
} while (pf != &f);
|
||||
return (res == 1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/** collapses a quad diagonal a-b
|
||||
forming the new vertex in between the two old vertices.
|
||||
if k == 0, new vertex is in a
|
||||
if k == 1, new vertex is in b
|
||||
if k == 0.5, new vertex in the middle, etc
|
||||
*/
|
||||
template <class Mesh>
|
||||
void CollapseQuadDiag(typename Mesh::FaceType &f, typename Mesh::ScalarType k, Mesh& m){
|
||||
typename Mesh::CoordType p;
|
||||
int fauxa = FauxIndex(&f);
|
||||
p = f.V(fauxa)->P()*(1-k) + f.V( (fauxa+1)%3 )->P()*(k);
|
||||
CollapseQuadDiag(f,p,m);
|
||||
}
|
||||
|
||||
template <class Mesh>
|
||||
void CollapseQuadDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType &p, Mesh& m){
|
||||
|
||||
typedef typename Mesh::FaceType Face;
|
||||
typedef typename Mesh::VertexType Vert;
|
||||
|
||||
Face* fa = &f;
|
||||
int fauxa = FauxIndex(fa);
|
||||
Face* fb = fa->FFp(fauxa);
|
||||
assert (fb!=fa);
|
||||
int fauxb = FauxIndex(fb);
|
||||
|
||||
Vert* va = fa->V(fauxa); // va lives
|
||||
Vert* vb = fb->V(fauxb); // vb dies
|
||||
|
||||
// update FV...
|
||||
bool border = false;
|
||||
int pi = fauxb;
|
||||
Face* pf = fb; /* pf, pi could be a Pos<Face> p(pf, pi) */
|
||||
// rotate around vb, (same-sense-as-face)-wise
|
||||
do {
|
||||
pf->V(pi) = va;
|
||||
|
||||
pi=(pi+2)%3;
|
||||
Face *t = pf->FFp(pi);
|
||||
if (t==pf) { border= true; break; }
|
||||
pi = pf->FFi(pi);
|
||||
pf = t;
|
||||
} while (pf!=fb);
|
||||
|
||||
// rotate around va, (counter-sense-as-face)-wise
|
||||
if (border) {
|
||||
int pi = fauxa;
|
||||
Face* pf = fa; /* pf, pi could be a Pos<Face> p(pf, pi) */
|
||||
do {
|
||||
pi=(pi+1)%3;
|
||||
pf->V(pi) = va;
|
||||
Face *t = pf->FFp(pi);
|
||||
if (t==pf) break;
|
||||
pi = pf->FFi(pi);
|
||||
pf = t;
|
||||
} while (pf!=fb);
|
||||
}
|
||||
|
||||
// update FF, delete faces
|
||||
_CollapseQuadDiagHalf(*fb, fauxb, m);
|
||||
_CollapseQuadDiagHalf(*fa, fauxa, m);
|
||||
|
||||
if (DELETE_VERTICES) Allocator<Mesh>::DeleteVertex(m,*vb);
|
||||
va->P() = p;
|
||||
}
|
||||
|
||||
|
||||
template <class Mesh>
|
||||
void CollapseQuadCounterDiag(typename Mesh::FaceType &f, typename Mesh::ScalarType k, Mesh& m){
|
||||
typename Mesh::CoordType p;
|
||||
int fauxa = FauxIndex(&f);
|
||||
p = f.P2(fauxa)*(1-k) + f.FFp( fauxa )->P2( f.FFi( fauxa ) )*(k);
|
||||
CollapseQuadCounterDiag(f,p,m);
|
||||
}
|
||||
|
||||
template <class Mesh>
|
||||
void CollapseQuadCounterDiag(typename Mesh::FaceType &f, const typename Mesh::CoordType &p, Mesh& m){
|
||||
FlipBitQuadDiag(f);
|
||||
CollapseQuadDiag(f,p,m);
|
||||
}
|
||||
|
||||
|
||||
|
||||
}} // end namespace vcg::tri
|
Loading…
Reference in New Issue