changed access to face functions (border, area)

removed some typecast warnings
This commit is contained in:
Paolo Cignoni 2005-11-14 09:28:18 +00:00
parent a5d8bd82ac
commit f5d1b6c337
1 changed files with 42 additions and 13 deletions

View File

@ -24,6 +24,10 @@
History History
$Log: not supported by cvs2svn $ $Log: not supported by cvs2svn $
Revision 1.8 2005/10/11 16:03:40 rita_borgo
Added new functions belonging to triMeshInfo
Started the Self-Intersection routine
Revision 1.7 2005/10/03 15:57:53 rita_borgo Revision 1.7 2005/10/03 15:57:53 rita_borgo
Alligned with TriMeshInfo Code Alligned with TriMeshInfo Code
@ -55,6 +59,7 @@ Initial Release
#include <algorithm> #include <algorithm>
#include <vcg/simplex/face/face.h> #include <vcg/simplex/face/face.h>
#include<vcg/simplex/face/topology.h>
#include <vcg/complex/trimesh/base.h> #include <vcg/complex/trimesh/base.h>
#include <vcg/complex/trimesh/closest.h> #include <vcg/complex/trimesh/closest.h>
#include <vcg/space/index/grid_static_ptr.h> #include <vcg/space/index/grid_static_ptr.h>
@ -93,12 +98,11 @@ namespace vcg {
vcg::face::Pos<FaceType> hei; vcg::face::Pos<FaceType> hei;
/* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/ /* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/
template <class VertexIterator>
class RemoveDuplicateVert_Compare{ class RemoveDuplicateVert_Compare{
public: public:
inline bool operator() (VertexIterator a, VertexIterator b) inline bool operator()(VertexPointer &a, VertexPointer &b)
{ {
return *a < *b; return (*a).cP() < (*b).cP();
} }
}; };
@ -147,12 +151,12 @@ namespace vcg {
VertexIterator vi; VertexIterator vi;
int deleted=0; int deleted=0;
int k=0; int k=0;
int num_vert = m.vert.size(); size_t num_vert = m.vert.size();
std::vector<VertexPointer> perm(num_vert); std::vector<VertexPointer> perm(num_vert);
for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k) for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k)
perm[k] = &(*vi); perm[k] = &(*vi);
RemoveDuplicateVert_Compare<VertexPointer> c_obj; RemoveDuplicateVert_Compare c_obj;
std::sort(perm.begin(),perm.end(),c_obj); std::sort(perm.begin(),perm.end(),c_obj);
@ -262,7 +266,7 @@ namespace vcg {
count_e +=3; //assume that we have to increase the number of edges with three count_e +=3; //assume that we have to increase the number of edges with three
for(int j=0; j<3; j++) for(int j=0; j<3; j++)
{ {
if (fi->IsBorder(j)) //If this edge is a border edge if (face::IsBorder(*fi,j)) //If this edge is a border edge
boundary_e++; // then increase the number of boundary edges boundary_e++; // then increase the number of boundary edges
else if (IsManifold(*fi,j))//If this edge is manifold else if (IsManifold(*fi,j))//If this edge is manifold
{ {
@ -321,7 +325,7 @@ namespace vcg {
{ {
if(fi->V(j)->IsS()) continue; if(fi->V(j)->IsS()) continue;
if((*fi).IsBorder(j))//found an unvisited border edge if(face::IsBorder(*fi,j))//found an unvisited border edge
{ {
he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex
vector<Point3x> hole; //start of a new hole vector<Point3x> hole; //start of a new hole
@ -339,7 +343,7 @@ namespace vcg {
//cut and paste the additional hole. //cut and paste the additional hole.
vector<Point3x> hole2; vector<Point3x> hole2;
int index = find(hole.begin(),hole.end(),newpoint) - hole.begin(); int index = find(hole.begin(),hole.end(),newpoint) - hole.begin();
for(int i=index; i<hole.size(); i++) for(unsigned int i=index; i<hole.size(); i++)
hole2.push_back(hole[i]); hole2.push_back(hole[i]);
hole.resize(index); hole.resize(index);
@ -401,7 +405,7 @@ namespace vcg {
sf.pop(); sf.pop();
for(int j=0;j<3;++j) for(int j=0;j<3;++j)
{ {
if( !(*gi).IsBorder(j) ) if( !face::IsBorder(*gi,j) )
{ {
l=he.f->FFp(j); l=he.f->FFp(j);
if( !(*l).IsS() ) if( !(*l).IsS() )
@ -425,16 +429,41 @@ namespace vcg {
for(fi=m.face.begin(); fi!=m.face.end();++fi) for(fi=m.face.begin(); fi!=m.face.end();++fi)
if((*fi).Area() == 0) if(Area<FaceType>(*fi) == 0)
count_fd++; count_fd++;
return count_fd; return count_fd;
} }
/**
GENUS: A topologically invariant property of a surface defined as:
the largest number of nonintersecting simple closed curves that can be drawn on the surface without separating it.
Roughly speaking, it is the number of holes in a surface.
The genus g of a surface, also called the geometric genus, is related to the Euler characteristic $chi$ by $chi==2-2g$.
The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along closed
simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it.
static float MeshGenus(MeshType &m, int count_uv, int numholes, int numcomponents, int count_e) */
static int MeshGenus(MeshType &m, int count_uv, int numholes, int numcomponents, int count_e)
{ {
int eulernumber = (m.vn-count_uv) + m.fn - count_e; int eulernumber = (m.vn-count_uv) + m.fn - count_e;
return(-( 0.5 * (eulernumber - numholes) - numcomponents )); return(-( 0.5 * (eulernumber - numholes) - numcomponents ));
} }
/*
Let a closed surface have genus g. Then the polyhedral formula generalizes to the Poincaré formula
chi=V-E+F, (1)
where
chi(g)==2-2g (2)
is the Euler characteristic, sometimes also known as the Euler-Poincaré characteristic.
The polyhedral formula corresponds to the special case g==0.
*/
static int EulerCharacteristic()
{
}
static void IsRegularMesh(MeshType &m, bool Regular, bool Semiregular) static void IsRegularMesh(MeshType &m, bool Regular, bool Semiregular)
{ {
@ -450,7 +479,7 @@ namespace vcg {
for (int j=0; j<3; j++) for (int j=0; j<3; j++)
{ {
he.Set(&(*fi),j,fi->V(j)); he.Set(&(*fi),j,fi->V(j));
if (!(*fi).IsBorder(j) && !(*fi).IsBorder((j+2)%3) && !fi->V(j)->IsS()) if (!face::IsBorder(*fi,j) && !face::IsBorder(*fi,(j+2)%3) && !fi->V(j)->IsS())
{ {
hei=he; hei=he;
inc=1; inc=1;
@ -512,7 +541,7 @@ namespace vcg {
sf.pop(); sf.pop();
for(int j=0;j<3;++j) for(int j=0;j<3;++j)
{ {
if( !(*gi).IsBorder(j) ) if( !face::IsBorder(*gi,j) )
{ {
he.Set(&(*gi),0,gi->V(0)); he.Set(&(*gi),0,gi->V(0));
l=he.f->FFp(j); l=he.f->FFp(j);