added rey triangle intersections funtions
This commit is contained in:
parent
f458b067e7
commit
f610bf209c
|
@ -24,6 +24,9 @@
|
||||||
History
|
History
|
||||||
|
|
||||||
$Log: not supported by cvs2svn $
|
$Log: not supported by cvs2svn $
|
||||||
|
Revision 1.8 2004/07/11 22:08:04 cignoni
|
||||||
|
Added a cast to remove a warning
|
||||||
|
|
||||||
Revision 1.7 2004/05/14 03:14:29 ponchio
|
Revision 1.7 2004/05/14 03:14:29 ponchio
|
||||||
Fixed some minor bugs
|
Fixed some minor bugs
|
||||||
|
|
||||||
|
@ -180,6 +183,7 @@ namespace vcg {
|
||||||
return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2,
|
return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2,
|
||||||
coplanar,isectpt1,isectpt2);
|
coplanar,isectpt1,isectpt2);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename TRIANGLETYPE,typename SEGMENTTYPE >
|
template<typename TRIANGLETYPE,typename SEGMENTTYPE >
|
||||||
inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1,bool &coplanar,
|
inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1,bool &coplanar,
|
||||||
SEGMENTTYPE & sg){
|
SEGMENTTYPE & sg){
|
||||||
|
@ -190,7 +194,103 @@ namespace vcg {
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// ray-triangle, gives barycentric coords of intersection and distance along ray
|
||||||
|
template<class T>
|
||||||
|
bool Intersection( const Line3<T> & ray, const Point3<T> & vert0,
|
||||||
|
const Point3<T> & vert1, const Point3<T> & vert2,
|
||||||
|
T & a ,T & b, T & dist)
|
||||||
|
{
|
||||||
|
// small (hum) borders around triangle
|
||||||
|
const T EPSILON2= T(1e-8);
|
||||||
|
|
||||||
|
const T EPSILON = T(1e-8);
|
||||||
|
|
||||||
|
Point3<T> edge1 = vert1 - vert0;
|
||||||
|
Point3<T> edge2 = vert2 - vert0;
|
||||||
|
|
||||||
|
// determinant
|
||||||
|
Point3<T> pvec = ray.dire ^ edge2;
|
||||||
|
|
||||||
|
T det = edge1*pvec;
|
||||||
|
|
||||||
|
// if determinant is near zero, ray lies in plane of triangle
|
||||||
|
if (fabs(det) < EPSILON) return false;
|
||||||
|
|
||||||
|
// calculate distance from vert0 to ray origin
|
||||||
|
Point3<T> tvec = ray.orig - vert0;
|
||||||
|
|
||||||
|
// calculate A parameter and test bounds
|
||||||
|
a = tvec * pvec;
|
||||||
|
if (a < -EPSILON2*det || a > det+det*EPSILON2) return false;
|
||||||
|
|
||||||
|
// prepare to test V parameter
|
||||||
|
Point3<T> qvec = tvec ^ edge1;
|
||||||
|
|
||||||
|
// calculate B parameter and test bounds
|
||||||
|
b = ray.dire * qvec ;
|
||||||
|
if (b < -EPSILON2*det || b + a > det+det*EPSILON2) return false;
|
||||||
|
|
||||||
|
// calculate t, scale parameters, ray intersects triangle
|
||||||
|
dist = edge2 * qvec;
|
||||||
|
if (dist<0) return false;
|
||||||
|
T inv_det = 1.0 / det;
|
||||||
|
dist *= inv_det;
|
||||||
|
a *= inv_det;
|
||||||
|
b *= inv_det;
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// ray-triangle, gives intersection 3d point and distance along ray
|
||||||
|
template<class T>
|
||||||
|
bool Intersection( const Line3<T> & ray, const Point3<T> & vert0,
|
||||||
|
const Point3<T> & vert1, const Point3<T> & vert2,
|
||||||
|
Point3<T> & inte)
|
||||||
|
{
|
||||||
|
|
||||||
|
// small (hum) borders around triangle
|
||||||
|
const T EPSILON2= T(1e-8);
|
||||||
|
|
||||||
|
const T EPSILON = T(1e-8);
|
||||||
|
|
||||||
|
Point3<T> edge1 = vert1 - vert0;
|
||||||
|
Point3<T> edge2 = vert2 - vert0;
|
||||||
|
|
||||||
|
// determinant
|
||||||
|
Point3<T> pvec = ray.Direction() ^ edge2;
|
||||||
|
|
||||||
|
T det = edge1*pvec;
|
||||||
|
|
||||||
|
// if determinant is near zero, ray lies in plane of triangle
|
||||||
|
if (fabs(det) < EPSILON) return false;
|
||||||
|
|
||||||
|
// calculate distance from vert0 to ray origin
|
||||||
|
Point3<T> tvec = ray.Origin() - vert0;
|
||||||
|
|
||||||
|
// calculate A parameter and test bounds
|
||||||
|
T a = tvec * pvec;
|
||||||
|
if (a < -EPSILON2*det || a > det+det*EPSILON2) return false;
|
||||||
|
|
||||||
|
// prepare to test V parameter
|
||||||
|
Point3<T> qvec = tvec ^ edge1;
|
||||||
|
|
||||||
|
// calculate B parameter and test bounds
|
||||||
|
T b = ray.Direction() * qvec ;
|
||||||
|
if (b < -EPSILON2*det || b + a > det+det*EPSILON2) return false;
|
||||||
|
|
||||||
|
// calculate t, scale parameters, ray intersects triangle
|
||||||
|
double dist = edge2 * qvec;
|
||||||
|
//if (dist<0) return false;
|
||||||
|
T inv_det = 1.0 / det;
|
||||||
|
dist *= inv_det;
|
||||||
|
a *= inv_det;
|
||||||
|
b *= inv_det;
|
||||||
|
|
||||||
|
inte = vert0 + edge1*a + edge2*b;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
} // end namespace
|
} // end namespace
|
||||||
#endif
|
#endif
|
||||||
|
|
Loading…
Reference in New Issue