PolygonalMesh Debugging: corrected typo in the name of the polychord class

This commit is contained in:
Paolo Cignoni 2014-02-18 11:01:15 +00:00
parent d2f164d90c
commit f896e9bd3e
1 changed files with 142 additions and 147 deletions

View File

@ -20,15 +20,10 @@
* for more details. *
* *
****************************************************************************/
#ifndef POLYGON_POLYCOORD_COLLAPSE_H
#define POLYGON_POLYCOORD_COLLAPSE_H
#ifndef POLYGON_POLYCHORD_COLLAPSE_H
#define POLYGON_POLYCHORD_COLLAPSE_H
#include <vector>
#include <list>
#include <set>
#include <map>
#include <queue>
#include <utility>
#include <vcg/complex/complex.h>
#include <vcg/simplex/face/jumping_pos.h>
@ -37,27 +32,27 @@ namespace tri {
/** \addtogroup trimesh */
/**
* @brief The PolycoordCollapse class provides methods to semplify a quad mesh, by collapsing the polycoords.
* @brief The PolychordCollapse class provides methods to semplify a quad mesh, by collapsing the polychords.
*
* This class is an implementation of a method very similar to that for mesh semplification proposed
* by Daniels et al. in "Quadrilateral mesh simplification", see http://www.cs.utah.edu/~jdaniels/research/asia2008_qms.htm
* The main function is PolycoordCollapse::CollapsePolycoord() which deletes all the quadrilateral faces in a polycoord.
* The polycoords that can be collapsed in this case are those forming a closed loop (a ring) or that start and end to
* The main function is PolychordCollapse::CollapsePolychord() which deletes all the quadrilateral faces in a polychord.
* The polychords that can be collapsed in this case are those forming a closed loop (a ring) or that start and end to
* mesh borders. A way to preserve the structure of the singularities is also provided.
* The convenient method PolycoordCollapse::CollapseAllPolycoords() finds and collapses all the polycoords on a mesh.
* The convenient method PolychordCollapse::CollapseAllPolychords() finds and collapses all the polychords on a mesh.
* The input mesh should be polygonal, i.e. it should have the vcg::face::PolyInfo component. Even though a generic
* triangle mesh can be given, actually the class does not perform any collapsing operation since it sees only triangles,
* in fact it does not consider faux edges.
*/
template < typename PolyMeshType >
class PolycoordCollapse {
class PolychordCollapse {
public:
typedef typename PolyMeshType::FaceType FaceType;
typedef typename PolyMeshType::VertexType VertexType;
typedef typename PolyMeshType::CoordType CoordType;
/**
* @brief The PC_ResultCode enum codifies the result type of a polycoord collapse operation.
* @brief The PC_ResultCode enum codifies the result type of a polychord collapse operation.
*/
enum PC_ResultCode {
PC_SUCCESS = 0,
@ -70,14 +65,14 @@ public:
};
/**
* @brief The PC_Coord struct identifies a coord of a polycoord passing through a quad.
* @brief The PC_Chord struct identifies a coord of a polychord passing through a quad.
*/
struct PC_Coord {
struct PC_Chord {
unsigned long mark;
PC_ResultCode q;
PC_Coord * prev;
PC_Coord * next;
PC_Coord() : mark(std::numeric_limits<unsigned long>::max()), q(PC_VOID), prev(NULL), next(NULL) { }
PC_Chord * prev;
PC_Chord * next;
PC_Chord() : mark(std::numeric_limits<unsigned long>::max()), q(PC_VOID), prev(NULL), next(NULL) { }
inline void Reset() {
mark = std::numeric_limits<unsigned long>::max();
q = PC_VOID;
@ -86,16 +81,16 @@ public:
};
/**
* @brief The PC_Coords class gives efficient access to each coord (relative to a face).
* @brief The PC_Chords class gives efficient access to each coord (relative to a face).
*/
class PC_Coords {
class PC_Chords {
public:
/**
* @brief PC_Coords constructor.
* @note Since each face corresponds to two coords, the actual size of the vector of coords is 2*mesh.face.size().
* @brief PC_Chords constructor.
* @note Since each face corresponds to two chords, the actual size of the vector of chords is 2*mesh.face.size().
* @param mesh
*/
PC_Coords (const PolyMeshType &mesh) : _coords(2*mesh.face.size()), _currentCoord(NULL) {
PC_Chords (const PolyMeshType &mesh) : _Chords(2*mesh.face.size()), _currentChord(NULL) {
Reset(mesh);
}
@ -103,82 +98,82 @@ public:
* @brief ResetMarks
*/
void ResetMarks() {
typename std::vector<PC_Coord>::iterator it = _coords.begin();
for (; it != _coords.end(); it++)
typename std::vector<PC_Chord>::iterator it = _Chords.begin();
for (; it != _Chords.end(); it++)
(*it).mark = std::numeric_limits<unsigned long>::max();
}
/**
* @brief Reset rearrages the container.
* @note Since each face corresponds to two coords, the actual size of the vector of coords is 2*mesh.face.size().
* @note Since each face corresponds to two chords, the actual size of the vector of chords is 2*mesh.face.size().
* @param mesh
*/
void Reset(const PolyMeshType &mesh) {
_coords.resize(2*mesh.face.size());
for (size_t j = 0; j < _coords.size(); j++)
_coords[j].Reset();
_currentCoord = NULL;
_Chords.resize(2*mesh.face.size());
for (size_t j = 0; j < _Chords.size(); j++)
_Chords[j].Reset();
_currentChord = NULL;
PC_Coord *coord = NULL;
PC_Chord *chord = NULL;
long long j = 0;
for (size_t i = 0; i < _coords.size(); i++) {
for (size_t i = 0; i < _Chords.size(); i++) {
// set the prev
coord = NULL;
chord = NULL;
if ((long long)i-1 >= 0) {
coord = &_coords[i-1];
chord = &_Chords[i-1];
if (vcg::tri::HasPerFaceFlags(mesh)) {
j = i-1;
while (j >= 0 && mesh.face[j/2].IsD())
j--;
if (j >= 0)
coord = &_coords[j];
chord = &_Chords[j];
else
coord = NULL;
chord = NULL;
}
}
_coords[i].prev = coord;
_Chords[i].prev = chord;
// set the next
coord = NULL;
if (i+1 < _coords.size()) {
coord = &_coords[i+1];
chord = NULL;
if (i+1 < _Chords.size()) {
chord = &_Chords[i+1];
if (vcg::tri::HasPerFaceFlags(mesh)) {
j = i+1;
while (j < (long long)_coords.size() && mesh.face[j/2].IsD())
while (j < (long long)_Chords.size() && mesh.face[j/2].IsD())
j++;
if (j < (long long)_coords.size())
coord = &_coords[j];
if (j < (long long)_Chords.size())
chord = &_Chords[j];
else
coord = NULL;
chord = NULL;
}
}
_coords[i].next = coord;
_Chords[i].next = chord;
}
if (mesh.face.size() > 0) {
// set the current coord (first - not deleted - face)
_currentCoord = &_coords[0];
_currentChord = &_Chords[0];
if (vcg::tri::HasPerFaceFlags(mesh) && mesh.face[0].IsD())
_currentCoord = _currentCoord->next;
_currentChord = _currentChord->next;
}
}
/**
* @brief operator [], given a face index and an offset, it returns (a reference to) its corresponding PC_Coord.
* @brief operator [], given a face index and an offset, it returns (a reference to) its corresponding PC_Chord.
* @param face_edge A std::pair<size_t, unsigned char>(face_index, offset). The offset should be 0 or 1.
* @return A reference to the corresponding PC_Coord.
* @return A reference to the corresponding PC_Chord.
*/
inline PC_Coord & operator[] (const std::pair<size_t, unsigned char> &face_edge) {
assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _coords.size());
return _coords[2*face_edge.first + face_edge.second];
inline PC_Chord & operator[] (const std::pair<size_t, unsigned char> &face_edge) {
assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _Chords.size());
return _Chords[2*face_edge.first + face_edge.second];
}
/**
* @brief operator [], given a face index and an offset, it returns (a const reference to) its corresponding PC_Coord.
* @brief operator [], given a face index and an offset, it returns (a const reference to) its corresponding PC_Chord.
* @param face_edge A std::pair<size_t, unsigned char>(face_index, offset). The offset should be 0 or 1.
* @return A reference to the corresponding PC_Coord.
* @return A reference to the corresponding PC_Chord.
*/
inline const PC_Coord & operator[] (const std::pair<size_t, unsigned char> &face_edge) const {
assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _coords.size());
return _coords[2*face_edge.first + face_edge.second];
inline const PC_Chord & operator[] (const std::pair<size_t, unsigned char> &face_edge) const {
assert(face_edge.first >= 0 && 2*face_edge.first+face_edge.second < _Chords.size());
return _Chords[2*face_edge.first + face_edge.second];
}
/**
@ -186,23 +181,23 @@ public:
* @param coord The coord pointer.
* @return A std::pair <size_t, unsigned char>(face_index, offset) with offset being 0 or 1.
*/
inline std::pair<size_t, unsigned char> operator[] (PC_Coord const * const coord) {
assert(coord >= &_coords[0] && coord < &_coords[0]+_coords.size());
return std::pair<size_t, unsigned char>((coord - &_coords[0])/2, (coord - &_coords[0])%2);
inline std::pair<size_t, unsigned char> operator[] (PC_Chord const * const coord) {
assert(coord >= &_Chords[0] && coord < &_Chords[0]+_Chords.size());
return std::pair<size_t, unsigned char>((coord - &_Chords[0])/2, (coord - &_Chords[0])%2);
}
/**
* @brief UpdateCoord updates the coord information and links.
* @param coord The coord to update.
* @param mark The mark of the polycoord.
* @param resultCode The code for the type of the polycoord.
* @param mark The mark of the polychord.
* @param resultCode The code for the type of the polychord.
*/
inline void UpdateCoord (PC_Coord &coord, const unsigned long mark, const PC_ResultCode resultCode) {
inline void UpdateCoord (PC_Chord &coord, const unsigned long mark, const PC_ResultCode resultCode) {
// update prev and next
if (coord.q == PC_VOID) {
if (coord.prev != NULL && &coord != _currentCoord)
if (coord.prev != NULL && &coord != _currentChord)
coord.prev->next = coord.next;
if (coord.next != NULL && &coord != _currentCoord)
if (coord.next != NULL && &coord != _currentChord)
coord.next->prev = coord.prev;
coord.mark = mark;
}
@ -213,8 +208,8 @@ public:
* @brief Next, if it's not at the end, it goes to the next coord.
*/
inline void Next () {
if (_currentCoord != NULL)
_currentCoord = _currentCoord->next;
if (_currentChord != NULL)
_currentChord = _currentChord->next;
}
/**
@ -222,9 +217,9 @@ public:
* @param face_edge A std::pair where to store the FaceType pointer and the edge index.
*/
inline void GetCurrent (std::pair<size_t, unsigned char> &face_edge) {
if (_currentCoord != NULL) {
face_edge.first = (_currentCoord - &_coords[0])/2;
face_edge.second = (_currentCoord - &_coords[0])%2;
if (_currentChord != NULL) {
face_edge.first = (_currentChord - &_Chords[0])/2;
face_edge.second = (_currentChord - &_Chords[0])%2;
} else {
face_edge.first = std::numeric_limits<size_t>::max();
face_edge.second = 0;
@ -236,16 +231,16 @@ public:
* @return true if an end has been reached, false otherwise.
*/
inline bool End () {
return _currentCoord == NULL;
return _currentChord == NULL;
}
private:
std::vector<PC_Coord> _coords;
PC_Coord *_currentCoord;
std::vector<PC_Chord> _Chords;
PC_Chord *_currentChord;
};
/**
* @brief The LinkCondition class provides a tool to check if a polycoord satisfies the link conditions.
* @brief The LinkCondition class provides a tool to check if a polychord satisfies the link conditions.
*/
class LinkConditions {
private:
@ -271,12 +266,12 @@ public:
}
/**
* @brief CheckLinkConditions checks if collapsing the polycoord starting from startPos
* @brief CheckLinkConditions checks if collapsing the polychord starting from startPos
* satisfies the link conditions.
* @warning The polycoord starts from startPos and ends to itself (if it's a loop) or to a border. In the latter case,
* @warning The polychord starts from startPos and ends to itself (if it's a loop) or to a border. In the latter case,
* call this method starting from the opposite border of the strip of quads.
* @param mesh The mesh for getting the vertex index.
* @param startPos The starting position of the polycoord.
* @param startPos The starting position of the polychord.
* @return true if satisfied, false otherwise.
*/
bool CheckLinkConditions (const PolyMeshType &mesh, const vcg::face::Pos<FaceType> &startPos) {
@ -334,7 +329,7 @@ public:
}
/**
* @brief LC_ResetStars resets the stars on a polycoord.
* @brief LC_ResetStars resets the stars on a polychord.
* @param mesh The mesh for getting the vertex index.
* @param startPos
*/
@ -390,7 +385,7 @@ public:
}
/**
* @brief LC_computeStars computes the stars of edges and vertices of the polycoord from the starting pos
* @brief LC_computeStars computes the stars of edges and vertices of the polychord from the starting pos
* either to itself (if it's a loop) or to the border edge.
* @param mesh The mesh for getting the vertex index.
* @param startPos Starting position.
@ -406,7 +401,7 @@ public:
vcg::face::Pos<FaceType> eStarPos;
lcEdges.clear();
/// compute the star of all the vertices and edges seen from the polycoord
/// compute the star of all the vertices and edges seen from the polychord
runPos = startPos;
do {
// create a lcedge
@ -566,24 +561,24 @@ public:
};
// PolyCoordCollapse's methods begin here::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
// PolychordCollapse's methods begin here::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
/**
* @brief CollapsePolycoord performs all checks and then collapses the polycoord.
* @brief CollapsePolychord performs all checks and then collapses the polychord.
*
* @warning This function deletes faces and vertices by calling
* vcg::tri::Allocator<PolyMeshType>::DeleteFace() and
* vcg::tri::Allocator<PolyMeshType>::DeleteVertex().
* The object PC_Coords coords is used to track the polycoords, and it has got
* The object PC_Chords chords is used to track the polychords, and it has got
* a size proportional to that of the mesh face container. If you actually
* delete faces and vertices by calling vcg::tri::Allocator<PolyMeshType>::CompactFaceVector()
* and vcg::tri::Allocator<PolyMeshType>::CompactVertexVector() after this function,
* object PC_Coords coords then is not valid any more, so you MUST rearrange it
* by calling PC_Coords.Reset(). For the same reason, you MUST rearrange LinkConditions linkConditions
* object PC_Chords chords then is not valid any more, so you MUST rearrange it
* by calling PC_Chords.Reset(). For the same reason, you MUST rearrange LinkConditions linkConditions
* by calling LinkConditions.Resize().
* However, for efficiency, you SHOULD compact vertex and face containers at the end of all your
* polycoord collapsing operations, without having to rearrange coords and linkConditions.
* The function CollapseAllPolycoords() does this for you.
* polychord collapsing operations, without having to rearrange chords and linkConditions.
* The function CollapseAllPolychords() does this for you.
*
* @note Vertex flags, face flags, FF adjacency and FV adjacency are required. Not anything else.
* Such components are automatically updated here. If the mesh has other components that may be
@ -591,17 +586,17 @@ public:
*
* @param mesh The polygonal mesh used for getting the face index and deleting the faces
* (it SHOULD have the vcg::face::PolyInfo component).
* @param pos Position of the polycoord.
* @param mark Mark for the current polycoord.
* @param coords Vector of coords.
* @param pos Position of the polychord.
* @param mark Mark for the current polychord.
* @param chords Vector of chords.
* @param linkConditions Link conditions checker.
* @param checkSing true if singularities on both sides are not allowed.
* @return A PC_ResultCode resulting from checks or PC_SUCCESS if the collapse has been performed.
*/
static PC_ResultCode CollapsePolycoord (PolyMeshType &mesh,
static PC_ResultCode CollapsePolychord (PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &pos,
const unsigned long mark,
PC_Coords &coords,
PC_Chords &chords,
LinkConditions &linkConditions,
const bool checkSing = true) {
vcg::tri::RequirePerVertexFlags(mesh);
@ -615,52 +610,52 @@ public:
vcg::face::Pos<FaceType> tempPos, startPos;
// check if the sequence of facets is a polycoord and find the starting coord
PC_ResultCode resultCode = CheckPolycoordFindStartPosition(pos, startPos, checkSing);
// check if the sequence of facets is a polychord and find the starting coord
PC_ResultCode resultCode = CheckPolychordFindStartPosition(pos, startPos, checkSing);
// if not successful, visit the sequence for marking it and return
if (resultCode != PC_SUCCESS) {
// if not manifold, visit the entire polycoord ending on the non-manifold edge
// if not manifold, visit the entire polychord ending on the non-manifold edge
if (resultCode == PC_NOTMANIF) {
tempPos = pos;
VisitPolycoord(mesh, tempPos, coords, mark, resultCode);
VisitPolychord(mesh, tempPos, chords, mark, resultCode);
if (tempPos.IsManifold() && !tempPos.IsBorder()) {
tempPos.FlipF();
VisitPolycoord(mesh, tempPos, coords, mark, resultCode);
VisitPolychord(mesh, tempPos, chords, mark, resultCode);
}
return resultCode;
}
// if not quad, visit all the polycoords passing through this coord
// if not quad, visit all the polychords passing through this coord
if (resultCode == PC_NOTQUAD) {
tempPos = startPos;
do {
if (!tempPos.IsBorder()) {
tempPos.FlipF();
VisitPolycoord(mesh, tempPos, coords, mark, resultCode);
VisitPolychord(mesh, tempPos, chords, mark, resultCode);
tempPos.FlipF();
}
tempPos.FlipV();
tempPos.FlipE();
} while (tempPos != startPos);
}
VisitPolycoord(mesh, startPos, coords, mark, resultCode);
VisitPolychord(mesh, startPos, chords, mark, resultCode);
return resultCode;
}
// check if the link conditions are satisfied
bool lc = linkConditions.CheckLinkConditions(mesh, startPos);
// if not satisfied, visit the sequence for marking it and return
if (!lc) {
VisitPolycoord(mesh, startPos, coords, mark, PC_NOLINKCOND);
VisitPolychord(mesh, startPos, chords, mark, PC_NOLINKCOND);
return PC_NOLINKCOND;
}
// check if the polycoord does not intersect itself
bool si = IsPolycoordSelfIntersecting(mesh, startPos, coords, mark);
// if it self-intersects, visit the polycoord for marking it and return
// check if the polychord does not intersect itself
bool si = IsPolychordSelfIntersecting(mesh, startPos, chords, mark);
// if it self-intersects, visit the polychord for marking it and return
if (si) {
VisitPolycoord(mesh, startPos, coords, mark, PC_SELFINTERSECT);
VisitPolychord(mesh, startPos, chords, mark, PC_SELFINTERSECT);
return PC_SELFINTERSECT;
}
// at this point the polycoord is collapsable, visit it for marking
VisitPolycoord(mesh, startPos, coords, mark, PC_SUCCESS);
// at this point the polychord is collapsable, visit it for marking
VisitPolychord(mesh, startPos, chords, mark, PC_SUCCESS);
// now collapse
CoordType point;
@ -838,11 +833,11 @@ public:
}
/**
* @brief CollapseAllPolycoords finds and collapses all the polycoords.
* @brief CollapseAllPolychords finds and collapses all the polychords.
* @param mesh The input polygonal mesh (it SHOULD have the vcg::face::PolyInfo component).
* @param checkSing true if singularities on both sides of a polycoord are not allowed.
* @param checkSing true if singularities on both sides of a polychord are not allowed.
*/
static void CollapseAllPolycoords (PolyMeshType &mesh, const bool checkSing = true) {
static void CollapseAllPolychords (PolyMeshType &mesh, const bool checkSing = true) {
vcg::tri::RequireFFAdjacency(mesh);
if (mesh.FN() == 0)
@ -853,25 +848,25 @@ public:
std::pair<size_t, unsigned char> face_edge;
// construct the link conditions checker
LinkConditions linkConditions(mesh.vert.size());
// construct the vector of coords
PC_Coords coords(mesh);
// construct the vector of chords
PC_Chords chords(mesh);
unsigned long mark = 0;
// iterate over all the coords
while (!coords.End()) {
// iterate over all the chords
while (!chords.End()) {
// get the current coord
coords.GetCurrent(face_edge);
chords.GetCurrent(face_edge);
// construct a pos on the face and edge of the current coord
pos.Set(&mesh.face[face_edge.first], face_edge.second, mesh.face[face_edge.first].V(face_edge.second));
// (try to) collapse the polycoord
resultCode = CollapsePolycoord(mesh, pos, mark, coords, linkConditions, checkSing);
// (try to) collapse the polychord
resultCode = CollapsePolychord(mesh, pos, mark, chords, linkConditions, checkSing);
// go to the next coord
coords.Next();
chords.Next();
// increment the mark
mark++;
if (mark == std::numeric_limits<unsigned long>::max()) {
coords.ResetMarks();
chords.ResetMarks();
mark = 0;
}
}
@ -896,13 +891,13 @@ private:
}
/**
* @brief CheckPolycoordFindStartPosition checks if it's a collapsable polycoord.
* @brief CheckPolychordFindStartPosition checks if it's a collapsable polychord.
* @param pos Input The starting position.
* @param startPos Output the new starting position (in case of borders).
* @param checkSing true if singularities on both sides are not allowed.
* @return PC_SUCCESS if it's a collapsable polycoord, otherwise the code for the cause (startPos is on it).
* @return PC_SUCCESS if it's a collapsable polychord, otherwise the code for the cause (startPos is on it).
*/
static PC_ResultCode CheckPolycoordFindStartPosition (const vcg::face::Pos<FaceType> &pos,
static PC_ResultCode CheckPolychordFindStartPosition (const vcg::face::Pos<FaceType> &pos,
vcg::face::Pos<FaceType> &startPos,
const bool checkSing = true) {
assert(!pos.IsNull());
@ -939,7 +934,7 @@ private:
}
if (valence != 4)
singSideB = true;
// a 2-valence internl vertex cause a polycoord to touch itself, producing non-2manifoldness
// a 2-valence internl vertex cause a polychord to touch itself, producing non-2manifoldness
// in that case, a 2-valence vertex is dealt as 2 singularities in both sides
if (valence == 2 && !borderB)
singSideA = true;
@ -954,7 +949,7 @@ private:
}
if (valence != 4)
singSideA = true;
// a 2-valence internal vertex cause a polycoord to touch itself, producing non-2manifoldness
// a 2-valence internal vertex cause a polychord to touch itself, producing non-2manifoldness
// in that case, a 2-valence vertex is dealt as 2 singularities in both sides
if (valence == 2 && !borderA)
singSideB = true;
@ -986,11 +981,11 @@ private:
startPos.FlipF();
} while (startPos != pos);
// polycoord with singularities on both sides can not collapse
// polychord with singularities on both sides can not collapse
if (singSideA && singSideB)
return PC_SINGBOTH;
// polycoords that are rings and have borders on both sides can not collapse
// polychords that are rings and have borders on both sides can not collapse
if (!polyBorderFound && borderA && borderB)
return PC_SINGBOTH;
@ -998,18 +993,18 @@ private:
}
/**
* @brief IsPolycoordSelfIntersecting checks if the input polycoord intersects itself.
* @warning Don't call this function without being sure that it's a polycoord
* (i.e. call CheckPolycoordFindStartPoint() before calling IsPolycoordSelfIntersecting().
* @brief IsPolychordSelfIntersecting checks if the input polychord intersects itself.
* @warning Don't call this function without being sure that it's a polychord
* (i.e. call CheckPolychordFindStartPoint() before calling IsPolychordSelfIntersecting().
* @param mesh The mesh used for getting the face index.
* @param startPos The starting position.
* @param coords The vector of coords.
* @param chords The vector of chords.
* @param mark The current mark, used to identify quads already visited.
* @return true if it intersects itself, false otherwise.
*/
static bool IsPolycoordSelfIntersecting (const PolyMeshType &mesh,
static bool IsPolychordSelfIntersecting (const PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &startPos,
const PC_Coords &coords,
const PC_Chords &chords,
const unsigned long mark) {
assert(!startPos.IsNull());
vcg::face::Pos<FaceType> runPos = startPos;
@ -1020,10 +1015,10 @@ private:
// check if we've already crossed this face
face_edge.first = vcg::tri::Index(mesh, runPos.F());
face_edge.second = (runPos.E()+1)%2;
if (coords[face_edge].mark == mark)
if (chords[face_edge].mark == mark)
return true;
// if this coord is adjacent to another coord of the same polycoord
// i.e., this polycoord touches itself without intersecting
// if this coord is adjacent to another coord of the same polychord
// i.e., this polychord touches itself without intersecting
// it might cause a wrong collapse, producing holes and non-2manifoldness
tmpPos = runPos;
tmpPos.FlipE();
@ -1031,7 +1026,7 @@ private:
tmpPos.FlipF();
face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge.second = (tmpPos.E()+1)%2;
if (coords[face_edge].mark == mark)
if (chords[face_edge].mark == mark)
return true;
}
tmpPos = runPos;
@ -1041,7 +1036,7 @@ private:
tmpPos.FlipF();
face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge.second = (tmpPos.E()+1)%2;
if (coords[face_edge].mark == mark)
if (chords[face_edge].mark == mark)
return true;
}
runPos.FlipE();
@ -1054,16 +1049,16 @@ private:
}
/**
* @brief VisitPolycoord updates the information of a polycoord.
* @brief VisitPolychord updates the information of a polychord.
* @param mesh The mesh used for getting the face index.
* @param startPos The starting position.
* @param coords The vector of coords.
* @param chords The vector of chords.
* @param mark The mark.
* @param q The visiting type.
*/
static void VisitPolycoord (const PolyMeshType &mesh,
static void VisitPolychord (const PolyMeshType &mesh,
const vcg::face::Pos<FaceType> &startPos,
PC_Coords &coords,
PC_Chords &chords,
const unsigned long mark,
const PC_ResultCode q) {
assert(!startPos.IsNull());
@ -1082,9 +1077,9 @@ private:
// update current coord
face_edge.first = vcg::tri::Index(mesh, tmpPos.F());
face_edge.second = tmpPos.E()%2;
coords.UpdateCoord(coords[face_edge], mark, q);
chords.UpdateCoord(chords[face_edge], mark, q);
face_edge.second = (tmpPos.E()+1)%2;
coords.UpdateCoord(coords[face_edge], mark, q);
chords.UpdateCoord(chords[face_edge], mark, q);
return;
}
tmpPos.FlipV();
@ -1094,11 +1089,11 @@ private:
// update current coord
face_edge.first = vcg::tri::Index(mesh, runPos.F());
face_edge.second = runPos.E()%2;
coords.UpdateCoord(coords[face_edge], mark, q);
// if the polycoord has to collapse, i.e. q == PC_SUCCESS, also visit the orthogonal coord
chords.UpdateCoord(chords[face_edge], mark, q);
// if the polychord has to collapse, i.e. q == PC_SUCCESS, also visit the orthogonal coord
if (q == PC_SUCCESS) {
face_edge.second = (runPos.E()+1)%2;
coords.UpdateCoord(coords[face_edge], mark, q);
chords.UpdateCoord(chords[face_edge], mark, q);
}
runPos.FlipE();
@ -1114,4 +1109,4 @@ private:
}
}
#endif // POLYGON_POLYCOORD_COLLAPSE_H
#endif // POLYGON_Polychord_COLLAPSE_H