Geodesic: Added possibility of saving also the implict tree of the shortest path. For each vertex you can give an attribute where the function will save the 'parent' e.g. the previous vertex in the shortest path to the closest source.
This commit is contained in:
parent
1c5f2c2264
commit
ffdc2f2b28
|
@ -47,342 +47,329 @@ g.FarthestVertex(m,seed,far,d);
|
|||
#define __VCGLIB_GEODESIC
|
||||
|
||||
namespace vcg{
|
||||
namespace tri{
|
||||
namespace tri{
|
||||
|
||||
template <class MeshType>
|
||||
struct EuclideanDistance{
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
template <class MeshType>
|
||||
struct EuclideanDistance{
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
EuclideanDistance(){}
|
||||
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
|
||||
{return vcg::Distance(v0->cP(),v1->cP());}
|
||||
};
|
||||
EuclideanDistance(){}
|
||||
ScalarType operator()(const VertexType * v0, const VertexType * v1) const
|
||||
{return vcg::Distance(v0->cP(),v1->cP());}
|
||||
};
|
||||
|
||||
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
|
||||
class Geo{
|
||||
template <class MeshType, class DistanceFunctor = EuclideanDistance<MeshType> >
|
||||
class Geo{
|
||||
|
||||
public:
|
||||
public:
|
||||
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
typedef typename MeshType::VertexType VertexType;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::FaceType FaceType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
|
||||
|
||||
|
||||
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance
|
||||
*/
|
||||
struct VertDist{
|
||||
VertDist(){}
|
||||
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
||||
VertexPointer v;
|
||||
ScalarType d;
|
||||
};
|
||||
/* Auxiliary class for keeping the heap of vertices to visit and their estimated distance */
|
||||
struct VertDist{
|
||||
VertDist(){}
|
||||
VertDist(VertexPointer _v, ScalarType _d):v(_v),d(_d){}
|
||||
|
||||
VertexPointer v;
|
||||
ScalarType d;
|
||||
};
|
||||
|
||||
|
||||
/* Temporary data to associate to all the vertices: estimated distance and boolean flag
|
||||
*/
|
||||
struct TempData{
|
||||
TempData(){}
|
||||
TempData(const ScalarType & d_){d=d_;source = NULL;}
|
||||
ScalarType d;
|
||||
VertexPointer source;//closest source
|
||||
/* Temporary data to associate to all the vertices: estimated distance and boolean flag */
|
||||
struct TempData{
|
||||
TempData(){}
|
||||
TempData(const ScalarType & _d):d(_d),source(0),parent(0){}
|
||||
|
||||
};
|
||||
ScalarType d;
|
||||
VertexPointer source;//closest source
|
||||
VertexPointer parent;
|
||||
};
|
||||
|
||||
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
|
||||
//TempDataType * TD;
|
||||
typedef SimpleTempData<std::vector<VertexType>, TempData > TempDataType;
|
||||
|
||||
|
||||
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.d > v1.d);}
|
||||
};
|
||||
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred_addr(){};
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.v > v1.v);}
|
||||
};
|
||||
struct pred: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred(){}
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.d > v1.d);}
|
||||
};
|
||||
|
||||
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
||||
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
||||
//************** (vedi figura in file distance.gif)
|
||||
static ScalarType Distance(const VertexPointer &pw,
|
||||
const VertexPointer &pw1,
|
||||
const VertexPointer &curr,
|
||||
const ScalarType &d_pw1,
|
||||
const ScalarType &d_curr)
|
||||
{
|
||||
ScalarType curr_d=0;
|
||||
struct pred_addr: public std::binary_function<VertDist,VertDist,bool>{
|
||||
pred_addr(){}
|
||||
bool operator()(const VertDist& v0, const VertDist& v1) const
|
||||
{return (v0.v > v1.v);}
|
||||
};
|
||||
|
||||
ScalarType ew_c = DistanceFunctor()(pw,curr);
|
||||
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
|
||||
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
|
||||
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
|
||||
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
|
||||
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
|
||||
//************** calcolo della distanza di pw in base alle distanze note di pw1 e curr
|
||||
//************** sapendo che (curr,pw,pw1) e'una faccia della mesh
|
||||
//************** (vedi figura in file distance.gif)
|
||||
static ScalarType Distance(const VertexPointer &pw,
|
||||
const VertexPointer &pw1,
|
||||
const VertexPointer &curr,
|
||||
const ScalarType &d_pw1,
|
||||
const ScalarType &d_curr)
|
||||
{
|
||||
ScalarType curr_d=0;
|
||||
|
||||
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
||||
ScalarType ew_c = DistanceFunctor()(pw,curr);
|
||||
ScalarType ew_w1 = DistanceFunctor()(pw,pw1);
|
||||
ScalarType ec_w1 = DistanceFunctor()(pw1,curr);
|
||||
CoordType w_c = (pw->cP()-curr->cP()).Normalize() * ew_c;
|
||||
CoordType w_w1 = (pw->cP() - pw1->cP()).Normalize() * ew_w1;
|
||||
CoordType w1_c = (pw1->cP() - curr->cP()).Normalize() * ec_w1;
|
||||
|
||||
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
|
||||
s = (d_curr + d_pw1+ec_w1)/2;
|
||||
a = s/ec_w1;
|
||||
b = a*s;
|
||||
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
||||
ScalarType alpha,alpha_, beta,beta_,theta,h,delta,s,a,b;
|
||||
|
||||
if ( alpha+alpha_ > M_PI){
|
||||
curr_d = d_curr + ew_c;
|
||||
}else
|
||||
{
|
||||
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
||||
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
|
||||
alpha = acos((w_c.dot(w1_c))/(ew_c*ec_w1));
|
||||
s = (d_curr + d_pw1+ec_w1)/2;
|
||||
a = s/ec_w1;
|
||||
b = a*s;
|
||||
alpha_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_pw1)/d_curr)));
|
||||
|
||||
if ( beta+beta_ > M_PI)
|
||||
curr_d = d_pw1 + ew_w1;
|
||||
else
|
||||
{
|
||||
theta = ScalarType(M_PI)-alpha-alpha_;
|
||||
delta = cos(theta)* ew_c;
|
||||
h = sin(theta)* ew_c;
|
||||
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
||||
}
|
||||
}
|
||||
return (curr_d);
|
||||
}
|
||||
if ( alpha+alpha_ > M_PI){
|
||||
curr_d = d_curr + ew_c;
|
||||
}else
|
||||
{
|
||||
beta_ = 2*acos ( std::min<ScalarType>(1.0,sqrt( (b- a* d_curr)/d_pw1)));
|
||||
beta = acos((w_w1).dot(-w1_c)/(ew_w1*ec_w1));
|
||||
|
||||
/*
|
||||
This is the low level version of the geodesic computation framework.
|
||||
Starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
||||
approximated geodesic distance to the closest seeds.
|
||||
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
||||
wrapping function.
|
||||
*/
|
||||
static VertexPointer Visit(
|
||||
MeshType & m,
|
||||
std::vector<VertDist> & seedVec,
|
||||
bool farthestOnBorder = false,
|
||||
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertSource = NULL,
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
bool isLeaf;
|
||||
std::vector<VertDist> frontier;
|
||||
VertexPointer curr,farthest=0,pw1;
|
||||
ScalarType unreached = std::numeric_limits<ScalarType>::max();
|
||||
if ( beta+beta_ > M_PI)
|
||||
curr_d = d_pw1 + ew_w1;
|
||||
else
|
||||
{
|
||||
theta = ScalarType(M_PI)-alpha-alpha_;
|
||||
delta = cos(theta)* ew_c;
|
||||
h = sin(theta)* ew_c;
|
||||
curr_d = sqrt( pow(h,2)+ pow(d_curr + delta,2));
|
||||
}
|
||||
}
|
||||
return (curr_d);
|
||||
}
|
||||
|
||||
VertexPointer pw;
|
||||
/*
|
||||
This is the low level version of the geodesic computation framework.
|
||||
Starting from the seeds, it assign a distance value to each vertex. The distance of a vertex is its
|
||||
approximated geodesic distance to the closest seeds.
|
||||
This is function is not meant to be called (although is not prevented). Instead, it is invoked by
|
||||
wrapping function.
|
||||
*/
|
||||
static VertexPointer Visit(
|
||||
MeshType & m,
|
||||
std::vector<VertDist> & seedVec, // the set of seed to start from
|
||||
bool farthestOnBorder = false,
|
||||
ScalarType distance_threshold = std::numeric_limits<ScalarType>::max(), // cut off distance (do no compute anything farther than this value)
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertSource = NULL, // if present we put in this attribute the closest source for each vertex
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * vertParent = NULL, // if present we put in this attribute the parent in the path that goes from the vertex to the closest source
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
std::vector<VertDist> frontier;
|
||||
VertexPointer farthest=0,pw,pw1;
|
||||
|
||||
//Requirements
|
||||
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
|
||||
assert(!seedVec.empty());
|
||||
//Requirements
|
||||
assert(HasPerVertexVFAdjacency(m) && HasPerFaceVFAdjacency(m));
|
||||
assert(!seedVec.empty());
|
||||
|
||||
TempDataType TD(m.vert,unreached);
|
||||
TempDataType TD(m.vert, std::numeric_limits<ScalarType>::max());
|
||||
|
||||
typename std::vector <VertDist >::iterator ifr;
|
||||
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
|
||||
TD[(*ifr).v].d = 0.0;
|
||||
(*ifr).d = 0.0;
|
||||
TD[(*ifr).v].source = (*ifr).v;
|
||||
frontier.push_back(VertDist((*ifr).v,0.0));
|
||||
}
|
||||
// initialize Heap
|
||||
make_heap(frontier.begin(),frontier.end(),pred());
|
||||
typename std::vector <VertDist >::iterator ifr;
|
||||
for(ifr = seedVec.begin(); ifr != seedVec.end(); ++ifr){
|
||||
(*ifr).d = 0.0;
|
||||
TD[(*ifr).v].d = 0.0;
|
||||
TD[(*ifr).v].source = (*ifr).v;
|
||||
TD[(*ifr).v].parent = (*ifr).v;
|
||||
frontier.push_back(VertDist((*ifr).v,0.0));
|
||||
}
|
||||
// initialize Heap
|
||||
make_heap(frontier.begin(),frontier.end(),pred());
|
||||
|
||||
ScalarType curr_d,d_curr = 0.0,d_heap;
|
||||
VertexPointer curr_s = NULL;
|
||||
ScalarType max_distance=0.0;
|
||||
typename std::vector<VertDist >:: iterator iv;
|
||||
ScalarType curr_d,d_curr = 0.0,d_heap;
|
||||
ScalarType max_distance=0.0;
|
||||
|
||||
while(!frontier.empty() && max_distance < distance_threshold)
|
||||
{
|
||||
pop_heap(frontier.begin(),frontier.end(),pred());
|
||||
curr = (frontier.back()).v;
|
||||
if (InInterval!=NULL)
|
||||
InInterval->push_back(curr);
|
||||
while(!frontier.empty() && max_distance < distance_threshold)
|
||||
{
|
||||
pop_heap(frontier.begin(),frontier.end(),pred());
|
||||
VertexPointer curr = (frontier.back()).v;
|
||||
if (InInterval!=NULL) InInterval->push_back(curr);
|
||||
|
||||
curr_s = TD[curr].source;
|
||||
if(vertSource!=NULL)
|
||||
(*vertSource)[curr] = curr_s;
|
||||
d_heap = (frontier.back()).d;
|
||||
frontier.pop_back();
|
||||
if(vertSource!=NULL) (*vertSource)[curr] = TD[curr].source;
|
||||
if(vertParent!=NULL) (*vertParent)[curr] = TD[curr].parent;
|
||||
|
||||
assert(TD[curr].d <= d_heap);
|
||||
assert(curr_s != NULL);
|
||||
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
|
||||
continue;
|
||||
assert(TD[curr].d == d_heap);
|
||||
d_heap = (frontier.back()).d;
|
||||
frontier.pop_back();
|
||||
|
||||
d_curr = TD[curr].d;
|
||||
assert(TD[curr].d <= d_heap);
|
||||
if(TD[curr].d < d_heap )// a vertex whose distance has been improved after it was inserted in the queue
|
||||
continue;
|
||||
assert(TD[curr].d == d_heap);
|
||||
|
||||
isLeaf = (!farthestOnBorder || curr->IsB());
|
||||
d_curr = TD[curr].d;
|
||||
|
||||
face::VFIterator<FaceType> x;int k;
|
||||
bool isLeaf = (!farthestOnBorder || curr->IsB());
|
||||
|
||||
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
||||
for(k=0;k<2;++k)
|
||||
{
|
||||
if(k==0) {
|
||||
pw = x.f->V1(x.z);
|
||||
pw1=x.f->V2(x.z);
|
||||
}
|
||||
else {
|
||||
pw = x.f->V2(x.z);
|
||||
pw1=x.f->V1(x.z);
|
||||
}
|
||||
face::VFIterator<FaceType> x;int k;
|
||||
|
||||
const ScalarType & d_pw1 = TD[pw1].d;
|
||||
{
|
||||
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
|
||||
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
|
||||
for( x.f = curr->VFp(), x.z = curr->VFi(); x.f!=0; ++x )
|
||||
for(k=0;k<2;++k)
|
||||
{
|
||||
if(k==0) {
|
||||
pw = x.f->V1(x.z);
|
||||
pw1=x.f->V2(x.z);
|
||||
}
|
||||
else {
|
||||
pw = x.f->V2(x.z);
|
||||
pw1=x.f->V1(x.z);
|
||||
}
|
||||
|
||||
if ( (TD[pw1].source != TD[curr].source)||// not the same source
|
||||
(inter + d_curr < d_pw1 +tol ) ||
|
||||
(inter + d_pw1 < d_curr +tol ) ||
|
||||
(d_curr + d_pw1 < inter +tol ) // triangular inequality
|
||||
)
|
||||
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
|
||||
else
|
||||
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
|
||||
}
|
||||
const ScalarType & d_pw1 = TD[pw1].d;
|
||||
{
|
||||
const ScalarType inter = DistanceFunctor()(curr,pw1);//(curr->P() - pw1->P()).Norm();
|
||||
const ScalarType tol = (inter + d_curr + d_pw1)*.0001f;
|
||||
|
||||
if(TD[(pw)].d > curr_d){
|
||||
TD[(pw)].d = curr_d;
|
||||
TD[pw].source = curr_s;
|
||||
frontier.push_back(VertDist(pw,curr_d));
|
||||
push_heap(frontier.begin(),frontier.end(),pred());
|
||||
}
|
||||
if(isLeaf){
|
||||
if(d_curr > max_distance){
|
||||
max_distance = d_curr;
|
||||
farthest = curr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}// end while
|
||||
if ( (TD[pw1].source != TD[curr].source)||// not the same source
|
||||
(inter + d_curr < d_pw1 +tol ) ||
|
||||
(inter + d_pw1 < d_curr +tol ) ||
|
||||
(d_curr + d_pw1 < inter +tol ) // triangular inequality
|
||||
)
|
||||
curr_d = d_curr + DistanceFunctor()(pw,curr);//(pw->P()-curr->P()).Norm();
|
||||
else
|
||||
curr_d = Distance(pw,pw1,curr,d_pw1,d_curr);
|
||||
}
|
||||
|
||||
// Copy found distance onto the Quality (\todo parametric!)
|
||||
if (InInterval==NULL)
|
||||
{
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
|
||||
(*vi).Q() = TD[&(*vi)].d;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(InInterval->size()>0);
|
||||
for(size_t i=0;i<InInterval->size();i++)
|
||||
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
|
||||
}
|
||||
if(TD[pw].d > curr_d){
|
||||
TD[pw].d = curr_d;
|
||||
TD[pw].source = TD[curr].source;
|
||||
TD[pw].parent = curr;
|
||||
frontier.push_back(VertDist(pw,curr_d));
|
||||
push_heap(frontier.begin(),frontier.end(),pred());
|
||||
}
|
||||
if(isLeaf){
|
||||
if(d_curr > max_distance){
|
||||
max_distance = d_curr;
|
||||
farthest = curr;
|
||||
}
|
||||
}
|
||||
}
|
||||
}// end while
|
||||
|
||||
return farthest;
|
||||
}
|
||||
// Copy found distance onto the Quality (\todo parametric!)
|
||||
if (InInterval==NULL)
|
||||
{
|
||||
for(VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD())
|
||||
(*vi).Q() = TD[&(*vi)].d;
|
||||
}
|
||||
else
|
||||
{
|
||||
assert(InInterval->size()>0);
|
||||
for(size_t i=0;i<InInterval->size();i++)
|
||||
(*InInterval)[i]->Q() = TD[(*InInterval)[i]].d;
|
||||
}
|
||||
|
||||
return farthest;
|
||||
}
|
||||
|
||||
|
||||
public:
|
||||
/*
|
||||
public:
|
||||
/*
|
||||
Given a mesh and a vector of pointers to seed vertices, this function assigns the approximated geodesic
|
||||
distance from the closest source to all the mesh vertices within the
|
||||
specified interval and returns the found vertices writing on their Quality field the distance.
|
||||
Optionally for each vertex it can store, in a passed attribute, its corresponding seed vertex.
|
||||
To allocate such an attribute:
|
||||
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
|
||||
sources = tri::Allocator<CMeshO>::AddPerVertexAttribute<VertexPointer> (m,"sources");
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> sources;
|
||||
sources = tri::Allocator<CMeshO>::AddPerVertexAttribute<VertexPointer> (m,"sources");
|
||||
|
||||
*/
|
||||
static bool FarthestVertex( MeshType & m,
|
||||
std::vector<VertexPointer> & seedVec,
|
||||
VertexPointer & farthest_vert,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sourceSeed = NULL,
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist> vdSeedVec;
|
||||
if(seedVec.empty()) return false;
|
||||
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
||||
{
|
||||
vdSeedVec.push_back(VertDist(*fi,0.0));
|
||||
/* if (InInterval==NULL)continue;
|
||||
InInterval.push_back();*/
|
||||
}
|
||||
farthest_vert = Visit(m, vdSeedVec, false, distance_thr, sourceSeed, InInterval);
|
||||
return true;
|
||||
}
|
||||
/*
|
||||
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
||||
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static bool FarthestVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max())
|
||||
{
|
||||
std::vector<VertexPointer> seedVec;
|
||||
seedVec.push_back( seed );
|
||||
VertexPointer v0;
|
||||
return FarthestVertex(m,seedVec,v0,distance_thr);
|
||||
}
|
||||
|
||||
*/
|
||||
static bool FarthestVertex( MeshType & m,
|
||||
std::vector<VertexPointer> & seedVec,
|
||||
VertexPointer & farthest_vert,
|
||||
ScalarType distance_thr = std::numeric_limits<ScalarType>::max(),
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sourceSeed = NULL,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * parentSeed = NULL,
|
||||
std::vector<VertexPointer> *InInterval=NULL)
|
||||
{
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist> vdSeedVec;
|
||||
if(seedVec.empty()) return false;
|
||||
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
||||
vdSeedVec.push_back(VertDist(*fi,0.0));
|
||||
farthest_vert = Visit(m, vdSeedVec, false, distance_thr, sourceSeed, parentSeed, InInterval);
|
||||
return true;
|
||||
}
|
||||
/*
|
||||
Given a mesh and a pointers to a vertex-source (source), assigns the approximated geodesic
|
||||
distance from the vertex-source to all the mesh vertices and returns the pointer to the farthest
|
||||
Note: it updates the field Q() of the vertices
|
||||
*/
|
||||
static bool FarthestVertex( MeshType & m, VertexPointer seed, ScalarType distance_thr = std::numeric_limits<ScalarType>::max())
|
||||
{
|
||||
std::vector<VertexPointer> seedVec(1,seed);
|
||||
VertexPointer v0;
|
||||
return FarthestVertex(m,seedVec,v0,distance_thr);
|
||||
}
|
||||
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex(MeshType & m,
|
||||
std::vector<VertexPointer> & seedVec,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
|
||||
typename std::vector<VertexPointer>::iterator fi;
|
||||
std::vector<VertDist>fr;
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex(MeshType & m,
|
||||
std::vector<VertexPointer> & seedVec,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
)
|
||||
{
|
||||
std::vector<VertDist>fr;
|
||||
for(typename std::vector<VertexPointer>::iterator fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,0));
|
||||
farthest = Visit(m,fr,distance,true,sources);
|
||||
}
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL)
|
||||
{
|
||||
std::vector<VertexPointer> fro(1,seed);
|
||||
VertexPointer v0;
|
||||
FarthestBVertex(m,fro,v0,distance,sources);
|
||||
farthest = v0;
|
||||
}
|
||||
|
||||
for( fi = seedVec.begin(); fi != seedVec.end() ; ++fi)
|
||||
fr.push_back(VertDist(*fi,-1));
|
||||
farthest = Visit(m,fr,distance,true,sources);
|
||||
}
|
||||
/*
|
||||
Same as FarthestPoint but the returned pointer is to a border vertex
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static void FarthestBVertex( MeshType & m,
|
||||
VertexPointer seed,
|
||||
VertexPointer & farthest,
|
||||
ScalarType & distance,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL){
|
||||
std::vector<VertexPointer> fro;
|
||||
fro.push_back( seed );
|
||||
VertexPointer v0;
|
||||
FarthestBVertex(m,fro,v0,distance,sources);
|
||||
farthest = v0;
|
||||
}
|
||||
/*
|
||||
Assigns to each vertex of the mesh its distance to the closest vertex on the border
|
||||
Note: update the field Q() of the vertices
|
||||
Note: it needs the border bit set.
|
||||
*/
|
||||
static bool DistanceFromBorder( MeshType & m, typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
std::vector<VertexPointer> fro;
|
||||
VertexIterator vi;
|
||||
VertexPointer farthest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
if(fro.empty()) return false;
|
||||
|
||||
/*
|
||||
Assigns to each vertex of the mesh its distance to the closest vertex on the border
|
||||
Note: update the field Q() of the vertices
|
||||
*/
|
||||
static bool DistanceFromBorder( MeshType & m,
|
||||
typename MeshType::template PerVertexAttributeHandle<VertexPointer> * sources = NULL
|
||||
){
|
||||
std::vector<VertexPointer> fro;
|
||||
VertexIterator vi;
|
||||
VertexPointer farthest;
|
||||
for(vi = m.vert.begin(); vi != m.vert.end(); ++vi)
|
||||
if( (*vi).IsB())
|
||||
fro.push_back(&(*vi));
|
||||
if(fro.empty()) return false;
|
||||
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
||||
|
||||
tri::UpdateQuality<MeshType>::VertexConstant(m,0);
|
||||
return FarthestVertex(m,fro,farthest,std::numeric_limits<ScalarType>::max(),sources);
|
||||
}
|
||||
|
||||
return FarthestVertex(m,fro,farthest,std::numeric_limits<ScalarType>::max(),sources);
|
||||
}
|
||||
|
||||
};
|
||||
};// end namespace tri
|
||||
};// end namespace vcg
|
||||
};// end class
|
||||
}// end namespace tri
|
||||
}// end namespace vcg
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue