/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.58 2008/03/11 14:16:40 cignoni Added check on deleted faces in RemoveDegenerateFace Revision 1.57 2008/03/06 08:37:16 cignoni added HasConsistentPerWedgeTexCoord Revision 1.56 2008/01/24 11:52:05 cignoni corrected small bug in RemoveDuplicateVertex Revision 1.55 2007/10/29 11:32:46 cignoni Added a missing IsD() test Revision 1.54 2007/10/16 16:46:53 cignoni Added Allocator::DeleteFace and Allocator::DeleteVertex; Now the use of SetD() should be deprecated. Revision 1.53 2007/07/24 07:09:49 cignoni Added remove degenerate vertex to manage vertex with NAN coords Revision 1.52 2007/06/04 06:45:05 fiorin Replaced call to old StarSize method with NumberOfIncidentFaces Revision 1.51 2007/03/27 09:23:32 cignoni added honoring of selected flag for flipmesh Revision 1.50 2007/03/12 15:38:03 tarini Texture coord name change! "TCoord" and "Texture" are BAD. "TexCoord" is GOOD. Revision 1.49 2007/02/27 15:17:17 marfr960 std::numeric_limits::max() -> (std::numeric_limits::max)() to avoid annoying misunderstaindings on msvc8 Revision 1.48 2007/01/11 10:12:19 cignoni Removed useless and conflicting inclusion of face.h Revision 1.47 2006/12/01 21:26:14 cignoni Corrected bug in the IsFFAdjacencyConsistent the Topology checking function. Revision 1.46 2006/12/01 08:12:30 cignoni Added a function for FF topology consistency check Revision 1.45 2006/12/01 00:00:56 cignoni Corrected IsOrientedMesh. After the templating of the swapedge it did not worked any more.... Added Texture management to the FlipMesh Revision 1.44 2006/11/27 10:36:35 cignoni Added IsSizeConsistent Revision 1.43 2006/11/09 17:26:24 cignoni Corrected RemoveNonManifoldFace Revision 1.42 2006/10/15 07:31:22 cignoni typenames and qualifiers for gcc compliance Revision 1.41 2006/10/09 20:06:46 cignoni Added Remove NonManifoldFace Revision 1.40 2006/05/25 09:41:09 cignoni missing std and other gcc detected syntax errors Revision 1.39 2006/05/16 21:51:07 cignoni Redesigned the function for the removal of faces according to their area and edge lenght Revision 1.38 2006/05/03 21:40:27 cignoni Changed HasMark to HasPerFaceMark(m) and commented some unused internal vars of the class Revision 1.37 2006/04/18 07:01:22 zifnab1974 added a ; how could this ever compile? Revision 1.36 2006/04/12 15:08:51 cignoni Added ConnectedIterator (should be moved somewhere else) Cleaned ConnectedComponents Revision 1.35 2006/02/28 16:51:29 ponchio Added typename Revision 1.34 2006/02/01 15:27:00 cignoni Added IsD() test in SelfIntersection Revision 1.33 2006/01/27 09:55:25 corsini fix signed/unsigned mismatch Revision 1.32 2006/01/23 13:33:54 cignoni Added a missing vcg:: Revision 1.31 2006/01/22 17:06:27 cignoni vi/fi mismatch in ClipWithBox Revision 1.30 2006/01/22 10:07:42 cignoni Corrected use of Area with the unambiguous DoubleArea Added ClipWithBox function Revision 1.29 2006/01/11 15:40:14 cignoni Added RemoveDegenerateFace and added its automatic invocation at the end of RemoveDuplicateVertex Revision 1.28 2006/01/02 09:49:36 cignoni Added some missing std:: Revision 1.27 2005/12/29 12:27:37 cignoni Splitted IsComplexManifold in IsTwoManifoldFace and IsTwoManifoldVertex Revision 1.26 2005/12/21 14:15:03 corsini Remove printf Revision 1.25 2005/12/21 13:09:03 corsini Modify genus computation Revision 1.24 2005/12/19 15:13:06 corsini Fix IsOrientedMesh Revision 1.23 2005/12/16 13:13:44 cignoni Reimplemented SelfIntersection Revision 1.22 2005/12/16 10:54:59 corsini Reimplement isOrientedMesh Revision 1.21 2005/12/16 10:53:39 corsini Take account for deletion in isComplexManifold Revision 1.20 2005/12/16 10:51:43 corsini Take account for deletion in isRegularMesh Revision 1.19 2005/12/15 13:53:13 corsini Reimplement isComplexManifold Reimplement isRegular Revision 1.18 2005/12/14 14:04:35 corsini Fix genus computation Revision 1.17 2005/12/12 12:11:40 cignoni Removed unuseful detectunreferenced Revision 1.16 2005/12/04 00:25:00 cignoni Changed DegeneratedFaces -> RemoveZeroAreaFaces Revision 1.15 2005/12/03 22:34:25 cignoni Added missing include and sdt:: (tnx to Mario Latronico) Revision 1.14 2005/12/02 00:14:43 cignoni Removed some pointer vs iterator issues that prevented gcc compilation Revision 1.13 2005/11/22 14:04:10 rita_borgo Completed and tested self-intersection routine Revision 1.12 2005/11/17 00:41:07 cignoni Removed Initialize use updateflags::Clear() instead. Revision 1.11 2005/11/16 16:33:23 rita_borgo Changed ComputeSelfintersection Revision 1.10 2005/11/15 12:16:34 rita_borgo Changed DegeneratedFaces, sets the D flags for each faces that is found to be degenerated. CounEdges and ConnectedComponents check now if a face IsD() else for degenerated faces many asserts fail. Revision 1.9 2005/11/14 09:28:18 cignoni changed access to face functions (border, area) removed some typecast warnings Revision 1.8 2005/10/11 16:03:40 rita_borgo Added new functions belonging to triMeshInfo Started the Self-Intersection routine Revision 1.7 2005/10/03 15:57:53 rita_borgo Alligned with TriMeshInfo Code Revision 1.6 2005/01/28 11:59:35 cignoni Add std:: to stl containers Revision 1.5 2004/09/20 08:37:57 cignoni Better Doxygen docs Revision 1.4 2004/08/25 15:15:26 ganovelli minor changes to comply gcc compiler (typename's and stuff) Revision 1.3 2004/07/18 06:55:37 cignoni NewUserBit -> NewBitFlag Revision 1.2 2004/07/09 15:48:37 tarini Added an include () Revision 1.1 2004/06/24 08:03:59 cignoni Initial Release ****************************************************************************/ #ifndef __VCGLIB_CLEAN #define __VCGLIB_CLEAN // Standard headers #include #include #include // VCG headers #include #include #include #include #include #include #include #include #include #include #include #include namespace vcg { namespace tri{ template class ConnectedIterator { public: typedef ConnectedMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::ConstFaceIterator ConstFaceIterator; typedef typename MeshType::FaceContainer FaceContainer; typedef typename vcg::Box3 Box3Type; public: void operator ++() { FacePointer fpt=sf.top(); sf.pop(); for(int j=0;j<3;++j) if( !face::IsBorder(*fpt,j) ) { FacePointer l=fpt->FFp(j); if( !mp->IsMarked(l) ) { mp->Mark(l); sf.push(l); } } } void start(MeshType &m, FacePointer p) { mp=&m; while(!sf.empty()) sf.pop(); mp->UnMarkAll(); assert(p); assert(!p->IsD()); mp->Mark(p); sf.push(p); } bool completed() { return sf.empty(); } FacePointer operator *() { return sf.top(); } private: std::stack sf; MeshType *mp; }; /// /** \addtogroup trimesh */ /*@{*/ /// Class of static functions to clean/correct/restore meshs. template class Clean { public: typedef CleanMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::ConstVertexIterator ConstVertexIterator; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::ConstFaceIterator ConstFaceIterator; typedef typename MeshType::FaceContainer FaceContainer; typedef typename vcg::Box3 Box3Type; typedef GridStaticPtr TriMeshGrid; typedef Point3 Point3x; //TriMeshGrid gM; //FaceIterator fi; //FaceIterator gi; //vcg::face::Pos he; //vcg::face::Pos hei; /* classe di confronto per l'algoritmo di eliminazione vertici duplicati*/ class RemoveDuplicateVert_Compare{ public: inline bool operator()(VertexPointer const &a, VertexPointer const &b) { return (*a).cP() < (*b).cP(); } }; /** This function removes all duplicate vertices of the mesh by looking only at their spatial positions. Note that it does not update any topology relation that could be affected by this like the VT or TT relation. the reason this function is usually performed BEFORE building any topology information. */ static int RemoveDuplicateVertex( MeshType & m, bool RemoveDegenerateFlag=true) // V1.0 { if(m.vert.size()==0 || m.vn==0) return 0; std::map mp; size_t i,j; VertexIterator vi; int deleted=0; int k=0; size_t num_vert = m.vert.size(); std::vector perm(num_vert); for(vi=m.vert.begin(); vi!=m.vert.end(); ++vi, ++k) perm[k] = &(*vi); RemoveDuplicateVert_Compare c_obj; std::sort(perm.begin(),perm.end(),c_obj); j = 0; i = j; mp[perm[i]] = perm[j]; ++i; for(;i!=num_vert;) { if( (! (*perm[i]).IsD()) && (! (*perm[j]).IsD()) && (*perm[i]).P() == (*perm[j]).cP() ) { VertexPointer t = perm[i]; mp[perm[i]] = perm[j]; ++i; Allocator::DeleteVertex(m,*t); deleted++; } else { j = i; ++i; } } FaceIterator fi; for(fi = m.face.begin(); fi!=m.face.end(); ++fi) if( !(*fi).IsD() ) for(k = 0; k < 3; ++k) if( mp.find( (typename MeshType::VertexPointer)(*fi).V(k) ) != mp.end() ) { (*fi).V(k) = &*mp[ (*fi).V(k) ]; } if(RemoveDegenerateFlag) RemoveDegenerateFace(m); return deleted; } class SortedTriple { public: SortedTriple() {} SortedTriple(unsigned int v0, unsigned int v1, unsigned int v2,FacePointer _fp) { v[0]=v0;v[1]=v1;v[2]=v2; fp=_fp; std::sort(v,v+3); } bool operator < (const SortedTriple &p) const { return (v[2]!=p.v[2])?(v[2] fvec; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { fvec.push_back(SortedTriple( tri::Index(m,(*fi).V(0)), tri::Index(m,(*fi).V(1)), tri::Index(m,(*fi).V(2)), &*fi)); } assert (m.fn == fvec.size()); //for(int i=0;i::DeleteFace(m, *(fvec[i].fp) ); //qDebug("deleting face %i (pos in fvec %i)",tri::Index(m,fvec[i].fp) ,i); } } return total; } /** This function removes that are not referenced by any face. The function updates the vn counter. @param m The mesh @return The number of removed vertices */ static int RemoveUnreferencedVertex( MeshType& m, bool DeleteVertexFlag=true) // V1.0 { FaceIterator fi; VertexIterator vi; int referredBit = VertexType::NewBitFlag(); int j; int deleted = 0; for(vi=m.vert.begin();vi!=m.vert.end();++vi) (*vi).ClearUserBit(referredBit); for(fi=m.face.begin();fi!=m.face.end();++fi) if( !(*fi).IsD() ) for(j=0;j<3;++j) (*fi).V(j)->SetUserBit(referredBit); for(vi=m.vert.begin();vi!=m.vert.end();++vi) if( (!(*vi).IsD()) && (!(*vi).IsUserBit(referredBit))) { if(DeleteVertexFlag) Allocator::DeleteVertex(m,*vi); ++deleted; } VertexType::DeleteBitFlag(referredBit); return deleted; } /** Degenerate vertices are vertices that have coords with invalid floating point values, All the faces incident on deleted vertices are also deleted */ static int RemoveDegenerateVertex(MeshType& m) { VertexIterator vi; int count_vd = 0; for(vi=m.vert.begin(); vi!=m.vert.end();++vi) if(math::IsNAN( (*vi).P()[0]) || math::IsNAN( (*vi).P()[1]) || math::IsNAN( (*vi).P()[2]) ) { count_vd++; Allocator::DeleteVertex(m,*vi); } FaceIterator fi; int count_fd = 0; for(fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) if( (*fi).V(0)->IsD() || (*fi).V(1)->IsD() || (*fi).V(2)->IsD() ) { count_fd++; Allocator::DeleteFace(m,*fi); } return count_vd; } /** Degenerate faces are faces that are Topologically degenerate, i.e. have two or more vertex reference that link the same vertex (and not only two vertexes with the same coordinates). All Degenerate faces are zero area faces BUT not all zero area faces are degenerate. We do not take care of topology because when we have degenerate faces the topology calculation functions crash. */ static int RemoveDegenerateFace(MeshType& m) { FaceIterator fi; int count_fd = 0; for(fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) { if((*fi).V(0) == (*fi).V(1) || (*fi).V(0) == (*fi).V(2) || (*fi).V(1) == (*fi).V(2) ) { count_fd++; Allocator::DeleteFace(m,*fi); } } return count_fd; } static int RemoveNonManifoldVertex(MeshType& m) { int count_vd = CountNonManifoldVertexFF(m,true); int count_fd = UpdateSelection::FaceFromVertexLoose(m); int count_removed = 0; FaceIterator fi; for(fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD() && (*fi).IsS()) Allocator::DeleteFace(m,*fi); VertexIterator vi; for(vi=m.vert.begin(); vi!=m.vert.end();++vi) if(!(*vi).IsD() && (*vi).IsS()) { ++count_removed; Allocator::DeleteVertex(m,*vi); } return count_removed; } static int RemoveNonManifoldFace(MeshType& m) { FaceIterator fi; int count_fd = 0; std::vector ToDelVec; for(fi=m.face.begin(); fi!=m.face.end();++fi) if (!fi->IsD()) { if ((!IsManifold(*fi,0))|| (!IsManifold(*fi,1))|| (!IsManifold(*fi,2))) ToDelVec.push_back(&*fi); } for(size_t i=0;iIsD()) { FaceType &ff= *ToDelVec[i]; if ((!IsManifold(ff,0))|| (!IsManifold(ff,1))|| (!IsManifold(ff,2))) { for(int j=0;j<3;++j) if(!face::IsBorder(ff,j)) vcg::face::FFDetach(ff,j); Allocator::DeleteFace(m,ff); count_fd++; } } } return count_fd; } /* The following functions remove faces that are geometrically "bad" according to edges and area criteria. They remove the faces that are out of a given range of area or edges (e.g. faces too large or too small, or with edges too short or too long) but that could be topologically correct. These functions can optionally take into account only the selected faces. */ template static int RemoveFaceOutOfRangeAreaSel(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits::max)()) { FaceIterator fi; int count_fd = 0; MinAreaThr*=2; MaxAreaThr*=2; for(fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) if(!Selected || (*fi).IsS()) { const ScalarType doubleArea=DoubleArea(*fi); if((doubleArea<=MinAreaThr) || (doubleArea>=MaxAreaThr) ) { Allocator::DeleteFace(m,*fi); count_fd++; } } return count_fd; } template static int RemoveFaceOutOfRangeEdgeSel( MeshType& m, ScalarType MinEdgeThr=0, ScalarType MaxEdgeThr=(std::numeric_limits::max)()) { FaceIterator fi; int count_fd = 0; MinEdgeThr=MinEdgeThr*MinEdgeThr; MaxEdgeThr=MaxEdgeThr*MaxEdgeThr; for(fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) if(!Selected || (*fi).IsS()) { for(unsigned int i=0;i<3;++i) { const ScalarType squaredEdge=SquaredDistance((*fi).V0(i)->cP(),(*fi).V1(i)->cP()); if((squaredEdge<=MinEdgeThr) || (squaredEdge>=MaxEdgeThr) ) { count_fd++; Allocator::DeleteFace(m,*fi); break; // skip the rest of the edges of the tri } } } return count_fd; } // alias for the old style. Kept for backward compatibility static int RemoveZeroAreaFace(MeshType& m) { return RemoveFaceOutOfRangeArea(m);} // Aliases for the functions that do not look at selection static int RemoveFaceOutOfRangeArea(MeshType& m, ScalarType MinAreaThr=0, ScalarType MaxAreaThr=(std::numeric_limits::max)()) { return RemoveFaceOutOfRangeAreaSel(m,MinAreaThr,MaxAreaThr); } static int RemoveFaceOutOfRangeEdge(MeshType& m, ScalarType MinEdgeThr=0, ScalarType MaxEdgeThr=(std::numeric_limits::max)()) { return RemoveFaceOutOfRangeEdgeSel(m,MinEdgeThr,MaxEdgeThr); } static int ClipWithBox( MeshType & m, Box3Type &bb) { FaceIterator fi; VertexIterator vi; for (vi = m.vert.begin(); vi != m.vert.end(); ++vi) if(!(*vi).IsD()) { if(!bb.IsIn((*vi).P()) ) Allocator::DeleteVertex(m,*vi); } for (fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { if( (*fi).V(0)->IsD() || (*fi).V(1)->IsD() || (*fi).V(2)->IsD() ) Allocator::DeleteFace(m,*fi); } return m.vn; } /** * Check if the mesh is a manifold. * * First of all, for each face the FF condition is checked. * Then, a second test is performed: for each vertex the * number of face found have to be the same of the number of * face found with the VF walk trough. */ static bool IsTwoManifoldFace( MeshType & m ) { bool flagManifold = true; FaceIterator fi; // First Test assert(m.HasFFTopology()); for (fi = m.face.begin(); fi != m.face.end(); ++fi) { if (!fi->IsD()) { if ((!IsManifold(*fi,0))|| (!IsManifold(*fi,1))|| (!IsManifold(*fi,2))) { flagManifold = false; break; } } } return flagManifold; } /** * Is the mesh only composed by quadrilaterals? */ static bool IsBitQuadOnly(const MeshType &m) { typedef typename MeshType::FaceType F; if (!m.HasPerFaceFlags()) return false; for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2); if ( tmp != F::FAUX0 && tmp != F::FAUX1 && tmp != F::FAUX2) return false; } return true; } /** * Is the mesh only composed by triangles? (non polygonal faces) */ static bool IsBitTriOnly(const MeshType &m) { if (!m.HasPerFaceFlags()) return true; for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) { if ( !fi->IsD() && fi->IsAnyF() ) return false; } return true; } static bool IsBitPolygonal(const MeshType &m){ return !IsBitTriOnly(m); } /** * Is the mesh only composed by quadrilaterals and triangles? (no pentas, etc) */ static bool IsBitTriQuadOnly(const MeshType &m) { typedef typename MeshType::FaceType F; if (!m.HasPerFaceFlags()) return false; for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2); if ( tmp!=F::FAUX0 && tmp!=F::FAUX1 && tmp!=F::FAUX2 && tmp!=0 ) return false; } return true; } /** * How many quadrilaterals? */ static int CountBitQuads(const MeshType &m) { if (!m.HasPerFaceFlags()) return 0; typedef typename MeshType::FaceType F; int count=0; for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { unsigned int tmp = fi->Flags()&(F::FAUX0|F::FAUX1|F::FAUX2); if ( tmp==F::FAUX0 || tmp==F::FAUX1 || tmp==F::FAUX2) count++; } return count / 2; } /** * How many triangles? (non polygonal faces) */ static int CountBitTris(const MeshType &m) { if (!m.HasPerFaceFlags()) return m.fn; int count=0; for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { if (!(fi->IsAnyF())) count++; } return count; } /** * How many polygons of any kind? (including triangles) */ static int CountBitPolygons(const MeshType &m) { if (!m.HasPerFaceFlags()) return m.fn; typedef typename MeshType::FaceType F; int count = 0; for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { if (fi->IsF(0)) count++; if (fi->IsF(1)) count++; if (fi->IsF(2)) count++; } return m.fn - count/2; } /** * The number of polygonal faces is * FN - EN_f (each faux edge hides exactly one triangular face or in other words a polygon of n edges has n-3 faux edges.) * In the general case where a The number of polygonal faces is * FN - EN_f + VN_f * where: * EN_f is the number of faux edges. * VN_f is the number of faux vertices (e.g vertices completely surrounded by faux edges) * as a intuitive proof think to a internal vertex that is collapsed onto a border of a polygon: * it deletes 2 faces, 1 faux edges and 1 vertex so to keep the balance you have to add back the removed vertex. */ static int CountBitLargePolygons(MeshType &m) { UpdateFlags::VertexSetV(m); // First loop Clear all referenced vertices for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) for(int i=0;i<3;++i) fi->V(i)->ClearV(); // Second Loop, count (twice) faux edges and mark all vertices touched by non faux edges (e.g vertexes on the boundary of a polygon) if (!m.HasPerFaceFlags()) return m.fn; typedef typename MeshType::FaceType F; int countE = 0; for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { for(int i=0;i<3;++i) { if (fi->IsF(i)) countE++; else { fi->V0(i)->SetV(); fi->V1(i)->SetV(); } } } // Third Loop, count the number of referenced vertexes that are completely surrounded by faux edges. int countV = 0; for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if (!vi->IsD() && !vi->IsV()) countV++; return m.fn - countE/2 + countV ; } /** * Checks that the mesh has consistent per-face faux edges * (the ones that merges triangles into larger polygons). * A border edge should never be faux, and faux edges should always be * reciprocated by another faux edges. * It requires FF adjacency. */ static bool HasConsistentPerFaceFauxFlag(const MeshType &m) { assert(m.HasPerFaceFlags()); assert(m.HasFFTopology()); // todo: remove this constraint for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) for (int k=0; k<3; k++) if( fi->IsF(k) != fi->cFFp(k)->IsF(fi->cFFi(k)) ) { return false; } // non-reciprocal faux edge! // (OR: border faux edge, which is likewise inconsistent) return true; } static bool HasConsistentEdges(const MeshType &m) { assert(m.HasPerFaceFlags()); for (ConstFaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) for (int k=0; k<3; k++) { VertexType *v0=(*fi).V(0); VertexType *v1=(*fi).V(1); VertexType *v2=(*fi).V(2); if ((v0==v1)||(v0==v2)||(v1==v2)) return false; } return true; } static int CountNonManifoldVertexFF( MeshType & m, bool select = true ) { assert(tri::HasFFAdjacency(m)); int nonManifoldCnt=0; SimpleTempData TD(m.vert,0); // primo loop, si conta quanti facce incidono su ogni vertice... FaceIterator fi; for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { TD[(*fi).V(0)]++; TD[(*fi).V(1)]++; TD[(*fi).V(2)]++; } tri::UpdateFlags::VertexClearV(m); for (fi = m.face.begin(); fi != m.face.end(); ++fi) if (!fi->IsD()) { for(int i=0;i<3;i++) if(!(*fi).V(i)->IsV()){ (*fi).V(i)->SetV(); face::Pos pos(&(*fi),i); int starSizeFF = pos.NumberOfIncidentFaces(); if (starSizeFF != TD[(*fi).V(i)]) { if(select) (*fi).V(i)->SetS(); nonManifoldCnt++; } } } return nonManifoldCnt; } static int CountNonManifoldVertexFFVF( MeshType & m, bool select = true ) { int nonManifoldCnt=0; VertexIterator vi; bool flagManifold = true; assert(tri::HasVFAdjacency(m)); assert(tri::HasFFAdjacency(m)); face::VFIterator vfi; int starSizeFF; int starSizeVF; for (vi = m.vert.begin(); vi != m.vert.end(); ++vi) { if (!vi->IsD()) { face::VFIterator vfi(&*vi); face::Pos pos((*vi).VFp(), &*vi); starSizeFF = pos.NumberOfIncidentFaces(); starSizeVF = 0; while(!vfi.End()) { ++vfi; starSizeVF++; } if (starSizeFF != starSizeVF) { flagManifold = false; if(select) (*vi).SetS(); nonManifoldCnt++; } } } return nonManifoldCnt; } static bool IsTwoManifoldVertexFF( MeshType & m ) { return CountNonManifoldVertexFF(m,false) == 0 ; } static bool IsTwoManifoldVertexFFVF( MeshType & m ) { return CountNonManifoldVertexFFVF(m,false) == 0 ; } static void CountEdges( MeshType & m, int &count_e, int &boundary_e ) { FaceIterator fi; vcg::face::Pos he; vcg::face::Pos hei; bool counted =false; for(fi=m.face.begin();fi!=m.face.end();fi++) { if(!((*fi).IsD())) { (*fi).SetS(); count_e +=3; //assume that we have to increase the number of edges with three for(int j=0; j<3; j++) { if (face::IsBorder(*fi,j)) //If this edge is a border edge boundary_e++; // then increase the number of boundary edges else if (IsManifold(*fi,j))//If this edge is manifold { if((*fi).FFp(j)->IsS()) //If the face on the other side of the edge is already selected count_e--; // we counted one edge twice } else//We have a non-manifold edge { hei.Set(&(*fi), j , fi->V(j)); he=hei; he.NextF(); while (he.f!=hei.f)// so we have to iterate all faces that are connected to this edge { if (he.f->IsS())// if one of the other faces was already visited than this edge was counted already. { counted=true; break; } else { he.NextF(); } } if (counted) { count_e--; counted=false; } } } } } } static int CountHoles( MeshType & m) { int numholes=0; int numholev=0; int BEdges=0; FaceIterator fi; FaceIterator gi; vcg::face::Pos he; vcg::face::Pos hei; std::vector< std::vector > holes; //indices of vertices for(fi=m.face.begin();fi!=m.face.end();++fi) (*fi).ClearS(); gi=m.face.begin(); fi=gi; for(fi=m.face.begin();fi!=m.face.end();fi++)//for all faces do { for(int j=0;j<3;j++)//for all edges { if(fi->V(j)->IsS()) continue; if(face::IsBorder(*fi,j))//found an unvisited border edge { he.Set(&(*fi),j,fi->V(j)); //set the face-face iterator to the current face, edge and vertex std::vector hole; //start of a new hole hole.push_back(fi->P(j)); // including the first vertex numholev++; he.v->SetS(); //set the current vertex as selected he.NextB(); //go to the next boundary edge while(fi->V(j) != he.v)//will we do not encounter the first boundary edge. { Point3x newpoint = he.v->P(); //select its vertex. if(he.v->IsS())//check if this vertex was selected already, because then we have an additional hole. { //cut and paste the additional hole. std::vector hole2; int index = static_cast(find(hole.begin(),hole.end(),newpoint) - hole.begin()); for(unsigned int i=index; iSetS(); //set the current vertex as selected he.NextB(); //go to the next boundary edge } holes.push_back(hole); } } } return static_cast(holes.size()); } /* Compute the set of connected components of a given mesh it fills a vector of pair < int , faceptr > with, for each connecteed component its size and a represnant */ static int ConnectedComponents(MeshType &m) { std::vector< std::pair > CCV; return ConnectedComponents(m,CCV); } static int ConnectedComponents(MeshType &m, std::vector< std::pair > &CCV) { FaceIterator fi; FacePointer l; CCV.clear(); for(fi=m.face.begin();fi!=m.face.end();++fi) (*fi).ClearS(); int Compindex=0; std::stack sf; FacePointer fpt=&*(m.face.begin()); for(fi=m.face.begin();fi!=m.face.end();++fi) { if(!((*fi).IsD()) && !(*fi).IsS()) { (*fi).SetS(); CCV.push_back(std::make_pair(0,&*fi)); sf.push(&*fi); while (!sf.empty()) { fpt=sf.top(); ++CCV.back().first; sf.pop(); for(int j=0;j<3;++j) { if( !face::IsBorder(*fpt,j) ) { l=fpt->FFp(j); if( !(*l).IsS() ) { (*l).SetS(); sf.push(l); } } } } Compindex++; } } assert(CCV.size()==Compindex); return Compindex; } /** GENUS. A topologically invariant property of a surface defined as the largest number of non-intersecting simple closed curves that can be drawn on the surface without separating it. Roughly speaking, it is the number of holes in a surface. The genus g of a closed surface, also called the geometric genus, is related to the Euler characteristic by the relation $chi$ by $chi==2-2g$. The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along closed simple curves without rendering the resultant manifold disconnected. It is equal to the number of handles on it. For general polyhedra the Euler Formula is: V + F - E = 2 - 2G - B where V is the number of vertices, F is the number of faces, E is the number of edges, G is the genus and B is the number of boundary polygons. The above formula is valid for a mesh with one single connected component. By considering multiple connected components the formula becomes: V + F - E = 2C - 2Gs - B where C is the number of connected components and Gs is the sum of the genus of all connected components. */ static int MeshGenus(MeshType &m, int numholes, int numcomponents, int count_e) { int V = m.vn; int F = m.fn; int E = count_e; return -((V + F - E + numholes - 2 * numcomponents) / 2); } /** * Check if the given mesh is regular, semi-regular or irregular. * * Each vertex of a \em regular mesh has valence 6 except for border vertices * which have valence 4. * * A \em semi-regular mesh is derived from an irregular one applying * 1-to-4 subdivision recursively. (not checked for now) * * All other meshes are \em irregular. */ static void IsRegularMesh(MeshType &m, bool &Regular, bool &Semiregular) { // This algorithm requires Vertex-Face topology assert(m.HasVFTopology()); Regular = true; VertexIterator vi; // for each vertex the number of edges are count for (vi = m.vert.begin(); vi != m.vert.end(); ++vi) { if (!vi->IsD()) { face::Pos he((*vi).VFp(), &*vi); face::Pos ht = he; int n=0; bool border=false; do { ++n; ht.NextE(); if (ht.IsBorder()) border=true; } while (ht != he); if (border) n = n/2; if ((n != 6)&&(!border && n != 4)) { Regular = false; break; } } } if (!Regular) Semiregular = false; else { // For now we do not account for semi-regularity Semiregular = false; } } static void IsOrientedMesh(MeshType &m, bool &Oriented, bool &Orientable) { assert(&Oriented != &Orientable); // This algorithms requires FF topology assert(m.HasFFTopology()); Orientable = true; Oriented = true; // Ensure that each face is deselected FaceIterator fi; for (fi = m.face.begin(); fi != m.face.end(); ++fi) fi->ClearS(); // initialize stack std::stack faces; // for each face of the mesh FacePointer fp,fpaux; int iaux; for (fi = m.face.begin(); fi != m.face.end(); ++fi) { if (!fi->IsD() && !fi->IsS()) { // each face put in the stack is selected (and oriented) fi->SetS(); faces.push(&(*fi)); // empty the stack while (!faces.empty()) { fp = faces.top(); faces.pop(); // make consistently oriented the adjacent faces for (int j = 0; j < 3; j++) { // get one of the adjacent face fpaux = fp->FFp(j); iaux = fp->FFi(j); if (!fpaux->IsD() && fpaux != fp && face::IsManifold(*fp, j)) { if (!CheckOrientation(*fpaux, iaux)) { Oriented = false; if (!fpaux->IsS()) { face::SwapEdge(*fpaux, iaux); assert(CheckOrientation(*fpaux, iaux)); } else { Orientable = false; break; } } // put the oriented face into the stack if (!fpaux->IsS()) { fpaux->SetS(); faces.push(fpaux); } } } } } if (!Orientable) break; } } /// Flip the orientation of the whole mesh flipping all the faces (by swapping the first two vertices) static void FlipMesh(MeshType &m, bool selected=false) { for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) if(!selected || (*fi).IsS()) { face::SwapEdge((*fi), 0); if (HasPerWedgeTexCoord(m)) std::swap((*fi).WT(0),(*fi).WT(1)); } } static int RemoveTVertexByFlip(MeshType &m, float threshold=40, bool repeat=true) { assert(m.HasFFTopology()); assert(m.HasPerVertexMark()); //Counters for logging and convergence int count, total = 0; do { tri::UpdateTopology::FaceFace(m); m.UnMarkAll(); count = 0; //detection stage for(unsigned int index = 0 ; index < m.face.size(); ++index ) { FacePointer f = &(m.face[index]); float sides[3]; Point3 dummy; sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0)); int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides); if( m.IsMarked(f->V2(i) )) continue; if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] ) { m.Mark(f->V2(i)); if(face::CheckFlipEdge( *f, i )) { // Check if EdgeFlipping improves quality FacePointer g = f->FFp(i); int k = f->FFi(i); Triangle3 t1(f->P(i), f->P1(i), f->P2(i)), t2(g->P(k), g->P1(k), g->P2(k)), t3(f->P(i), g->P2(k), f->P2(i)), t4(g->P(k), f->P2(i), g->P2(k)); if ( std::min( t1.QualityFace(), t2.QualityFace() ) < std::min( t3.QualityFace(), t4.QualityFace() )) { face::FlipEdge( *f, i ); ++count; ++total; } } } } tri::UpdateNormals::PerFace(m); } while( repeat && count ); return total; } static int RemoveTVertexByCollapse(MeshType &m, float threshold=40, bool repeat=true) { assert(m.HasPerVertexMark()); //Counters for logging and convergence int count, total = 0; do { m.UnMarkAll(); count = 0; //detection stage for(unsigned int index = 0 ; index < m.face.size(); ++index ) { FacePointer f = &(m.face[index]); float sides[3]; Point3 dummy; sides[0] = Distance(f->P(0), f->P(1)); sides[1] = Distance(f->P(1), f->P(2)); sides[2] = Distance(f->P(2), f->P(0)); int i = std::find(sides, sides+3, std::max( std::max(sides[0],sides[1]), sides[2])) - (sides); if( m.IsMarked(f->V2(i) )) continue; if( PSDist(f->P2(i),f->P(i),f->P1(i),dummy)*threshold <= sides[i] ) { m.Mark(f->V2(i)); int j = Distance(dummy,f->P(i))P1(i))?i:(i+1)%3; f->P2(i) = f->P(j); m.Mark(f->V(j)); ++count; ++total; } } tri::Clean::RemoveDuplicateVertex(m); tri::Allocator::CompactFaceVector(m); tri::Allocator::CompactVertexVector(m); } while( repeat && count ); return total; } static bool SelfIntersections(MeshType &m, std::vector &ret) { //assert(FaceType::HasMark()); // Needed by the UG assert(HasPerFaceMark(m));// Needed by the UG Box3< ScalarType> bbox; TriMeshGrid gM; ret.clear(); FaceIterator fi; int referredBit = FaceType::NewBitFlag(); for(fi=m.face.begin();fi!=m.face.end();++fi) (*fi).ClearUserBit(referredBit); std::vector inBox; gM.Set(m.face.begin(),m.face.end()); for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { (*fi).SetUserBit(referredBit); (*fi).GetBBox(bbox); vcg::tri::GetInBoxFace(m, gM, bbox,inBox); bool Intersected=false; typename std::vector::iterator fib; for(fib=inBox.begin();fib!=inBox.end();++fib) { if(!(*fib)->IsUserBit(referredBit) && (*fib != &*fi) ) if(TestIntersection(&*fi,*fib)){ ret.push_back(*fib); if(!Intersected) { ret.push_back(&*fi); Intersected=true; } } } inBox.clear(); } FaceType::DeleteBitFlag(referredBit); return (ret.size()>0); } /** This function simply test that the vn and fn counters be consistent with the size of the containers and the number of deleted simplexes. */ static bool IsSizeConsistent(MeshType &m) { int DeletedVertexNum=0; for (VertexIterator vi = m.vert.begin(); vi != m.vert.end(); ++vi) if((*vi).IsD()) DeletedVertexNum++; int DeletedFaceNum=0; for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if((*fi).IsD()) DeletedFaceNum++; if(m.vn+DeletedVertexNum != m.vert.size()) return false; if(m.fn+DeletedFaceNum != m.face.size()) return false; return true; } /** This function simply test that all the faces have a consistent face-face topology relation. useful for checking that a topology modifying algorithm does not mess something. */ static bool IsFFAdjacencyConsistent(MeshType &m) { if(!HasFFAdjacency(m)) return false; for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { for(int i=0;i<3;++i) if(!FFCorrectness(*fi, i)) return false; } return true; } /** This function simply test that a mesh has some reasonable tex coord. */ static bool HasConsistentPerWedgeTexCoord(MeshType &m) { if(!HasPerWedgeTexCoord(m)) return false; for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { FaceType &f=(*fi); if( ! ( (f.WT(0).N() == f.WT(1).N()) && (f.WT(0).N() == (*fi).WT(2).N()) ) ) return false; // all the vertices must have the same index. if((*fi).WT(0).N() <0) return false; // no undefined texture should be allowed } return true; } /** Simple check that there are no face with all collapsed tex coords. */ static bool HasZeroTexCoordFace(MeshType &m) { if(!HasPerWedgeTexCoord(m)) return false; for (FaceIterator fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()) { if( (*fi).WT(0).P() == (*fi).WT(1).P() && (*fi).WT(0).P() == (*fi).WT(2).P() ) return false; } return true; } //test real intersection between faces static bool TestIntersection(FaceType *f0,FaceType *f1) { assert((!f0->IsD())&&(!f1->IsD())); //no adiacent faces if ( (f0!=f1) && (!ShareEdge(f0,f1)) && (!ShareVertex(f0,f1)) ) return (vcg::Intersection((*f0),(*f1))); return false; } //control if two faces share an edge static bool ShareEdge(FaceType *f0,FaceType *f1) { assert((!f0->IsD())&&(!f1->IsD())); for (int i=0;i<3;i++) if (f0->FFp(i)==f1) return (true); return(false); } //control if two faces share a vertex static bool ShareVertex(FaceType *f0,FaceType *f1) { assert((!f0->IsD())&&(!f1->IsD())); for (int i=0;i<3;i++) for (int j=0;j<3;j++) if (f0->V(i)==f1->V(j)) return (true); return(false); } /** This function merge all the vertices that are closer than the given radius */ static int MergeCloseVertex(MeshType &m, const ScalarType radius) { typedef vcg::SpatialHashTable SampleSHT; SampleSHT sht; tri::VertTmark markerFunctor; typedef vcg::vertex::PointDistanceFunctor VDistFunct; std::vector closests; int mergedCnt=0; Point3f closestPt; sht.Set(m.vert.begin(), m.vert.end()); UpdateFlags::VertexClearV(m); for(VertexIterator viv = m.vert.begin(); viv!= m.vert.end(); ++viv) if(!(*viv).IsD() && !(*viv).IsV()) { (*viv).SetV(); Point3f p = viv->cP(); Box3f bb(p-Point3f(radius,radius,radius),p+Point3f(radius,radius,radius)); GridGetInBox(sht, markerFunctor, bb, closests); // qDebug("Vertex %i has %i closest", &*viv - &*m.vert.begin(),closests.size()); for(int i=0; icP()); if(dist < radius && !closests[i]->IsV()) { mergedCnt++; closests[i]->SetV(); closests[i]->P()=p; } } } RemoveDuplicateVertex(m,true); return mergedCnt; } static std::pair RemoveSmallConnectedComponentsSize(MeshType &m, int maxCCSize) { std::vector< std::pair > CCV; int TotalCC=ConnectedComponents(m, CCV); int DeletedCC=0; ConnectedIterator ci; for(unsigned int i=0;i FPV; if(CCV[i].first::iterator fpvi; for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi) Allocator::DeleteFace(m,(**fpvi)); } } return std::make_pair(TotalCC,DeletedCC); } /// Remove the connected components smaller than a given diameter // it returns a pair with the number of connected components and the number of deleted ones. static std::pair RemoveSmallConnectedComponentsDiameter(MeshType &m, ScalarType maxDiameter) { std::vector< std::pair > CCV; int TotalCC=ConnectedComponents(m, CCV); int DeletedCC=0; tri::ConnectedIterator ci; for(unsigned int i=0;i FPV; for(ci.start(m,CCV[i].second);!ci.completed();++ci) { FPV.push_back(*ci); bb.Add((*ci)->P(0)); bb.Add((*ci)->P(1)); bb.Add((*ci)->P(2)); } if(bb.Diag()::iterator fpvi; for(fpvi=FPV.begin(); fpvi!=FPV.end(); ++fpvi) tri::Allocator::DeleteFace(m,(**fpvi)); } } return std::make_pair(TotalCC,DeletedCC); } }; // end class /*@}*/ } //End Namespace Tri } // End Namespace vcg #endif