/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef VCG_TRI_OUTLIERS__H #define VCG_TRI_OUTLIERS__H #include namespace vcg { namespace tri { template class OutlierRemoval { public: typedef typename MeshType::ScalarType ScalarType; typedef typename vcg::KdTree KdTreeType; typedef typename vcg::KdTree::PriorityQueue PriorityQueue; /** Compute an outlier probability value for each vertex of the mesh using the approch in the paper "LoOP: Local Outlier Probabilities". The outlier probability is stored in the vertex attribute "outlierScore". It use the input kdtree to find the kNearest of each vertex. "LoOP: local outlier probabilities" by Hans-Peter Kriegel et al. Proceedings of the 18th ACM conference on Information and knowledge management */ static void ComputeLoOPScore(MeshType& mesh, KdTreeType& kdTree, int kNearest) { vcg::tri::RequireCompactness(mesh); typename MeshType::template PerVertexAttributeHandle outlierScore = tri::Allocator:: template GetPerVertexAttribute(mesh, std::string("outlierScore")); typename MeshType::template PerVertexAttributeHandle sigma = tri::Allocator:: template GetPerVertexAttribute(mesh, std::string("sigma")); typename MeshType::template PerVertexAttributeHandle plof = tri::Allocator:: template GetPerVertexAttribute(mesh, std::string("plof")); #pragma omp parallel for schedule(dynamic, 10) for (size_t i = 0; i < mesh.vert.size(); i++) { PriorityQueue queue; kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue); ScalarType sum = 0; for (int j = 0; j < queue.getNofElements(); j++) sum += queue.getWeight(j); sum /= (queue.getNofElements()); sigma[i] = sqrt(sum); } float mean = 0; #pragma omp parallel for reduction(+: mean) schedule(dynamic, 10) for (size_t i = 0; i < mesh.vert.size(); i++) { PriorityQueue queue; kdTree.doQueryK(mesh.vert[i].cP(), kNearest, queue); ScalarType sum = 0; for (int j = 0; j < queue.getNofElements(); j++) sum += sigma[queue.getIndex(j)]; sum /= (queue.getNofElements()); plof[i] = sigma[i] / sum - 1.0f; mean += plof[i] * plof[i]; } mean /= mesh.vert.size(); mean = sqrt(mean); #pragma omp parallel for schedule(dynamic, 10) for (size_t i = 0; i < mesh.vert.size(); i++) { ScalarType value = plof[i] / (mean * sqrt(2.0f)); double dem = 1.0 + 0.278393 * value; dem += 0.230389 * value * value; dem += 0.000972 * value * value * value; dem += 0.078108 * value * value * value * value; ScalarType op = std::max(0.0, 1.0 - 1.0 / dem); outlierScore[i] = op; } tri::Allocator::DeletePerVertexAttribute(mesh, std::string("sigma")); tri::Allocator::DeletePerVertexAttribute(mesh, std::string("plof")); }; /** Select all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0]. */ static int SelectLoOPOutliers(MeshType& mesh, KdTreeType& kdTree, int kNearest, float threshold) { ComputeLoOPScore(mesh, kdTree, kNearest); int count = 0; typename MeshType:: template PerVertexAttributeHandle outlierScore = tri::Allocator::template GetPerVertexAttribute(mesh, std::string("outlierScore")); for (int i = 0; i < mesh.vert.size(); i++) { if (outlierScore[i] > threshold) { mesh.vert[i].SetS(); count++; } } return count; } /** Delete all the vertex of the mesh with an outlier probability above the input threshold [0.0, 1.0]. */ static int DeleteLoOPOutliers(MeshType& m, KdTreeType& kdTree, int kNearest, float threshold) { SelectLoOPOutliers(m,kdTree,kNearest,threshold); int ovn = m.vn; for(typename MeshType::VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) if((*vi).IsS() ) tri::Allocator::DeleteVertex(m,*vi); tri::Allocator::CompactVertexVector(m); tri::Allocator::DeletePerVertexAttribute(m, std::string("outlierScore")); return m.vn - ovn; } }; } // end namespace tri } // end namespace vcg #endif // VCG_TRI_OUTLIERS_H