/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /** class Shot Shot is made of two elements: * the Instrinsics paramaters, which are stored as a Camera type (see vcg/math/camera) and that determines how a point in the frame of the camera is projected in the 2D projection plane * the Extrinsics parameters, which are stored in the class Shot (type ReferenceFrame) and that describe viewpoint and view direction. Some important notes about the usage of this class: * The World coordinates system is assumed to be RIGHT-HANDED. * The Shot reference frame is assumed to be RIGHT-HANDED. * The associated Camera is assumed to point in the negative direction of the Z axis of the Shot coordinates system (reference frame). As a consequence, the Camera coordinates system is LEFT-HANDED. * The Extrinsics parameters are kept as a rotation matrix "rot" and a translation vector "tra" The translation matrix "tra" corresponds to the viewpoint of the Shot while the rotation matrix "rot" corresponds to the axis of the reference frame by row, i.e. rot[0][0|1|2] == X axis rot[1][0|1|2] == Y axis rot[2][0|1|2] == Z axis It follows that the matrix made with the upper left 3x3 equal to rot and the 4th colum equal to tra and (0,0,0,1) in the bottom row transform a point from world coordiantes to the reference frame of the shot. **/ #ifndef __VCGLIB_SHOT #define __VCGLIB_SHOT #include #include #include #include namespace vcg{ template > class Shot { public: typedef Camera CameraType; typedef S ScalarType; template class ReferenceFrame { friend class Shot; RotoType rot; // rotation Point3 tra; // viewpoint public: ReferenceFrame():rot(),tra(){} void SetIdentity(){ rot.SetIdentity(); tra = Point3(0.0,0.0,0.0);} void SetTra(const Point3 & tr) {tra = tr;} void SetRot(const RotoType & rt) {rot = rt;} Point3 Tra() const { return tra;} RotoType Rot() const { return rot;} }; Camera Intrinsics; // the camera that made the shot ReferenceFrame Extrinsics; // the position and orientation of the camera Shot(const Camera &i, const ReferenceFrame &e) :Intrinsics(),Extrinsics() { Intrinsics = i; Extrinsics = e; } Shot(const Camera &c) :Intrinsics(),Extrinsics() { Intrinsics = c; Extrinsics.SetIdentity(); } Shot() :Intrinsics(),Extrinsics() { Extrinsics.SetIdentity(); } template static inline Shot Construct( const Shot & b ) { ReferenceFrame r; r.SetRot(Matrix44::Construct(b.Extrinsics.Rot())); r.SetTra(Point3::Construct(b.Extrinsics.Tra())); return Shot(Camera::Construct(b.Intrinsics), r); } /// GET the i-th axis of the coordinate system of the camera vcg::Point3 Axis(const int & i)const; /// GET the viewdir const vcg::Point3 GetViewDir()const; /// GET the viewpoint const vcg::Point3 GetViewPoint()const; /// SET the viewpoint void SetViewPoint(const vcg::Point3 & viewpoint); /// GET fov from focal float GetFovFromFocal(); /// look at (point+up) void LookAt(const vcg::Point3 & point,const vcg::Point3 & up); /// look at (opengl-like) void LookAt(const S & eye_x,const S & eye_y,const S & eye_z, const S & at_x,const S & at_y,const S & at_z, const S & up_x,const S & up_y,const S & up_z); /// look towards (dir+up) void LookTowards(const vcg::Point3 & z_dir,const vcg::Point3 & up); /* Sometimes the focal is given in pixels. In this case, this function can be used to convert it in millimiters * given the CCD width (in mm). This method should be moved in vcg::Camera(). * Equivalent focal length is obtained by setting the ccd width to 35 mm. */ void ConvertFocalToMM(S ccdwidth); /* Sometimes the 3D World coordinates are known up to a scale factor. This method adjust the camera/shot parameters * to account for the re-scaling of the World. If the intrisic parameters are just reasonable values * the cameras need only a re-positioning. */ void RescalingWorld(S scalefactor, bool adjustIntrinsics); /// Given a pure roto-translation (4-by-4) modifies the reference frame accordingly. void ApplyRigidTransformation(const Matrix44 & M); /// Given a similarity transformation such that p' = s R p + T modifies the reference frame accordingly. void ApplySimilarity( Matrix44 M); /// Given a similarity transformation such that p' = s R p + T modifies the reference frame accordingly. void ApplySimilarity(const Similarity & Sim); /// convert a 3d point from world to camera coordinates (do not confuse with the Shot reference frame) vcg::Point3 ConvertWorldToCameraCoordinates(const vcg::Point3 & p) const; /// convert a 3d point from camera (do not confuse with the Shot reference frame) to world coordinates vcg::Point3 ConvertCameraToWorldCoordinates(const vcg::Point3 & p) const; /* convert a 3d point from camera (do not confuse with the Shot reference frame) to world coordinates * it uses inverse instead of transpose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia) */ vcg::Point3 ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3 & p) const; /// project a 3d point from world coordinates to 2d camera viewport (the value returned is in pixels) vcg::Point2 Project(const vcg::Point3 & p) const; /// inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point) vcg::Point3 UnProject(const vcg::Point2 & p, const S & d) const; /* inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point) * uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia) */ vcg::Point3 UnProject_Substitute(const vcg::Point2 & p, const S & d) const; /// returns the distance of point p from camera plane (z depth), required for unprojection operation S Depth(const vcg::Point3 & p)const; // accessors public: /// Returns the (4-by-4) matrix M such that 3dpoint_in_world_coordinates = M * 3dpoint_in_local_coordinates Matrix44 GetExtrinsicsToWorldMatrix() const { Matrix44 rotM; Extrinsics.rot.ToMatrix(rotM); return Matrix44().SetTranslate(Extrinsics.tra) * rotM.transpose(); } /// Returns the (4-by-4) matrix M such that 3dpoint_in_local_coordinates = M * 3dpoint_in_world_coordinates Matrix44 GetWorldToExtrinsicsMatrix() const { Matrix44 rotM; Extrinsics.rot.ToMatrix(rotM); return rotM * Matrix44().SetTranslate(-Extrinsics.tra) ; } /* multiply the current reference frame for the matrix passed note: it is up to the caller to check the the matrix passed is a pure rototraslation */ void MultMatrix( vcg::Matrix44 m44) { Extrinsics.tra = m44 * Extrinsics.tra; m44[0][3] = m44[1][3] = m44[2][3] = 0.0; //set no translation const S k = m44.GetRow3(0).Norm(); //compute scaling (assumed uniform) Extrinsics.rot = Extrinsics.rot * m44.transpose() * (1/k); } /* multiply the current reference frame for the similarity passed note: it is up to the caller to check the the matrix passed is a pure rototraslation */ void MultSimilarity( const Similarity & s){ MultMatrix(s.Matrix());} bool IsValid() const { return Intrinsics.PixelSizeMm[0]>0 && Intrinsics.PixelSizeMm[1]>0; } }; // end class definition template const vcg::Point3 Shot::GetViewDir() const { return Extrinsics.Rot().GetRow3(2); } //--- /// GET the viewpoint template const vcg::Point3 Shot::GetViewPoint() const { return Extrinsics.tra; } /// SET the viewpoint template void Shot::SetViewPoint(const vcg::Point3 & viewpoint) { Extrinsics.SetTra( viewpoint ); } //--- /// GET fov from focal template float Shot::GetFovFromFocal() { double viewportYMm= Intrinsics.PixelSizeMm[1]* Intrinsics.ViewportPx[1]; return 2*(vcg::math::ToDeg(atanf(viewportYMm/(2*Intrinsics.FocalMm)))); } //--- /// GET the i-th axis of the coordinate system of the camera template vcg::Point3 Shot::Axis(const int & i) const { vcg::Matrix44 m; Extrinsics.rot.ToMatrix(m); vcg::Point3 aa = m.GetRow3(i); return aa; } /// look at (point+up) template void Shot::LookAt(const vcg::Point3 & z_dir,const vcg::Point3 & up) { LookTowards(z_dir-GetViewPoint(),up); } /// look at (opengl-like) template void Shot::LookAt(const S & eye_x, const S & eye_y, const S & eye_z, const S & at_x, const S & at_y, const S & at_z, const S & up_x,const S & up_y,const S & up_z) { SetViewPoint(Point3(eye_x,eye_y,eye_z)); LookAt(Point3(at_x,at_y,at_z),Point3(up_x,up_y,up_z)); } /// look towards template void Shot::LookTowards(const vcg::Point3 & z_dir,const vcg::Point3 & up) { vcg::Point3 x_dir = up ^-z_dir; vcg::Point3 y_dir = -z_dir ^x_dir; Matrix44 m; m.SetIdentity(); *(vcg::Point3 *)&m[0][0] = x_dir/x_dir.Norm(); *(vcg::Point3 *)&m[1][0] = y_dir/y_dir.Norm(); *(vcg::Point3 *)&m[2][0] = -z_dir/z_dir.Norm(); Extrinsics.rot.FromMatrix(m); } //--- Space transformation methods /// convert a 3d point from world to camera coordinates (do not confuse with the Shot reference frame) template vcg::Point3 Shot::ConvertWorldToCameraCoordinates(const vcg::Point3 & p) const { Matrix44 rotM; Extrinsics.rot.ToMatrix(rotM); vcg::Point3 cp = rotM * (p - GetViewPoint() ); cp[2]=-cp[2]; return cp; } /// convert a 3d point from camera coordinates (do not confuse with the Shot reference frame) to world coordinates template vcg::Point3 Shot::ConvertCameraToWorldCoordinates(const vcg::Point3 & p) const { Matrix44 rotM; vcg::Point3 cp = p; cp[2]=-cp[2]; Extrinsics.rot.ToMatrix(rotM); cp = rotM.transpose() * cp + GetViewPoint(); return cp; } /// convert a 3d point from camera to world coordinates, uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia) template vcg::Point3 Shot::ConvertCameraToWorldCoordinates_Substitute(const vcg::Point3 & p) const { Matrix44 rotM; vcg::Point3 cp = p; cp[2]=-cp[2]; Extrinsics.rot.ToMatrix(rotM); cp = Inverse(rotM) * cp + GetViewPoint(); return cp; } /// project a 3d point from world coordinates to 2d camera viewport (the value returned is in pixel) template vcg::Point2 Shot::Project(const vcg::Point3 & p) const { Point3 cp = ConvertWorldToCameraCoordinates(p); Point2 pp = Intrinsics.Project(cp); Point2 vp = Intrinsics.LocalToViewportPx(pp); return vp; } /// inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the point to unproject) template vcg::Point3 Shot::UnProject(const vcg::Point2 & p, const S & d) const { Point2 lp = Intrinsics.ViewportPxToLocal(p); Point3 cp = Intrinsics.UnProject(lp,d); Point3 wp = ConvertCameraToWorldCoordinates(cp); return wp; } /* inverse projection from 2d camera viewport (in pixels) to 3d world coordinates (it requires the original depth of the projected point) * uses inverse instead of trranspose for non-exactly-rigid rotation matrices (such as calculated by tsai and garcia) */ template vcg::Point3 Shot::UnProject_Substitute(const vcg::Point2 & p, const S & d) const { Point2 lp = Intrinsics.ViewportPxToLocal(p); Point3 cp = Intrinsics.UnProject(lp,d); Point3 wp = ConvertCameraToWorldCoordinates_Substitute(cp); return wp; } /// returns the distance of point p from camera plane (z depth), required for unprojection operation template S Shot::Depth(const vcg::Point3 & p)const { return ConvertWorldToCameraCoordinates(p).Z(); } /* Sometimes the focal is given in pixels. In this case, this function can be used to convert it in millimiters * given the CCD width (in mm). This method should be moved in vcg::Camera(). * Equivalent focal length is obtained by setting the ccd width to 35 mm. */ template void Shot::ConvertFocalToMM(S ccdwidth) { double ccd_width = ccdwidth; // ccd is assumed conventionally to be 35mm double ccd_height = (ccd_width * Intrinsics.ViewportPx[1]) / Intrinsics.ViewportPx[0]; Intrinsics.PixelSizeMm[0] = (ccd_width / Intrinsics.ViewportPx[0]); Intrinsics.PixelSizeMm[1] = (ccd_height / Intrinsics.ViewportPx[1]); Intrinsics.FocalMm = (ccd_width * Intrinsics.FocalMm) / Intrinsics.ViewportPx[0]; // NOW FOCAL IS IN MM } /* Sometimes the 3D World coordinates are known up to a scale factor. This method adjust the camera/shot parameters * to account for the re-scaling of the World. If the intrisic parameters are just reasonable values * the cameras need only a re-positioning. */ template void Shot::RescalingWorld(S scalefactor, bool adjustIntrinsics) { // adjust INTRINSICS (if required) if (adjustIntrinsics) { Intrinsics.FocalMm = Intrinsics.FocalMm * scalefactor; double ccdwidth = static_cast(Intrinsics.ViewportPx[0] * Intrinsics.PixelSizeMm[0]); double ccdheight = static_cast(Intrinsics.ViewportPx[1] * Intrinsics.PixelSizeMm[1]); Intrinsics.PixelSizeMm[0] = (ccdwidth * scalefactor) / Intrinsics.ViewportPx[0]; Intrinsics.PixelSizeMm[1] = (ccdheight * scalefactor) / Intrinsics.ViewportPx[1]; } // adjust EXTRINSICS // rotation remains the same (!) // nothing to do.. // the viewpoint should be modified according to the scale factor Extrinsics.tra *= scalefactor; } /// Given a pure roto-translation matrix (4-by-4) modify the reference frame accordingly. template void Shot::ApplyRigidTransformation(const Matrix44 & M) { Matrix44 rotM; Extrinsics.rot.ToMatrix(rotM); // roto-translate the viewpoint Extrinsics.tra = M * Extrinsics.tra; Matrix44 newRot = rotM * M.transpose(); newRot[3][0] = newRot[3][1] = newRot[3][2] = 0.0; Extrinsics.SetRot(newRot); } /// Given a similarity transformation modifies the reference frame accordingly. template void Shot::ApplySimilarity( Matrix44 M) { Matrix44 rotM; Extrinsics.rot.ToMatrix(rotM); // normalize M = M * (1/M.ElementAt(3,3)); M[3][3] = 1; // just for numeric precision // compute scale factor ScalarType scalefactor = 1.0 / pow(ScalarType(M.Determinant()),1/ScalarType(3.0)); // roto-translate the viewpoint Extrinsics.tra = M * Extrinsics.tra; vcg::Matrix44 M2 = M; M2 = M2 * scalefactor; // remove the scaling M2[3][3] = 1.0; M2[0][3] = M2[1][3] = M2[2][3] = 0; // remove the translation rotM = rotM * M2.transpose(); Extrinsics.SetRot(rotM); } /// Given a similarity transformation modifies the reference frame accordingly. template void Shot::ApplySimilarity(const Similarity & Sm) { Matrix44 rotM; Extrinsics.rot.ToMatrix(rotM); // similarity decomposition vcg::Matrix44 R; Sm.rot.ToMatrix(R); vcg::Matrix44 T; T.SetIdentity(); T.ElementAt(0,3) = Sm.tra[0]; T.ElementAt(1,3) = Sm.tra[1]; T.ElementAt(2,3) = Sm.tra[2]; vcg::Matrix44d S44; S44.SetIdentity(); S44 *= Sm.sca; S44.ElementAt(3,3) = 1.0; vcg::Matrix44 M = T * R * S44; // roto-translate the viewpoint Extrinsics.tra = M * Extrinsics.tra; vcg::Matrix44 M2 = M; M2 = M2 * (1.0 / Sm.sca); Extrinsics.rot = rotM * M2.transpose(); Extrinsics.rot.ElementAt(3,0) = 0; Extrinsics.rot.ElementAt(3,1) = 0; Extrinsics.rot.ElementAt(3,2) = 0; Extrinsics.rot.ElementAt(3,3) = 1; } //-------------------------------- //--- utility definitions typedef Shot Shotf; typedef Shot Shotd; //----------------------- } // end name space #endif