/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_EDGE_SUPPORT #define __VCGLIB_EDGE_SUPPORT #include #include #include #include #include namespace vcg { namespace tri{ /// \ingroup trimesh /// \headerfile edge_support.h vcg/complex/trimesh/edge_support.h /// \brief This class is used to build edge based data structure from indexed data structure and viceversa /** */ template class EdgeSupport{ public: typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::EdgePointer EdgePointer; typedef typename MeshType::EdgeType EdgeType; typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::FaceType FaceType; struct VertexPairEdgePtr{ VertexPairEdgePtr(VertexPointer _v0,VertexPointer _v1,EdgePointer _ep):v0(_v0),v1(_v1),ep(_ep){if(v0>v1) std::swap(v0,v1);} const bool operator <(const VertexPairEdgePtr &o){return (v0 == o.v0)? (v1 BitVector; /** build a half-edge data structure from an indexed data structure. Note that the half-edges are allocated here for the first time. If you have a mesh where there are already edges, they will be removed and the data lost, so do not use this function to just "update" the topology of half edges. **/ static void ComputeHalfEdgeFromIndexed(MeshType & m){ assert(HasFVAdjacency(m)); assert(MeshType::EdgeType::HasHENextAdjacency()); assert(MeshType::EdgeType::HasHEOppAdjacency()); MeshType::PerFaceAttributeHandle flagVisited = vcg::tri::Allocator:: AddPerFaceAttribute(m,""); std::vector borderEdges; // allocate all new half edges FaceIterator fi; int n_edges = 0; // count how many half edge to allocate for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) {n_edges+=(*fi).VN(); for(int i = 0; i < (*fi).VN(); ++i) if(vcg::face::IsBorder((*fi),(i))) ++n_edges; } // allocate the half edges typename MeshType::EdgeIterator ei = vcg::tri::Allocator::AddEdges(m,n_edges); std::vector all; int firstEdge = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi)if(!(*fi).IsD()){ assert((*fi).VN()>2); if(flagVisited[*fi].empty()) {flagVisited[*fi].resize((*fi).VN());} for(int i = 0; i < (*fi).VN(); ++i,++ei) { (*ei).HEVp() = (*fi).V(i); (*ei).HENp() = &m.edge[firstEdge + (i +1) % (*fi).VN()]; if(MeshType::EdgeType::HasEFAdjacency()) (*ei).EFp() = &(*fi); if( MeshType::FaceType::HasFHEAdjacency()) (*fi).FHEp() = &(*ei); if(MeshType::EdgeType::HasHEPrevAdjacency()) (*ei).HEPp() = &m.edge[firstEdge + (i +(*fi).VN()-1) % (*fi).VN()]; if(HasVEAdjacency(m)) (*ei).HEVp()->VEp() = &(*ei); all.push_back(VertexPairEdgePtr((*fi).V(i), (*fi).V((*fi).Next(i)),&(*ei)));// it will be used to link the hedges if( vcg::face::IsBorder((*fi),(i))) borderEdges.push_back(FacePtrInt(&(*fi),i)); } firstEdge += (*fi).VN(); } // add all the border edges int borderLength; std::vector::iterator ebi; for( ebi = borderEdges.begin(); ebi != borderEdges.end(); ++ebi) if( !flagVisited[(*ebi).f][(*ebi).i])// not already inserted { borderLength = 0; vcg::face::Pos bp((*ebi).f,(*ebi).i); FaceType * start = (*ebi).f; do{ all.push_back( VertexPairEdgePtr ( bp.f->V( bp.f->Next(bp.z) ),bp.f->V( bp.z ),&(*ei))); (*ei).HEVp() = bp.f->V(bp.f->Next(bp.z)) ; flagVisited[bp.f][bp.z] = true; ++ei; bp.NextB(); ++borderLength; }while (bp.f != start); // run over the border edges to link the adjacencies for(int be = 0; be < borderLength; ++be){ if(MeshType::EdgeType::HasEFAdjacency()) m.edge[firstEdge + be].EFp() = NULL; if(MeshType::EdgeType::HasHEPrevAdjacency()) m.edge[firstEdge + be].HEPp() = &m.edge[firstEdge + (be +borderLength-1) % borderLength]; m.edge[firstEdge + be].HENp() = &m.edge[firstEdge + (be +1) % borderLength]; } firstEdge+=borderLength; } vcg::tri::Allocator:: DeletePerFaceAttribute(m,flagVisited ); std::sort(all.begin(),all.end()); assert(all.size() == n_edges); for(int i = 0 ; i < all.size(); ) if(all[i] == all[i+1]) { all[i].ep->HEOp() = all[i+1].ep; all[i+1].ep->HEOp() = all[i].ep; i+=2; } else { all[i].ep->HEOp() = all[i].ep; i+=1; } } /** builds an indexed data structure from a half-edge data structure. Note: if the half edge have the pointer to face their relation FV (face-vertex) will be computed and the data possibly stored in the face will be preserved. **/ static void ComputeIndexedFromHalfEdge( MeshType & m ){ assert(HasFVAdjacency(m)); assert(MeshType::EdgeType::HasHENextAdjacency()); assert(MeshType::EdgeType::HasHEVAdjacency()); assert(MeshType::EdgeType::HasHEOppAdjacency()); assert(MeshType::FaceType::HasFHEAdjacency()); bool createFace,hasHEF,hasFHE; typename MeshType::template PerEdgeAttributeHandle hV = Allocator::template AddPerEdgeAttribute(m,""); typename MeshType::EdgeIterator ei; typename MeshType::FacePointer fp; typename MeshType::FaceIterator fi; typename MeshType::EdgePointer ep,epF; int vi = 0; hasHEF = (MeshType::EdgeType::HasEFAdjacency()); assert( !hasHEF || (hasHEF && m.fn>0)); // if the edgetype has the pointer to face // it is assumed the the edget2face pointer (HEFp) are correct // and the faces are allocated for ( ei = m.edge.begin(); ei != m.edge.end(); ++ei) if(!(*ei).IsD()) // it has not been deleted if(!hasHEF || ( hasHEF && (*ei).EFp()!=NULL)) // if it has a pointer to the face it is // not null (i.e. it is not a border edge) if(!hV[(*ei)] ) // it has not be visited yet { if(!hasHEF)// if it has fp = &(* Allocator::AddFaces(m,1)); else fp = (*ei).EFp(); ep = epF = &(*ei); std::vector vpts; do{vpts.push_back((*ep).HEVp()); ep=ep->HENp();}while(ep!=epF); int idbg =fp->VN(); if(fp->VN() != vpts.size()){ fp->Dealloc(); fp ->Alloc(vpts.size()); } int idbg1 =fp->VN(); for(int i = 0; i < vpts.size();++i) fp ->V(i) = vpts[i];// set the pointer from face to vertex hV[(*ei)] = true; } Allocator::DeletePerEdgeAttribute(m,hV); } /** Checks pointers FHEp() are valid **/ static bool CheckConsistency_FHEp(MeshType & m){ assert(MeshType::FaceType::HasFHEAdjacency()); FaceIterator fi; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(!(*fi).IsD()){ if((*fi).FHEp() < &(*m.edge.begin())) return false; if((*fi).FHEp() > &(m.edge.back())) return false; } return true; } /** Checks that half edges and face relation are consistent **/ static bool CheckConsistency(MeshType & m){ assert(MeshType::EdgeType::HasHENextAdjacency()); assert(MeshType::EdgeType::HasHEOppAdjacency()); assert(MeshType::EdgeType::HasHEVAdjacency()); assert(MeshType::FaceType::HasFHEAdjacency()); bool hasHEF = ( MeshType::EdgeType::HasEFAdjacency()); bool hasHEP = ( MeshType::EdgeType::HasHEPrevAdjacency()); FaceIterator fi; EdgePointer ep,ep1; int cnt = 0; if(( MeshType::EdgeType::HasEFAdjacency())){ int iDb = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi,++iDb) if(!(*fi).IsD()) { ep = ep1 = (*fi).FHEp(); do{ if(ep->IsD()) return false; // the edge should not be connected, it has been deleted if(ep->EFp() != &(*fi)) return false;// edge is not pointing to the rigth face ep = ep->HENp(); if(cnt++ > m.en) return false; // edges are ill connected (HENp()) }while(ep!=ep1); } } EdgePointer epPrev; EdgeIterator ei; bool extEdge ; for( ei = m.edge.begin(); ei != m.edge.end(); ++ei) if(!(*ei).IsD()) { cnt = 0; epPrev = ep = ep1 = &(*ei); do{ extEdge = (ep->EFp()==NULL); if(hasHEP){ if( ep->HENp()->HEPp() != ep) return false; // next and prev relation are not mutual if( ep->HEPp() == ep) return false; // the previous of an edge cannot be the edge itself } if( ep->HEOp() == ep) return false; // opposite relation is not mutual if( ep->HEOp()->HEOp() != ep) return false; // opposite relation is not mutual if(ep->HENp() == ep) return false; // the next of an edge cannot be the edge itself ep = ep->HENp(); if( ep->HEVp() != epPrev->HEOp()->HEVp()) return false; // the opposite edge points to a vertex different that the vertex of the next edge epPrev = ep; if(cnt++ > m.en) return false; // edges are ill connected (HENp()) }while(ep!=ep1); } return true; } /** Set the relations HEFp(), FHEp() from a loop of edges to a face */ private: static void SetRelationsLoopFace(EdgeType * e0, FaceType * f){ assert(EdgeType::HasHENextAdjacency()); assert(FaceType::HasFHEAdjacency()); EdgeType *e = e0; assert(e!=NULL); do{ e->EFp() = f; e = e->HENp(); } while(e != e0); f->FHEp() = e0; } /** Merge the two faces. This will probably become a class template or a functor */ static void MergeFaces(FaceType *, FaceType *){}; /** Find previous hedge in the loop */ static EdgeType * PreviousEdge(EdgeType * e0){ EdgeType * ep = e0; do{ if(ep->HENp() == e0) return ep; ep = ep->HENp(); }while(ep!=e0); } public: /** Adds an edge between the sources of e0 and e1 and set all the topology relations. If the edges store the pointers to the faces then a new face is created. <--- e1 ---- X <------e1_HEPp--- ^ || ei0 || ei1 || v ----e0_HEPp-> X ----- e0 ------> */ static void AddEdge(MeshType &m, EdgeType * e0, EdgeType * e1){ EdgeType *iii =e0->HENp(); assert(e1!=e0->HENp()); assert(e0!=e1->HENp()); EdgePointer tmp; bool hasP = MeshType::EdgeType::HasHEPrevAdjacency(); assert(e0->HEOp() != e1); // the hedge already exists assert(e0!=e1->HENp()); std::vector toUpdate; toUpdate.push_back(&e0); toUpdate.push_back(&e1); EdgeIterator ei0 = vcg::tri::Allocator::AddEdges(m,2,toUpdate); EdgeIterator ei1 = ei0; ++ei1; (*ei0).HENp() = e1;(*ei0).HEVp() = e0->HEVp(); (*ei1).HENp() = e0;(*ei1).HEVp() = e1->HEVp(); EdgePointer e0_HEPp = 0,e1_HEPp = 0,ep =0; if(hasP){ e0_HEPp = e0->HEPp(); e1_HEPp = e1->HEPp(); }else{// does not have pointer to previous, it must be computed ep = e0; do{ if(ep->HENp() == e0) e0_HEPp = ep; if(ep->HENp() == e1) e1_HEPp = ep; ep = ep->HENp(); }while(ep!=e0); } if(hasP){ (*ei0).HEPp() = e0->HEPp(); (*ei1).HEPp() = e1->HEPp(); e0->HEPp() = &(*ei1); e1->HEPp() = &(*ei0); } e0_HEPp -> HENp() = &(*ei0); e1_HEPp -> HENp() = &(*ei1); (*ei0).HEOp() = &(*ei1); (*ei1).HEOp() = &(*ei0); if( EdgeType::HasEFAdjacency() && FaceType::HasFHEAdjacency()){ FaceIterator fi0 = vcg::tri::Allocator::AddFaces(m,1); m.face.back().ImportLocal(*e0->EFp()); SetRelationsLoopFace(&(*ei0),e1->EFp()); // one loop to the old face SetRelationsLoopFace(&(*ei1),&m.face.back()); // the other to the new face } } /** Detach the topology relations of a given edge <--- e->HENPp -X --- <---------eO_HEPp--- ^ || e || e->HEOp() || v ----e_HEPp--> X ----- e->HEOp->HENPp() ------> */ static void RemoveEdge(MeshType &m, EdgeType * e){ assert(MeshType::EdgeType::HasHENextAdjacency()); assert(MeshType::EdgeType::HasHEOppAdjacency()); assert(MeshType::FaceType::HasFHEAdjacency()); bool hasP = MeshType::EdgeType::HasHEPrevAdjacency(); EdgePointer e_HEPp,eO_HEPp; if(hasP){ e_HEPp = e->HEPp(); eO_HEPp = e->HEOp()->HEPp(); }else{ e_HEPp = PreviousEdge(e); eO_HEPp = PreviousEdge(e->HEOp()); } assert(e_HEPp->HENp() == e); assert(eO_HEPp->HENp() == e->HEOp()); e_HEPp->HENp() = e->HEOp()->HENp(); eO_HEPp->HENp() = e-> HENp(); if(hasP) { e->HEOp()->HENp()->HEPp() = e_HEPp; e->HENp()->HEPp() = eO_HEPp; e->HEPp() = NULL; e-> HEOp()->HEPp() = NULL; } // take care of the faces if(MeshType::EdgeType::HasEFAdjacency()){ MergeFaces(e_HEPp->EFp(),eO_HEPp->EFp()); vcg::tri::Allocator::DeleteFace(m,*eO_HEPp->EFp()); SetRelationsLoopFace(e_HEPp,e_HEPp->EFp()); } vcg::tri::Allocator::DeleteEdge(m,*e->HEOp()); vcg::tri::Allocator::DeleteEdge(m,*e); } };// end class EdgeSupport } // end namespace vcg } #endif // __VCGLIB_EDGE_SUPPORT