/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is Free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.1 2007/02/14 01:20:37 ganovelli working draft of VCG Mesh Image importer and exporter. Does not consider optional attributes. The mesh atributes are only vn and fn (no bbox, texture coordiantes) ****************************************************************************/ #ifndef __VCGLIB_IMPORT_VMI #define __VCGLIB_IMPORT_VMI #include <vcg/simplex/vertex/component_ocf.h> #include <vcg/simplex/face/component_ocf.h> #include <wrap/io_trimesh/io_mask.h> #include <wrap/callback.h> /* VMI VCG Mesh Image. The vmi image file consists of a header containing the description of the vertex and face type, the length of vectors containing vertices of faces and the memory image of the object mesh as it is when passed to the function Save(SaveMeshType m) NOTE: THIS IS NOT A FILE FORMAT. IT IS ONLY USEFUL FOR DUMPING MESH IMAGES FOR DEBUG PURPOSE. Example of use: say you are running a time consuming mesh processing and you want to save intermediate state, but no file format support all the attributes you need in your vertex/face type. NOTE2: At the present if you add members to your TriMesh these will NOT be saved. More precisely, this file and import_vmi must be updated to reflect changes in vcg/complex/trimesh/base.h */ namespace vcg { namespace tri { namespace io { template <int N> struct DummyType{ char placeholder[N]; }; /* ------------------------- derivation chain for the vertex attribute ---------------------------*/ /** this class is for testing only the equality with the type optionally provided by the user when calling Open */ template <class MeshType, class A, class T> struct Der:public T{ typedef typename std::set<typename MeshType::PointerToAttribute >::iterator HWIte; template <int VoF> static void AddAttrib(MeshType &m, const char * name, unsigned int s, void * data){ switch(VoF) { case 0: if(s == sizeof(A)){ typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerVertexAttribute<A>(m,name); for(unsigned int i = 0; i < m.vert.size(); ++i) memcpy(&h[i], (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion } else T::template AddAttrib<0>(m,name,s,data); break; case 1: if(s == sizeof(A)){ typename MeshType::template PerFaceAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerFaceAttribute<A>(m,name); for(unsigned int i = 0; i < m.face.size(); ++i) memcpy(&h[i], (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion } else T::template AddAttrib<0>(m,name,s,data); break; case 2: if(s == sizeof(A)){ typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>:: template AddPerMeshAttribute<A>(m,name); memcpy(&h(), (void*) ((A*)data),sizeof(A)); // we don't want the type conversion } else T::template AddAttrib<2>(m,name,s,data); break; default:break; } } }; /** this class is for testing the list of increasing size types until one is larger than the size of the unknown type */ template <class MeshType, class A, class T> struct DerK:public T{ typedef typename std::set<typename MeshType::PointerToAttribute >::iterator HWIte; template <int VoF> static void AddAttrib(MeshType &m, const char * name, unsigned int s, void * data){ switch(VoF){ case 0: if(s == sizeof(A)){ typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name); for(unsigned int i = 0; i < m.vert.size(); ++i) memcpy((void*) &(h[i]), (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion } else if(s < sizeof(A)){ // padding int padd = sizeof(A) - s; typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name); for(unsigned int i = 0; i < m.vert.size(); ++i){ char * dest = &((char*)(&h[i]))[0]; memcpy( (void *)dest , (void*) &((A*)data)[i],s); // we don't want the type conversion } typename MeshType::PointerToAttribute pa; pa._name = std::string(name); HWIte res = m.vert_attr.find(pa); pa = *res; m.vert_attr.erase(res); pa._padding = padd; std::pair<HWIte,bool > new_pa = m.vert_attr.insert(pa); assert(new_pa.second); } else T::template AddAttrib<0>(m,name,s,data); break; case 1: if(s == sizeof(A)){ typename MeshType::template PerVertexAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerVertexAttribute<A>(m,name); for(unsigned int i = 0; i < m.vert.size(); ++i) memcpy((void*) &(h[i]), (void*) &((A*)data)[i],sizeof(A)); // we don't want the type conversion } else if(s < sizeof(A)){ // padding int padd = sizeof(A) - s; typename MeshType::template PerFaceAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerFaceAttribute<A>(m,name); for(unsigned int i = 0; i < m.face.size(); ++i){ char * dest = &((char*)(&h[i]))[0]; memcpy( (void *)dest , (void*) &((A*)data)[i],s); // we don't want the type conversion } typename MeshType::PointerToAttribute pa; pa._name = std::string(name); HWIte res = m.face_attr.find(pa); pa = *res; m.face_attr.erase(res); pa._padding = padd; std::pair<HWIte,bool > new_pa = m.face_attr.insert(pa); assert(new_pa.second); } else T::template AddAttrib<1>(m,name,s,data); break; case 2: if(s == sizeof(A)){ typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerMeshAttribute<A>(m,name); memcpy((void*)&h(), (void*)((A*)data),sizeof(A)); // we don't want the type conversion } else if(s < sizeof(A)){ // padding int padd = sizeof(A) - s; typename MeshType::template PerMeshAttributeHandle<A> h = vcg::tri::Allocator<MeshType>::template AddPerMeshAttribute<A>(m,name); char * dest = & ((char*)(&h()))[0]; memcpy( (void *)dest , (void*)((A*)data),s); // we don't want the type conversion typename MeshType::PointerToAttribute pa; pa._name = std::string(name); HWIte res = m.mesh_attr.find(pa); pa = *res; m.mesh_attr.erase(res); pa._padding = padd; std::pair<HWIte,bool > new_pa = m.mesh_attr.insert(pa); assert(new_pa.second); } else T::template AddAttrib<2>(m,name,s,data); break; default: assert(0);break; } } }; /** This is the templated derivation chain */ template <class MeshType> struct K { template <int VoF> static void AddAttrib(MeshType &/*m*/, const char * /*name*/, unsigned int /*s*/, void * /*data*/){ // if yohu got this your attribute is larger than 1048576. Honestly... assert(0); } }; template <class MeshType, class B0 > struct K0 : public DerK< MeshType, B0, K<MeshType> > {}; template <class MeshType, class B0, class B1 > struct K1 : public DerK< MeshType, B1, K0<MeshType, B0> > {}; template <class MeshType, class B0, class B1, class B2 > struct K2 : public DerK< MeshType, B2, K1<MeshType, B0, B1> > {}; template <class MeshType, class B0, class B1, class B2,class B3> struct K3 : public DerK< MeshType, B3, K2<MeshType, B0, B1, B2> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4> struct K4 : public DerK< MeshType, B4, K3<MeshType, B0, B1, B2, B3> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5> struct K5 : public DerK< MeshType, B5, K4<MeshType, B0, B1, B2, B3, B4> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6> struct K6 : public DerK< MeshType, B6, K5<MeshType, B0, B1, B2, B3, B4, B5> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7> struct K7 : public DerK< MeshType, B7, K6<MeshType, B0, B1, B2, B3, B4, B5, B6> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8> struct K8 : public DerK< MeshType, B8, K7<MeshType, B0, B1, B2, B3, B4, B5, B6, B7> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9> struct K9 : public DerK< MeshType, B9, K8<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10> struct K10 : public DerK< MeshType, B10, K9<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9> > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10,class B11> struct K11 : public DerK< MeshType, B11, K10<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B11 > > {}; template <class MeshType, class B0, class B1, class B2,class B3,class B4,class B5,class B6,class B7,class B8,class B9,class B10,class B11,class B12>struct K12 : public DerK< MeshType, B12, K11<MeshType, B0, B1, B2, B3, B4, B5, B6, B7, B8, B9, B11, B12 > > {}; template <class MeshType, class A0, class B0 = DummyType<1048576>, class B1 = DummyType<2048>, class B2 = DummyType<1024>, class B3 = DummyType<512>, class B4 = DummyType<256>, class B5 = DummyType<128>, class B6 = DummyType<64>, class B7 = DummyType<32>, class B8 = DummyType<16>, class B9 = DummyType<8>, class B10 = DummyType<4>, class B11 = DummyType<2>, class B12 = DummyType<1> > struct C0 : public DerK< MeshType, A0, K12<MeshType, B0, B1, B2, B3, B4,B5,B6,B7,B8,B9,B10,B11,B12> > {}; template <class MeshType, class A0, class A1> struct C1 : public Der< MeshType, A1, C0<MeshType, A0> > {}; template <class MeshType, class A0, class A1, class A2> struct C2 : public Der< MeshType, A2, C1<MeshType, A0, A1> > {}; template <class MeshType, class A0, class A1, class A2,class A3> struct C3 : public Der< MeshType, A3, C2<MeshType, A0, A1, A2> > {}; template <class MeshType, class A0, class A1, class A2,class A3,class A4> struct AttrAll : public Der< MeshType, A4, C3<MeshType, A0, A1, A2, A3> > {}; template <class OpenMeshType,class A0 = long, class A1 = double, class A2 = int,class A3 = short, class A4 = char > class ImporterVMI: public AttrAll<OpenMeshType,A0,A1,A2,A3,A4> { static void ReadString(FILE * f,std::string & out){ unsigned int l; fread(&l,4,1,f); char * buf = new char[l+1]; fread(buf,1,l,f);buf[l]='\0'; out = std::string(buf); delete [] buf; } static void ReadInt(FILE *f, unsigned int & i){ fread(&i,1,4,f);} static void ReadFloat(FILE *f, float & v){ fread(&v,1,sizeof(float),f);} static int LoadVertexOcfMask( FILE * f){ int mask =0; std::string s; // vertex quality ReadString(f,s); if( s == std::string("HAS_VERTEX_QUALITY_OCF")) mask |= Mask::IOM_VERTQUALITY; // vertex color ReadString(f,s); if( s == std::string("HAS_VERTEX_COLOR_OCF")) mask |= Mask::IOM_VERTCOLOR; // vertex normal ReadString(f,s); if( s == std::string("HAS_VERTEX_NORMAL_OCF")) mask |= Mask::IOM_VERTNORMAL; // vertex mark ReadString(f,s); //if( s == std::string("HAS_VERTEX_MARK_OCF")) mask |= // vertex texcoord ReadString(f,s); if( s == std::string("HAS_VERTEX_TEXCOORD_OCF")) mask |= Mask::IOM_VERTTEXCOORD; // vertex-face adjacency ReadString(f,s); //if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) mask |= // vertex curvature ReadString(f,s); //if( s == std::string("HAS_VERTEX_CURVATURE_OCF")) mask |= //// vertex curvature dir ReadString(f,s); //if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF")) mask |= // vertex radius ReadString(f,s); if( s == std::string("HAS_VERTEX_RADIUS_OCF")) mask |= Mask::IOM_VERTRADIUS; return mask; } template <typename MeshType, typename CONT> struct LoadVertexOcf{ LoadVertexOcf(FILE* /*f*/,const CONT & /*vert*/){ // do nothing, it is a std::vector } }; template <typename MeshType> struct LoadVertexOcf<MeshType,vertex::vector_ocf<typename OpenMeshType::VertexType> >{ typedef typename OpenMeshType::VertexType VertexType; LoadVertexOcf( FILE * f, vertex::vector_ocf<typename OpenMeshType::VertexType> & vert){ std::string s; // vertex quality ReadString(f,s); if( s == std::string("HAS_VERTEX_QUALITY_OCF")) { vert.EnableQuality(); fread((void*)&vert.QV[0],sizeof(typename VertexType::QualityType),vert.size(),f); } // vertex color ReadString(f,s); if( s == std::string("HAS_VERTEX_COLOR_OCF")) { vert.EnableColor(); fread((void*)&vert.CV[0],sizeof(typename VertexType::ColorType),vert.size(),f); } // vertex normal ReadString(f,s); if( s == std::string("HAS_VERTEX_NORMAL_OCF")) { vert.EnableNormal(); fread((void*)&vert.NV[0],sizeof(typename VertexType::NormalType),vert.size(),f); } // vertex mark ReadString(f,s); if( s == std::string("HAS_VERTEX_MARK_OCF")) { vert.EnableMark(); fread((void*)&vert.MV[0],sizeof(typename VertexType::MarkType),vert.size(),f); } // vertex texcoord ReadString(f,s); if( s == std::string("HAS_VERTEX_TEXCOORD_OCF")) { vert.EnableTexCoord(); fread((void*)&vert.TV[0],sizeof(typename VertexType::TexCoordType),vert.size(),f); } // vertex-face adjacency ReadString(f,s); if( s == std::string("HAS_VERTEX_VFADJACENCY_OCF")) { vert.EnableVFAdjacency(); fread((void*)&vert.AV[0],sizeof(typename vertex::vector_ocf<VertexType>::VFAdjType),vert.size(),f); } // vertex curvature ReadString(f,s); if( s == std::string("HAS_VERTEX_CURVATURE_OCF")) { vert.EnableCurvature(); fread((void*)&vert.CuV[0],sizeof(typename VertexType::CurvatureType),vert.size(),f); } // vertex curvature dir ReadString(f,s); if( s == std::string("HAS_VERTEX_CURVATUREDIR_OCF")) { vert.EnableCurvatureDir(); fread((void*)&vert.CuDV[0],sizeof(typename VertexType::CurvatureDirType),vert.size(),f); } // vertex radius ReadString(f,s); if( s == std::string("HAS_VERTEX_RADIUS_OCF")) { vert.EnableRadius(); fread((void*)&vert.RadiusV[0],sizeof(typename VertexType::RadiusType),vert.size(),f); } } }; template <typename MeshType, typename CONT> struct LoadFaceOcf{ LoadFaceOcf(FILE * /* f */ , const CONT & /* face */){ // do nothing, it is a std::vector } }; static int LoadFaceOcfMask( FILE * f){ int mask=0; std::string s; // face quality ReadString(f,s); if( s == std::string("HAS_FACE_QUALITY_OCF")) mask |= Mask::IOM_FACEQUALITY; // face color ReadString(f,s); if( s == std::string("HAS_FACE_COLOR_OCF")) mask |= Mask::IOM_FACECOLOR; // face normal ReadString(f,s); if( s == std::string("HAS_FACE_NORMAL_OCF")) mask |= Mask::IOM_FACENORMAL; //// face mark ReadString(f,s); //if( s == std::string("HAS_FACE_MARK_OCF")) mask |= // face wedgetexcoord ReadString(f,s); if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) mask |= Mask::IOM_WEDGTEXCOORD; // face-face adjacency ReadString(f,s); // if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) mask |= */ // vertex-face adjacency ReadString(f,s); //if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) mask |= // face WedgeColor ReadString(f,s); if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) mask |= Mask::IOM_WEDGCOLOR; // face WedgeNormal ReadString(f,s); if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) mask |= Mask::IOM_WEDGNORMAL; return mask; } /* partial specialization for vector_ocf */ template <typename MeshType> struct LoadFaceOcf< MeshType, face::vector_ocf<typename OpenMeshType::FaceType> >{ typedef typename OpenMeshType::FaceType FaceType; LoadFaceOcf( FILE * f, face::vector_ocf<FaceType> & face){ std::string s; // face quality ReadString(f,s); if( s == std::string("HAS_FACE_QUALITY_OCF")) { face.EnableQuality(); fread((void*)&face.QV[0],sizeof(typename FaceType::QualityType),face.size(),f); } // face color ReadString(f,s); if( s == std::string("HAS_FACE_COLOR_OCF")) { face.EnableColor(); fread((void*)&face.CV[0],sizeof(typename FaceType::ColorType),face.size(),f); } // face normal ReadString(f,s); if( s == std::string("HAS_FACE_NORMAL_OCF")) { face.EnableNormal(); fread((void*)&face.NV[0],sizeof(typename FaceType::NormalType),face.size(),f); } // face mark ReadString(f,s); if( s == std::string("HAS_FACE_MARK_OCF")) { face.EnableMark(); fread((void*)&face.MV[0],sizeof(typename FaceType::MarkType),face.size(),f); } // face wedgetexcoord ReadString(f,s); if( s == std::string("HAS_FACE_WEDGETEXCOORD_OCF")) { face.EnableWedgeTex(); fread((void*)&face.WTV[0],sizeof(typename FaceType::WedgeTexCoordType),face.size(),f); } // face-face adjacency ReadString(f,s); if( s == std::string("HAS_FACE_FFADJACENCY_OCF")) { face.EnableFFAdjacency(); fread((void*)&face.AF[0],sizeof(typename face::vector_ocf<FaceType>::AdjTypePack),face.size(),f); } // vertex-face adjacency ReadString(f,s); if( s == std::string("HAS_FACE_VFADJACENCY_OCF")) { face.EnableVFAdjacency(); fread((void*)&face.AV[0],sizeof(typename face::vector_ocf<FaceType>::AdjTypePack),face.size(),f); } // face WedgeColor ReadString(f,s); if( s == std::string("HAS_FACE_WEDGECOLOR_OCF")) { face.EnableWedgeColor(); fread((void*)&face.WCV[0],sizeof(typename face::vector_ocf<FaceType>::WedgeColorTypePack),face.size(),f); } // face WedgeNormal ReadString(f,s); if( s == std::string("HAS_FACE_WEDGENORMAL_OCF")) { face.EnableWedgeNormal(); fread((void*)&face.WNV[0],sizeof(typename face::vector_ocf<FaceType>::WedgeNormalTypePack),face.size(),f); } } }; static int FaceMaskBitFromString(std::string s){ if( s.find("Color",0) != std::string::npos ) return Mask::IOM_FACECOLOR; else if( s.find("BitFlags",0) != std::string::npos ) return Mask::IOM_FACEFLAGS; else if( s.find("VertexRef",0) != std::string::npos ) return Mask::IOM_FACEINDEX; else if( s.find("Normal",0) != std::string::npos ) return Mask::IOM_FACENORMAL; else if( s.find("Quality",0) != std::string::npos ) return Mask::IOM_FACEQUALITY; else if( s.find("Quality",0) != std::string::npos ) return Mask::IOM_FACEQUALITY; else if( s.find("WedgeColor",0) != std::string::npos ) return Mask::IOM_WEDGCOLOR; else if( s.find("WedgeNormal",0) != std::string::npos ) return Mask::IOM_WEDGNORMAL; else if( s.find("WedgeTexCoord",0) != std::string::npos) return Mask::IOM_WEDGTEXCOORD; else return 0; } static int VertexMaskBitFromString(std::string s){ if( s.find("Color",0) != std::string::npos ) return Mask::IOM_VERTCOLOR; else if( s.find("Coord",0) != std::string::npos ) return Mask::IOM_VERTCOORD; else if( s.find("BitFlags",0) != std::string::npos ) return Mask::IOM_VERTFLAGS; else if( s.find("Quality",0) != std::string::npos ) return Mask::IOM_VERTQUALITY; else if( s.find("Normal",0) != std::string::npos ) return Mask::IOM_VERTNORMAL; else if( s.find("TexCoord",0) != std::string::npos ) return Mask::IOM_VERTTEXCOORD; else if( s.find("Radius",0) != std::string::npos ) return Mask::IOM_VERTRADIUS; else return 0; } static FILE *& F(){static FILE * f; return f;} static void * Malloc(unsigned int n){ return (n)?malloc(n):0;} static void Free(void * ptr){ if(ptr) free (ptr);} typedef typename OpenMeshType::FaceType FaceType; typedef typename OpenMeshType::FaceContainer FaceContainer; typedef typename OpenMeshType::FaceIterator FaceIterator; typedef typename OpenMeshType::VertContainer VertContainer; typedef typename OpenMeshType::VertexIterator VertexIterator; typedef typename OpenMeshType::VertexType VertexType; public: enum VMIErrorCodes { VMI_NO_ERROR = 0, VMI_INCOMPATIBLE_VERTEX_TYPE, VMI_INCOMPATIBLE_FACE_TYPE, VMI_FAILED_OPEN }; /*! * Standard call for knowing the meaning of an error code * \param message_code The code returned by <CODE>Open</CODE> * \return The string describing the error code */ static const char* ErrorMsg(int message_code) { static const char* error_msg[] = { "No errors", "The file has a incompatible vertex signature", "The file has a incompatible Face signature", "General failure of the file opening" }; if(message_code>4 || message_code<0) return "Unknown error"; else return error_msg[message_code]; }; /* Read the info about the mesh. Note: in the header the bounding box is always written/readed as a vcg::Box3f, even if the scalar type is not float. The bounding box of the mesh will be set properly on loading. */ static bool GetHeader( std::vector<std::string>& fnameV, std::vector<std::string>& fnameF, unsigned int & vertSize, unsigned int &faceSize, vcg::Box3f & bbox, int & mask){ std::string name; unsigned int nameFsize,nameVsize,i; ReadString(F(),name); ReadInt(F(),nameFsize); for(i=0; i < nameFsize; ++i) {ReadString(F(), name);fnameF.push_back( name );mask |= FaceMaskBitFromString(name);} mask |= LoadFaceOcfMask(F()); ReadString(F(),name); ReadInt(F() , faceSize); ReadString(F(), name); ReadInt(F(),nameVsize); for(i=0; i < nameVsize; ++i) {ReadString(F(), name) ;fnameV.push_back( name);mask |= VertexMaskBitFromString(name);} mask |= LoadVertexOcfMask(F()); ReadString(F(),name); ReadInt(F(),vertSize); ReadString(F(),name); float float_value; for(unsigned int i =0; i < 2; ++i){ReadFloat(F(),float_value); bbox.min[i]=float_value;} for(unsigned int i =0; i < 2; ++i){ReadFloat(F(),float_value); bbox.max[i]=float_value;} ReadString(F(),name); assert(strstr( name.c_str(),"end_header")!=NULL); return true; } static bool GetHeader(const char * filename,std::vector<std::string>& nameV, std::vector<std::string>& nameF, unsigned int & vertSize, unsigned int &faceSize,vcg::Box3f & bbox,int & mask){ F() = fopen(filename,"rb"); return GetHeader(nameV, nameF, vertSize, faceSize,bbox,mask); fclose(F()); } public: static bool LoadMask(const char * f, int & mask){ std::vector<std::string> nameV; std::vector<std::string> nameF; unsigned int vertSize, faceSize; vcg::Box3f bbox; GetHeader(f,nameV,nameF,vertSize, faceSize, bbox, mask); return true; } static int Open(OpenMeshType &m, const char * filename, int & mask,CallBackPos * /*cb*/ = 0 ){ typedef typename OpenMeshType::VertexType VertexType; typedef typename OpenMeshType::FaceType FaceType; typename OpenMeshType::FaceIterator fi; typename OpenMeshType::VertexIterator vi; F() = fopen(filename,"rb"); if(!F()) return VMI_FAILED_OPEN; std::vector<std::string> nameF,nameV,fnameF,fnameV; unsigned int vertSize,faceSize; /* read the header */ vcg::Box3f lbbox; GetHeader(fnameV, fnameF, vertSize, faceSize,lbbox,mask); m.bbox.Import(lbbox); /* read the mesh type */ OpenMeshType::FaceType::Name(nameF); OpenMeshType::VertexType::Name(nameV); /* check if the type is the very same, otherwise return */ if(fnameV != nameV) return VMI_INCOMPATIBLE_VERTEX_TYPE; if(fnameF != nameF) return VMI_INCOMPATIBLE_FACE_TYPE; int offsetV=0,offsetF=0; if(vertSize!=0) /* read the address of the first vertex */ fread(&offsetV,sizeof( int),1,F()); if(faceSize!=0) /* read the address of the first face */ fread(&offsetF,sizeof( int),1,F()); /* read the object mesh */ fread(&m.shot,sizeof(Shot<typename OpenMeshType::ScalarType>),1,F()); fread(&m.vn,sizeof(int),1,F()); fread(&m.fn,sizeof(int),1,F()); fread(&m.imark,sizeof(int),1,F()); fread(&m.bbox,sizeof(Box3<typename OpenMeshType::ScalarType>),1,F()); fread(&m.C(),sizeof(Color4b),1,F()); /* resize the vector of vertices */ m.vert.resize(vertSize); size_t read = 0; /* load the vertices */ if(vertSize>0){ read=fread((void*)& m.vert[0],sizeof(VertexType),vertSize,F()); assert(ferror(F())==0); assert(read==vertSize); LoadVertexOcf<OpenMeshType,VertContainer>(F(),m.vert); } read = 0; m.face.resize(faceSize); if(faceSize>0){ /* load the faces */ read = fread((void*)& m.face[0],sizeof(FaceType),faceSize,F()); assert(ferror(F())==0); assert(!feof(F())); assert(read==faceSize); LoadFaceOcf<OpenMeshType,FaceContainer>(F(),m.face); } /* load the per vertex attributes */ std::string _string,_trash; unsigned int n,sz; ReadString(F(),_trash); ReadInt(F(),n); for(size_t ia = 0 ; ia < n; ++ia){ ReadString(F(),_trash); ReadString(F(),_string); ReadString(F(),_trash); ReadInt(F(),sz); void * data = Malloc(sz*m.vert.size()); fread(data,sz,m.vert.size(),F()); AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<0>(m,_string.c_str(),sz,data); Free(data); } /* load the per face attributes */ ReadString(F(),_trash); ReadInt(F(),n); for(size_t ia = 0 ; ia < n; ++ia){ ReadString(F(),_trash); ReadString(F(),_string); ReadString(F(),_trash); ReadInt(F(),sz); void * data = Malloc(sz*m.face.size()); fread(data,sz,m.face.size(),F()); AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<1>(m,_string.c_str(),sz,data); Free(data); } /* load the per mesh attributes */ ReadString(F(),_trash); ReadInt(F(),n); for(unsigned int ia = 0 ; ia < n; ++ia){ ReadString(F(),_trash); ReadString(F(),_string); ReadString(F(),_trash); ReadInt(F(),sz); void * data = Malloc(sz); fread(data,1,sz,F()); AttrAll<OpenMeshType,A0,A1,A2,A3,A4>::template AddAttrib<2>(m,_string.c_str(),sz,data); Free(data); } if(FaceType::HasVFAdjacency()) for(vi = m.vert.begin(); vi != m.vert.end(); ++vi){ (*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0]; (*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0]; (*vi).VFp() = (*vi).VFp()-(FaceType*)offsetF+ &m.face[0]; } if(FaceType::HasVertexRef()) for(fi = m.face.begin(); fi != m.face.end(); ++fi){ (*fi).V(0) = (*fi).V(0)-(VertexType*)offsetV+ &m.vert[0]; (*fi).V(1) = (*fi).V(1)-(VertexType*)offsetV+ &m.vert[0]; (*fi).V(2) = (*fi).V(2)-(VertexType*)offsetV+ &m.vert[0]; } if(FaceType::HasFFAdjacency()) for(fi = m.face.begin(); fi != m.face.end(); ++fi){ (*fi).FFp(0) = (*fi).FFp(0)-(FaceType*)offsetF+ &m.face[0]; (*fi).FFp(1) = (*fi).FFp(1)-(FaceType*)offsetF+ &m.face[0]; (*fi).FFp(2) = (*fi).FFp(2)-(FaceType*)offsetF+ &m.face[0]; } if(FaceType::HasVFAdjacency()) for(fi = m.face.begin(); fi != m.face.end(); ++fi){ (*fi).VFp(0) = (*fi).VFp(0)-(FaceType*)offsetF+ &m.face[0]; (*fi).VFp(1) = (*fi).VFp(1)-(FaceType*)offsetF+ &m.face[0]; (*fi).VFp(2) = (*fi).VFp(2)-(FaceType*)offsetF+ &m.face[0]; } fclose(F()); return VMI_NO_ERROR; // zero is the standard (!) code of success } }; // end class } // end Namespace tri } // end Namespace io } // end Namespace vcg #endif