/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_INTERSECTION_3 #define __VCGLIB_INTERSECTION_3 #include #include #include #include #include #include #include #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** Function computing the intersection between couple of geometric primitives in 3 dimension */ /// interseciton between sphere and line template inline bool IntersectionLineSphere( const Sphere3 & sp, const Line3 & li, Point3 & p0,Point3 & p1 ){ // Per prima cosa si sposta il sistema di riferimento // fino a portare il centro della sfera nell'origine Point3 neworig=li.Origin()-sp.Center(); // poi si risolve il sistema di secondo grado (con maple...) T t1 = li.Direction().X()*li.Direction().X(); T t2 = li.Direction().Y()*li.Direction().Y(); T t3 = li.Direction().Z()*li.Direction().Z(); T t6 = neworig.Y()*li.Direction().Y(); T t7 = neworig.X()*li.Direction().X(); T t8 = neworig.Z()*li.Direction().Z(); T t15 = sp.Radius()*sp.Radius(); T t17 = neworig.Z()*neworig.Z(); T t19 = neworig.Y()*neworig.Y(); T t21 = neworig.X()*neworig.X(); T t28 = T(2.0*t7*t6+2.0*t6*t8+2.0*t7*t8+t1*t15-t1*t17-t1*t19-t2*t21+t2*t15-t2*t17-t3*t21+t3*t15-t3*t19); if(t28<0) return false; T t29 = sqrt(t28); T val0 = 1/(t1+t2+t3)*(-t6-t7-t8+t29); T val1 = 1/(t1+t2+t3)*(-t6-t7-t8-t29); p0=li.P(val0); p1=li.P(val1); return true; } /* * Function computing the intersection between a sphere and a segment. * @param[in] sphere the sphere * @param[in] segment the segment * @param[out] intersection the intersection point, meaningful only if the segment intersects the sphere * \return (0, 1 or 2) the number of intersections between the segment and the sphere. * t1 is a valid intersection only if the returned value is at least 1; * similarly t2 is valid iff the returned value is 2. */ template < class SCALAR_TYPE > inline int IntersectionSegmentSphere(const Sphere3& sphere, const Segment3& segment, Point3 & t0, Point3 & t1) { typedef SCALAR_TYPE ScalarType; typedef typename vcg::Point3< ScalarType > Point3t; Point3t s = segment.P0() - sphere.Center(); Point3t r = segment.P1() - segment.P0(); ScalarType rho2 = sphere.Radius()*sphere.Radius(); ScalarType sr = s*r; ScalarType r_squared_norm = r.SquaredNorm(); ScalarType s_squared_norm = s.SquaredNorm(); ScalarType sigma = sr*sr - r_squared_norm*(s_squared_norm-rho2); if (sigma(lambda1, ScalarType(0.0)); t0 = segment.P0() + r*t_enter; solution_count++; } if (ScalarType(0.0)<=lambda2 && lambda2<=ScalarType(1.0)) { Point3t *pt = (solution_count>0) ? &t1 : &t0; ScalarType t_exit = std::min< ScalarType >(lambda2, ScalarType(1.0)); *pt = segment.P0() + r*t_exit; solution_count++; } return solution_count; }; // end of IntersectionSegmentSphere /*! * Compute the intersection between a sphere and a triangle. * \param[in] sphere the input sphere * \param[in] triangle the input triangle * \param[out] witness it is the point on the triangle nearest to the center of the sphere (even when there isn't intersection) * \param[out] res if not null, in the first item is stored the minimum distance between the triangle and the sphere, * while in the second item is stored the penetration depth * \return true iff there is an intersection between the sphere and the triangle */ template < class SCALAR_TYPE, class TRIANGLETYPE > bool IntersectionSphereTriangle(const vcg::Sphere3 < SCALAR_TYPE > & sphere , TRIANGLETYPE triangle, vcg::Point3 < SCALAR_TYPE > & witness , std::pair< SCALAR_TYPE, SCALAR_TYPE > * res=NULL) { typedef SCALAR_TYPE ScalarType; typedef typename vcg::Point3< ScalarType > Point3t; bool penetration_detected = false; ScalarType radius = sphere.Radius(); Point3t center = sphere.Center(); Point3t p0 = triangle.P(0)-center; Point3t p1 = triangle.P(1)-center; Point3t p2 = triangle.P(2)-center; Point3t p10 = p1-p0; Point3t p21 = p2-p1; Point3t p20 = p2-p0; ScalarType delta0_p01 = p10.dot(p1); ScalarType delta1_p01 = -p10.dot(p0); ScalarType delta0_p02 = p20.dot(p2); ScalarType delta2_p02 = -p20.dot(p0); ScalarType delta1_p12 = p21.dot(p2); ScalarType delta2_p12 = -p21.dot(p1); // the closest point can be one of the vertices of the triangle if (delta1_p01<=ScalarType(0.0) && delta2_p02<=ScalarType(0.0)) { witness = p0; } else if (delta0_p01<=ScalarType(0.0) && delta2_p12<=ScalarType(0.0)) { witness = p1; } else if (delta0_p02<=ScalarType(0.0) && delta1_p12<=ScalarType(0.0)) { witness = p2; } else { ScalarType temp = p10.dot(p2); ScalarType delta0_p012 = delta0_p01*delta1_p12 + delta2_p12*temp; ScalarType delta1_p012 = delta1_p01*delta0_p02 - delta2_p02*temp; ScalarType delta2_p012 = delta2_p02*delta0_p01 - delta1_p01*(p20.dot(p1)); // otherwise, can be a point lying on same edge of the triangle if (delta0_p012<=ScalarType(0.0)) { ScalarType denominator = delta1_p12+delta2_p12; ScalarType mu1 = delta1_p12/denominator; ScalarType mu2 = delta2_p12/denominator; witness = (p1*mu1 + p2*mu2); } else if (delta1_p012<=ScalarType(0.0)) { ScalarType denominator = delta0_p02+delta2_p02; ScalarType mu0 = delta0_p02/denominator; ScalarType mu2 = delta2_p02/denominator; witness = (p0*mu0 + p2*mu2); } else if (delta2_p012<=ScalarType(0.0)) { ScalarType denominator = delta0_p01+delta1_p01; ScalarType mu0 = delta0_p01/denominator; ScalarType mu1 = delta1_p01/denominator; witness = (p0*mu0 + p1*mu1); } else { // or else can be an point internal to the triangle ScalarType denominator = delta0_p012 + delta1_p012 + delta2_p012; ScalarType lambda0 = delta0_p012/denominator; ScalarType lambda1 = delta1_p012/denominator; ScalarType lambda2 = delta2_p012/denominator; witness = p0*lambda0 + p1*lambda1 + p2*lambda2; } } if (res!=NULL) { ScalarType witness_norm = witness.Norm(); res->first = std::max< ScalarType >( witness_norm-radius, ScalarType(0.0) ); res->second = std::max< ScalarType >( radius-witness_norm, ScalarType(0.0) ); } penetration_detected = (witness.SquaredNorm() <= (radius*radius)); witness += center; return penetration_detected; }; //end of IntersectionSphereTriangle /// intersection between line and plane template inline bool IntersectionPlaneLine( const Plane3 & pl, const Line3 & li, Point3 & po){ const T epsilon = T(1e-8); T k = pl.Direction().dot(li.Direction()); // Compute 'k' factor if( (k > -epsilon) && (k < epsilon)) return false; T r = (pl.Offset() - pl.Direction().dot(li.Origin()))/k; // Compute ray distance po = li.Origin() + li.Direction()*r; return true; } /// intersection between line and plane template inline bool IntersectionLinePlane(const Line3 & li, const Plane3 & pl, Point3 & po){ return IntersectionPlaneLine(pl,li,po); } /// intersection between segment and plane template inline bool IntersectionPlaneSegment( const Plane3 & pl, const Segment3 & s, Point3 & p0){ T p1_proj = s.P1()*pl.Direction()-pl.Offset(); T p0_proj = s.P0()*pl.Direction()-pl.Offset(); if ( (p1_proj>0)-(p0_proj<0)) return false; if(p0_proj == p1_proj) return false; // check that we perform the computation in a way that is independent with v0 v1 swaps if(p0_proj < p1_proj) p0 = s.P0() + (s.P1()-s.P0()) * fabs(p0_proj/(p1_proj-p0_proj)); if(p0_proj > p1_proj) p0 = s.P1() + (s.P0()-s.P1()) * fabs(p1_proj/(p0_proj-p1_proj)); return true; } /// intersection between segment and plane template inline bool IntersectionPlaneSegmentEpsilon(const Plane3 & pl, const Segment3 & sg, Point3 & po, const ScalarType epsilon = ScalarType(1e-8)){ typedef ScalarType T; T k = pl.Direction().dot((sg.P1()-sg.P0())); if( (k > -epsilon) && (k < epsilon)) return false; T r = (pl.Offset() - pl.Direction().dot(sg.P0()))/k; // Compute ray distance if( (r<0) || (r > 1.0)) return false; po = sg.P0()*(1-r)+sg.P1() * r; return true; } /// intersection between plane and triangle // not optimal: uses plane-segment intersection (and the fact the two or none edges can be intersected) // its use is rather dangerous because it can return inconsistent stuff on degenerate cases. // added assert to underline this danger. template inline bool IntersectionPlaneTriangle( const Plane3 & pl, const TRIANGLETYPE & tr, Segment3 & sg) { typedef typename TRIANGLETYPE::ScalarType T; if(IntersectionPlaneSegment(pl,Segment3(tr.cP(0),tr.cP(1)),sg.P0())) { if(IntersectionPlaneSegment(pl,Segment3(tr.cP(0),tr.cP(2)),sg.P1())) return true; else { if(IntersectionPlaneSegment(pl,Segment3(tr.cP(1),tr.cP(2)),sg.P1())) return true; else assert(0); return true; } } else { if(IntersectionPlaneSegment(pl,Segment3(tr.cP(1),tr.cP(2)),sg.P0())) { if(IntersectionPlaneSegment(pl,Segment3(tr.cP(0),tr.cP(2)),sg.P1()))return true; assert(0); return true; } } return false; } /// intersection between two triangles template inline bool IntersectionTriangleTriangle(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1){ return NoDivTriTriIsect(t0.cP(0),t0.cP(1),t0.cP(2), t1.cP(0),t1.cP(1),t1.cP(2)); } template inline bool IntersectionTriangleTriangle(Point3 V0,Point3 V1,Point3 V2, Point3 U0,Point3 U1,Point3 U2){ return NoDivTriTriIsect(V0,V1,V2,U0,U1,U2); } #if 0 template inline bool Intersection(Point3 V0,Point3 V1,Point3 V2, Point3 U0,Point3 U1,Point3 U2,int *coplanar, Point3 &isectpt1,Point3 &isectpt2){ return tri_tri_intersect_with_isectline(V0,V1,V2,U0,U1,U2, coplanar,isectpt1,isectpt2); } template inline bool Intersection(const TRIANGLETYPE & t0,const TRIANGLETYPE & t1,bool &coplanar, SEGMENTTYPE & sg){ Point3 ip0,ip1; return tri_tri_intersect_with_isectline(t0.P0(0),t0.P0(1),t0.P0(2), t1.P0(0),t1.P0(1),t1.P0(2), coplanar,sg.P0(),sg.P1() ); } #endif /* * Function computing the intersection between a line and a triangle. * from: * Tomas Moller and Ben Trumbore, * ``Fast, Minimum Storage Ray-Triangle Intersection'', * journal of graphics tools, vol. 2, no. 1, pp. 21-28, 1997 * @param[in] line * @param[in] triangle vertices * @param[out]=(t,u,v) the intersection point, meaningful only if the line intersects the triangle * t is the line parameter and * (u,v) are the baricentric coords of the intersection point * * Line.Orig + t * Line.Dir = (1-u-v) * Vert0 + u * Vert1 +v * Vert2 * */ template bool IntersectionLineTriangle( const Line3 & line, const Point3 & vert0, const Point3 & vert1, const Point3 & vert2, T & t ,T & u, T & v) { #define EPSIL 0.000001 vcg::Point3 edge1, edge2, tvec, pvec, qvec; T det,inv_det; /* find vectors for two edges sharing vert0 */ edge1 = vert1 - vert0; edge2 = vert2 - vert0; /* begin calculating determinant - also used to calculate U parameter */ pvec = line.Direction() ^ edge2; /* if determinant is near zero, line lies in plane of triangle */ det = edge1 * pvec; /* calculate distance from vert0 to line origin */ tvec = line.Origin() - vert0; inv_det = 1.0 / det; qvec = tvec ^ edge1; if (det > EPSIL) { u = tvec * pvec ; if ( u < 0.0 || u > det) return 0; /* calculate V parameter and test bounds */ v = line.Direction() * qvec; if ( v < 0.0 || u + v > det) return 0; } else if(det < -EPSIL) { /* calculate U parameter and test bounds */ u = tvec * pvec ; if ( u > 0.0 || u < det) return 0; /* calculate V parameter and test bounds */ v = line.Direction() * qvec ; if ( v > 0.0 || u + v < det) return 0; } else return 0; /* line is parallell to the plane of the triangle */ t = edge2 * qvec * inv_det; ( u) *= inv_det; ( v) *= inv_det; return 1; } template bool IntersectionRayTriangle( const Ray3 & ray, const Point3 & vert0, const Point3 & vert1, const Point3 & vert2, T & t ,T & u, T & v) { Line3 line(ray.Origin(), ray.Direction()); if (IntersectionLineTriangle(line, vert0, vert1, vert2, t, u, v)) { if (t < 0) return 0; else return 1; }else return 0; } // line-box template bool IntersectionLineBox( const Box3 & box, const Line3 & r, Point3 & coord ) { const int NUMDIM = 3; const int RIGHT = 0; const int LEFT = 1; const int MIDDLE = 2; int inside = 1; char quadrant[NUMDIM]; int i; int whichPlane; Point3 maxT,candidatePlane; // Find candidate planes; this loop can be avoided if // rays cast all from the eye(assume perpsective view) for (i=0; i box.max[i]) { quadrant[i] = RIGHT; candidatePlane[i] = box.max[i]; inside = 0; } else { quadrant[i] = MIDDLE; } } // Ray origin inside bounding box if(inside){ coord = r.Origin(); return true; } // Calculate T distances to candidate planes for (i = 0; i < NUMDIM; i++) { if (quadrant[i] != MIDDLE && r.Direction()[i] !=0.) maxT[i] = (candidatePlane[i]-r.Origin()[i]) / r.Direction()[i]; else maxT[i] = -1.; } // Get largest of the maxT's for final choice of intersection whichPlane = 0; for (i = 1; i < NUMDIM; i++) if (maxT[whichPlane] < maxT[i]) whichPlane = i; // Check final candidate actually inside box if (maxT[whichPlane] < 0.) return false; for (i = 0; i < NUMDIM; i++) if (whichPlane != i) { coord[i] = r.Origin()[i] + maxT[whichPlane] *r.Direction()[i]; if (coord[i] < box.min[i] || coord[i] > box.max[i]) return false; } else { coord[i] = candidatePlane[i]; } return true; // ray hits box } // ray-box template bool IntersectionRayBox( const Box3 & box, const Ray3 & r, Point3 & coord ) { Line3 l; l.SetOrigin(r.Origin()); l.SetDirection(r.Direction()); return(IntersectionLineBox(box,l,coord)); } // segment-box return fist intersection found from p0 to p1 template bool IntersectionSegmentBox( const Box3 & box, const Segment3 & s, Point3 & coord ) { //as first perform box-box intersection Box3 test; test.Add(s.P0()); test.Add(s.P1()); if (!test.Collide(box)) return false; else { Line3 l; Point3 dir=s.P1()-s.P0(); dir.Normalize(); l.SetOrigin(s.P0()); l.SetDirection(dir); if(IntersectionLineBox(box,l,coord)) return (test.IsIn(coord)); return false; } } // segment-box intersection , return number of intersections and intersection points template int IntersectionSegmentBox( const Box3 & box, const Segment3 & s, Point3 & coord0, Point3 & coord1 ) { int num=0; Segment3 test= s; if (IntersectionSegmentBox(box,test,coord0 )) { num++; Point3 swap=test.P0(); test.P0()=test.P1(); test.P1()=swap; if (IntersectionSegmentBox(box,test,coord1 )) num++; } return num; } /** * Compute the intersection between a segment and a triangle. * It relies on the lineTriangle Intersection * @param[in] segment * @param[in] triangle vertices * @param[out]=(t,u,v) the intersection point, meaningful only if the line of segment intersects the triangle * t is the baricentric coord of the point on the segment * (u,v) are the baricentric coords of the intersection point in the segment * */ template bool IntersectionSegmentTriangle( const vcg::Segment3 & seg, const Point3 & vert0, const Point3 & vert1, const Point3 & vert2, ScalarType & a ,ScalarType & b) { //control intersection of bounding boxes vcg::Box3 bb0,bb1; bb0.Add(seg.P0()); bb0.Add(seg.P1()); bb1.Add(vert0); bb1.Add(vert1); bb1.Add(vert2); Point3 inter; if (!bb0.Collide(bb1)) return false; if (!vcg::IntersectionSegmentBox(bb1,seg,inter)) return false; //first set both directions of ray vcg::Line3 line; vcg::Point3 dir; ScalarType length=seg.Length(); dir=(seg.P1()-seg.P0()); dir.Normalize(); line.Set(seg.P0(),dir); ScalarType orig_dist; if(IntersectionLineTriangle(line,vert0,vert1,vert2,orig_dist,a,b)) return (orig_dist>=0 && orig_dist<=length); return false; } /** * Compute the intersection between a segment and a triangle. * Wrapper of the above function */ template bool IntersectionSegmentTriangle( const vcg::Segment3 & seg, const TriangleType &t, typename TriangleType::ScalarType & a ,typename TriangleType::ScalarType & b) { return IntersectionSegmentTriangle(seg,t.cP(0),t.cP(1),t.cP(2),a,b); } template bool IntersectionPlaneBox(const vcg::Plane3 &pl, vcg::Box3 &bbox) { ScalarType dist,dist1; if(bbox.IsNull()) return false; // intersection with a null bbox is empty dist = SignedDistancePlanePoint(pl,bbox.P(0)) ; for (int i=1;i<8;i++) if( SignedDistancePlanePoint(pl,bbox.P(i))*dist<0) return true; return true; } template bool IntersectionTriangleBox(const vcg::Box3 &bbox, const vcg::Point3 &p0, const vcg::Point3 &p1, const vcg::Point3 &p2) { typedef typename vcg::Point3 CoordType; CoordType intersection; /// control bounding box collision vcg::Box3 test; test.SetNull(); test.Add(p0); test.Add(p1); test.Add(p2); if (!test.Collide(bbox)) return false; /// control if each point is inside the bouding box if ((bbox.IsIn(p0))||(bbox.IsIn(p1))||(bbox.IsIn(p2))) return true; /////control plane of the triangle with bbox //vcg::Plane3 plTri=vcg::Plane3(); //plTri.Init(p0,p1,p2); //if (!IntersectionPlaneBox(plTri,bbox)) // return false; ///then control intersection of segments with box if (IntersectionSegmentBox(bbox,vcg::Segment3(p0,p1),intersection)|| IntersectionSegmentBox(bbox,vcg::Segment3(p1,p2),intersection)|| IntersectionSegmentBox(bbox,vcg::Segment3(p2,p0),intersection)) return true; ///control intersection of diagonal of the cube with triangle Segment3 diag[4]; diag[0]=Segment3(bbox.P(0),bbox.P(7)); diag[1]=Segment3(bbox.P(1),bbox.P(6)); diag[2]=Segment3(bbox.P(2),bbox.P(5)); diag[3]=Segment3(bbox.P(3),bbox.P(4)); ScalarType a,b; for (int i=0;i<3;i++) if (IntersectionSegmentTriangle(diag[i],p0,p1,p2,a,b)) return true; return false; } template bool IntersectionSphereSphere( const SphereType & s0,const SphereType & s1){ return (s0.Center()-s1.Center()).SquaredNorm() < (s0.Radius()+s1.Radius())*(s0.Radius()+s1.Radius()); } template bool IntersectionPlanePlane (const Plane3 & plane0, const Plane3 & plane1, Line3 & line) { // If Cross(N0,N1) is zero, then either planes are parallel and separated // or the same plane. In both cases, 'false' is returned. Otherwise, // the intersection line is // // L(t) = t*Cross(N0,N1) + c0*N0 + c1*N1 // // for some coefficients c0 and c1 and for t any real number (the line // parameter). Taking dot products with the normals, // // d0 = Dot(N0,L) = c0*Dot(N0,N0) + c1*Dot(N0,N1) // d1 = Dot(N1,L) = c0*Dot(N0,N1) + c1*Dot(N1,N1) // // which are two equations in two unknowns. The solution is // // c0 = (Dot(N1,N1)*d0 - Dot(N0,N1)*d1)/det // c1 = (Dot(N0,N0)*d1 - Dot(N0,N1)*d0)/det // // where det = Dot(N0,N0)*Dot(N1,N1)-Dot(N0,N1)^2. T n00 = plane0.Direction()*plane0.Direction(); T n01 = plane0.Direction()*plane1.Direction(); T n11 = plane1.Direction()*plane1.Direction(); T det = n00*n11-n01*n01; const T tolerance = (T)(1e-06f); if ( math::Abs(det) < tolerance ) return false; T invDet = 1.0f/det; T c0 = (n11*plane0.Offset() - n01*plane1.Offset())*invDet; T c1 = (n00*plane1.Offset() - n01*plane0.Offset())*invDet; line.SetDirection(plane0.Direction()^plane1.Direction()); line.SetOrigin(plane0.Direction()*c0+ plane1.Direction()*c1); return true; } // Ray-Triangle Functor template class RayTriangleIntersectionFunctor { public: template inline bool operator () (const TRIANGLETYPE & f, const Ray3 & ray, SCALARTYPE & t) { typedef SCALARTYPE ScalarType; ScalarType u; ScalarType v; bool bret = IntersectionRayTriangle(ray, Point3::Construct(f.cP(0)), Point3::Construct(f.cP(1)), Point3::Construct(f.cP(2)), t, u, v); if (BACKFACETEST) { if (!bret) { bret = IntersectionRayTriangle(ray, Point3::Construct(f.cP(0)), Point3::Construct(f.cP(2)), Point3::Construct(f.cP(1)), t, u, v); } } return (bret); } }; /*@}*/ } // end namespace #endif