/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.1 2007/05/09 10:31:53 ganovelli added ****************************************************************************/ #ifndef __VCG_TETRAHEDRON_PLUS_COMPONENT #define __VCG_TETRAHEDRON_PLUS_COMPONENT #include #include namespace vcg { namespace tetrahedron { /* Some naming Rules All the Components that can be added to a tetra should be defined in the namespace tetra: */ template class EmptyCore : public T { public: //Empty vertexref inline typename T::VertexType * & V( const int ) { assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::VertexType * const & V( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; } inline const typename T::VertexType * cV( const int ) const { assert(0); static typename T::VertexType *vp=0; return vp; } inline typename T::CoordType & P( const int ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } inline const typename T::CoordType & P( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } inline const typename T::CoordType &cP( const int ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } static bool HasVertexRef() { return false; } static bool HasTVAdjacency() { return false; } // //Empty normals // typedef typename T::VertexType::NormalType NormalType; // NormalType &N(const int & ){ static NormalType dummynormal(0, 0, 0); assert(0); return dummynormal; } // const NormalType cN(const int & ) const { static NormalType dummynormal(0, 0, 0); assert(0); return dummynormal; } // static bool HasFaceNormal() { return false; } // static bool HasFaceNormalOcc() { return false; } //Empty color typedef vcg::Color4b ColorType; ColorType &C() { static ColorType dummycolor(vcg::Color4b::White); assert(0); return dummycolor; } ColorType cC() const { static ColorType dummycolor(vcg::Color4b::White); assert(0); return dummycolor; } static bool HasColor() { return false; } static bool IsColorEnabled() { return T::TetraType::HasColor(); } //Empty Quality typedef float QualityType; typedef vcg::Point3f Quality3Type; QualityType &Q() { static QualityType dummyquality(0); assert(0); return dummyquality; } QualityType cQ() const { static QualityType dummyquality(0); assert(0); return dummyquality; } Quality3Type &Q3() { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } Quality3Type cQ3() const { static Quality3Type dummyQuality3(0,0,0); assert(0); return dummyQuality3; } static bool HasQuality() { return false; } static bool HasQuality3() { return false; } inline bool IsQualityEnabled() const { return T::TetraType::HasQuality(); } inline bool IsQuality3Enabled() const { return T::TetraType::HasQuality3(); } //Empty flags int &Flags() { static int dummyflags(0); assert(0); return dummyflags; } int cFlags() const { return 0; } static bool HasFlags() { return false; } static bool HasFlagsOcc() { return false; } //Empty IMark typedef int MarkType; inline void InitIMark() { } inline int & IMark() { assert(0); static int tmp=-1; return tmp;} inline int cIMark() const {return 0;} inline bool IsMarkEnabled() const { return T::TetraType::HasMark(); } static bool HasMark() { return false; } static bool HasMarkOcc() { return false; } //Empty Adjacency typedef int VTAdjType; typename T::TetraPointer & VTp ( const int ) { static typename T::TetraPointer tp=0; assert(0); return tp; } typename T::TetraPointer const cVTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; } typename T::TetraPointer & TTp ( const int ) { static typename T::TetraPointer tp=0; assert(0); return tp; } typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; assert(0); return tp; } char & VTi( const int ) { static char z=0; assert(0); return z; } char VTi( const int ) const { static char z=0; assert(0); return z; } char cVTi( const int ) const { static char z=0; assert(0); return z; } char & TTi( const int ) { static char z=0; assert(0); return z; } char cTTi( const int ) const { static char z=0; assert(0); return z; } bool IsVTInitialized(const int j) const {return static_cast(this)->cVTi(j)!=-1;} void VTClear(int j) { if(IsVTInitialized(j)) { static_cast(this)->VTp(j)=0; static_cast(this)->VTi(j)=-1; } } static bool HasVTAdjacency() { return false; } static bool HasTTAdjacency() { return false; } static bool HasTTAdjacencyOcc() { return false; } static bool HasVTAdjacencyOcc() { return false; } template void ImportData(const RightValuteType & ) {} static void Name(std::vector & name) { T::Name(name); } }; /*-------------------------- VERTEX ----------------------------------------*/ // template class EmptyVertexRef: public T { // public: // // typedef typename T::VertexType VertexType; // // typedef typename T::CoordType CoordType; // inline typename T::VertexType * & V( const int j ) { assert(0); static typename T::VertexType *vp=0; return vp; } // inline typename T::VertexType * const & V( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; } // inline typename T::VertexType * const cV( const int j ) const { assert(0); static typename T::VertexType *vp=0; return vp; } // inline typename T::CoordType & P( const int j ) { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } // inline const typename T::CoordType & P( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } // inline const typename T::CoordType &cP( const int j ) const { assert(0); static typename T::CoordType coord(0, 0, 0); return coord; } // static bool HasVertexRef() { return false; } // }; template class VertexRef: public T { public: VertexRef(){ v[0]=0; v[1]=0; v[2]=0; v[3]=0; /******* vertex and faces indices scheme********* * * /2\` * / \ ` * / \ ` * / \ _ 3` * / _ \ ' * / _ \ ' * /0___________1\' * */ findices[0][0] = 0; findices[0][1] = 1; findices[0][2] = 2; findices[1][0] = 0; findices[1][1] = 3; findices[1][2] = 1; findices[2][0] = 0; findices[2][1] = 2; findices[2][2] = 3; findices[3][0] = 1; findices[3][1] = 3; findices[3][2] = 2; } typedef typename T::VertexType::CoordType CoordType; typedef typename T::VertexType::ScalarType ScalarType; inline typename T::VertexType * & V( const int j ) { assert(j>=0 && j<4); return v[j]; } inline const typename T::VertexType * cV( const int j ) { assert(j>=0 && j<4); return v[j]; } inline size_t cFtoVi (const int f, const int j) const { assert(f >= 0 && f < 4); assert(j >= 0 && j < 3); return findices[f][j]; } // Shortcut for tetra points inline CoordType & P( const int j ) { assert(j>=0 && j<4); return v[j]->P(); } inline const CoordType &cP( const int j ) const { assert(j>=0 && j<4); return v[j]->P(); } /** Return the pointer to the ((j+1)%4)-th vertex of the tetra. @param j Index of the face vertex. */ inline typename T::VertexType * & V0( const int j ) { return V(j);} inline typename T::VertexType * & V1( const int j ) { return V((j+1)%4);} inline typename T::VertexType * & V2( const int j ) { return V((j+2)%4);} inline typename T::VertexType * & V3( const int j ) { return V((j+3)%4);} inline const typename T::VertexType * const & V0( const int j ) const { return V(j);} inline const typename T::VertexType * const & V1( const int j ) const { return V((j+1)%4);} inline const typename T::VertexType * const & V2( const int j ) const { return V((j+2)%4);} inline const typename T::VertexType * const & V3( const int j ) const { return V((j+3)%4);} inline const typename T::VertexType * const & cV0( const int j ) const { return cV(j);} inline const typename T::VertexType * const & cV1( const int j ) const { return cV((j+1)%4);} inline const typename T::VertexType * const & cV2( const int j ) const { return cV((j+2)%4);} inline const typename T::VertexType * const & cV3( const int j ) const { return cV((j+3)%4);} /// Shortcut to get vertex values inline CoordType &P0 (const int j) { return V(j)->P(); } inline CoordType &P2 (const int j) { return V((j + 2) % 4)->P(); } inline CoordType &P3 (const int j) { return V((j + 3) % 4)->P(); } inline CoordType &P1 (const int j) { return V((j + 1) % 4)->P(); } inline const CoordType &P0 (const int j) const { return V(j)->P(); } inline const CoordType &P1 (const int j) const { return V((j + 1) % 4)->P(); } inline const CoordType &P2 (const int j) const { return V((j + 2) % 4)->P(); } inline const CoordType &P3 (const int j) const { return V((j + 3) % 4)->P(); } inline const CoordType &cP0(const int j) const { return cV(j)->P(); } inline const CoordType &cP1(const int j) const { return cV((j + 1) % 4)->P(); } inline const CoordType &cP2(const int j) const { return cV((j + 2) % 4)->P(); } inline const CoordType &cP3(const int j) const { return cV((j + 3) % 4)->P(); } static bool HasVertexRef() { return true; } static bool HasTVAdjacency() { return true; } static void Name(std::vector & name){name.push_back(std::string("VertexRef"));T::Name(name);} template void ImportData(const RightValueType & rTetra) { T::ImportData(rTetra); } private: typename T::VertexType *v[4]; size_t findices[4][3]; }; /*------------------------- FACE NORMAL -----------------------------------------*/ // template class EmptyFaceNormal: public T { // public: // typedef ::vcg::Point3 NormalType; // /// Return the vector of Flags(), senza effettuare controlli sui bit // NormalType N(const int & ){ static int dummynormal(0); return dummynormal; } // const NormalType cN(const int & ) const { return 0; } // static bool HasFaceNormal() { return false; } // static bool HasFaceNormalOcc() { return false; } // static void Name(std::vector & name){T::Name(name);} // }; // template class FaceNormal: public T { // public: // typedef A NormalType; // inline NormalType N(const int & i){ assert((i>=0)&&(i < 4)); return _facenormals[i]; } // inline NormalType cN(const int & i) const { assert((i>=0)&&(i < 4)); return _facenormals[i]; } // static bool HasFaceNormals() { return true; } // static bool HasFaceNormalOcc() { return false; } // template // void ImportData(const RightValueType & rightT) // { // if(rightT.IsNormalEnabled()) N().Import(rightT.cN()); // T::ImportData(rightT); // } // static void Name(std::vector & name){name.push_back(std::string("FaceNormal"));T::Name(name);} // private: // NormalType _facenormals[4]; // }; //template class FaceNormal3f: public FaceNormal{ //public:static void Name(std::vector & name){name.push_back(std::string("FaceNormal3f"));T::Name(name);} }; //template class FaceNormal3d: public FaceNormal{ //public:static void Name(std::vector & name){name.push_back(std::string("FaceNormal3d"));T::Name(name);} }; /*------------------------- FLAGS -----------------------------------------*/ // template class EmptyBitFlags: public T { // public: // /// Return the vector of Flags(), senza effettuare controlli sui bit // int &Flags() { static int dummyflags(0); return dummyflags; } // const int Flags() const { return 0; } // static bool HasFlags() { return false; } // static bool HasFlagsOcc() { return false; } // static void Name(std::vector & name){T::Name(name);} // }; template class BitFlags: public T { public: typedef int FlagType; BitFlags(){_flags=0;} inline int &Flags() {return _flags; } inline int cFlags() const {return _flags; } template void ImportData(const RightValueType & rightT){ if(RightValueType::HasFlags()) Flags() = rightT.cFlags(); T::ImportData(rightT); } static bool HasFlags() { return true; } static void Name(std::vector & name){name.push_back(std::string("BitFlags"));T::Name(name);} private: int _flags; }; /*-------------------------- QUALITY ----------------------------------------*/ template class Quality: public T { public: typedef A QualityType; Quality():_quality(0) {} QualityType &Q() { return _quality; } QualityType cQ() const { return _quality; } template void ImportData(const RightValueType & rightT){ if(rightT.IsQualityEnabled()) Q() = rightT.cQ(); T::ImportData(rightT); } static bool HasQuality() { return true; } static void Name(std::vector & name){name.push_back(std::string("Quality"));T::Name(name);} private: QualityType _quality; }; template class Qualityf: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityf"));T::Name(name);} }; template class Qualityd: public Quality { public: static void Name(std::vector & name){name.push_back(std::string("Qualityd"));T::Name(name);} }; /*-------------------------- Quality3 ----------------------------------*/ template class Quality3: public T { public: typedef vcg::Point3 Quality3Type; Quality3Type &Q3() { return _quality; } Quality3Type cQ3() const { return _quality; } template void ImportData(const RightValueType & rightT){ if(rightT.IsQuality3Enabled()) Q3() = rightT.cQ3(); T::ImportData(rightT); } static bool HasQuality3() { return true; } static void Name(std::vector & name){name.push_back(std::string("Quality3"));T::Name(name);} private: Quality3Type _quality; }; template class Quality3f: public Quality3 { public: static void Name(std::vector & name){name.push_back(std::string("Quality3f"));T::Name(name);} }; template class Quality3d: public Quality3 { public: static void Name(std::vector & name){name.push_back(std::string("Quality3d"));T::Name(name);} }; /*-------------------------- COLOR ----------------------------------------*/ template class Color: public T { public: typedef A ColorType; Color():_color(vcg::Color4b::White) {} ColorType &C() { return _color; } ColorType cC() const { return _color; } template void ImportData(const RightValueType & rightT){ if(rightT.IsColorEnabled()) C() = rightT.cC(); T::ImportData(rightT); } static bool HasColor() { return true; } static void Name(std::vector & name){name.push_back(std::string("Color"));T::Name(name);} private: ColorType _color; }; template class Color4b : public Color { public: static void Name(std::vector & name){name.push_back(std::string("Color4b"));T::Name(name); } }; /*-------------------------- INCREMENTAL MARK ----------------------------------------*/ // template class EmptyMark: public T { // public: // typedef int MarkType; // static bool HasMark() { return false; } // static bool HasMarkOcc() { return false; } // inline void InitIMark() { } // inline int & IMark() { assert(0); static int tmp=-1; return tmp;} // inline const int IMark() const {return 0;} // static void Name(std::vector & name){T::Name(name);} // }; template class Mark: public T { public: static bool HasMark() { return true; } static bool HasMarkOcc() { return false; } inline void InitIMark() { _imark = 0; } inline int & IMark() { return _imark;} inline int cIMark() const {return _imark;} template void ImportData(const RightValueType & rightT){ if(rightT.IsMarkEnabled()) IMark() = rightT.cIMark(); T::ImportData(rightT); } static void Name(std::vector & name){name.push_back(std::string("Mark"));T::Name(name);} private: int _imark; }; /*----------------------------- VTADJ ------------------------------*/ // template class EmptyAdj: public T { // public: // typedef int VFAdjType; // typename T::TetraPointer & VTp( const int ) { static typename T::TetraPointer tp=0; return tp; } // typename T::TetraPointer const cVTp( const int ) const { static typename T::TetraPointer const tp=0; return tp; } // typename T::TetraPointer & TTp( const int ) { static typename T::TetraPointer tp=0; return tp; } // typename T::TetraPointer const cTTp( const int ) const { static typename T::TetraPointer const tp=0; return tp; } // char & VTi( const int j ) { static char z=0; return z; } // char & TTi( const int j ) { static char z=0; return z; } // static bool HasVTAdjacency() { return false; } // static bool HasTTAdjacency() { return false; } // static bool HasTTAdjacencyOcc() { return false; } // static bool HasVTAdjacencyOcc() { return false; } // static void Name( std::vector< std::string > & name ){ T::Name(name); } // }; template class VTAdj: public T { public: VTAdj() { _vtp[0]=0; _vtp[1]=0; _vtp[2]=0; _vtp[3]=0; _vti[0]=-1; _vti[1]=-1; _vti[2]=-1; _vti[3]=-1; } typename T::TetraPointer & VTp( const int j ) { assert( j >= 0 && j < 4 ); return _vtp[j]; } typename T::TetraPointer const VTp( const int j ) const { assert( j >= 0 && j < 4 ); return _vtp[j]; } typename T::TetraPointer const cVTp( const int j ) const { assert( j >= 0 && j < 4 ); return _vtp[j]; } char & VTi( const int j ) { return _vti[j]; } const char & cVTi( const int j ) const { return _vti[j]; } static bool HasVTAdjacency() { return true; } static bool HasVTAdjacencyOcc() { return false; } static void Name( std::vector< std::string > & name ) { name.push_back( std::string("VTAdj") ); T::Name(name); } template void ImportData(const RightValueType & rightT){T::ImportData(rightT);} private: typename T::TetraPointer _vtp[4]; char _vti[4]; }; /*----------------------------- TTADJ ------------------------------*/ template class TTAdj: public T { public: TTAdj(){ _ttp[0]=0; _ttp[1]=0; _ttp[2]=0; _ttp[3]=0; } typename T::TetraPointer &TTp(const int j) { assert(j>=0 && j<4); return _ttp[j]; } typename T::TetraPointer const TTp(const int j) const { assert(j>=0 && j<4); return _ttp[j]; } typename T::TetraPointer const cTTp(const int j) const { assert(j>=0 && j<4); return _ttp[j]; } char &TTi(const int j) { return _tti[j]; } const char &cTTi(const int j) const { return _tti[j]; } typename T::TetraPointer &TTp1( const int j ) { return TTp((j+1)%4);} typename T::TetraPointer &TTp2( const int j ) { return TTp((j+2)%4);} typename T::TetraPointer &TTp3( const int j ) { return TTp((j+3)%4);} typename T::TetraPointer const TTp1( const int j ) const { return TTp((j+1)%4);} typename T::TetraPointer const TTp2( const int j ) const { return TTp((j+2)%4);} typename T::TetraPointer const TTp3( const int j ) const { return TTp((j+3)%4);} bool IsBorderF(const int & i) const { assert( (i>=0) && (i < 4)); { return TTp(i) == this;}} static bool HasTTAdjacency() { return true; } static bool HasTTAdjacencyOcc() { return false; } static void Name(std::vector & name){name.push_back(std::string("TTAdj"));T::Name(name);} template void ImportData(const RightValueType & rightT){T::ImportData(rightT);} private: typename T::TetraPointer _ttp[4] ; char _tti[4] ; }; } // end namespace vert }// end namespace vcg #endif