/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef VCG_SPACE_INDEX_PERFECT_SPATIAL_HASHING_H #define VCG_SPACE_INDEX_PERFECT_SPATIAL_HASHING_H #pragma warning(disable : 4996) #define _USE_GRID_UTIL_PARTIONING_ 1 #define _USE_OCTREE_PARTITIONING_ (1-_USE_GRID_UTIL_PARTIONING_) #include <vector> #include <list> #include <algorithm> #include <vcg/space/index/base.h> #include <vcg/space/index/grid_util.h> #include <vcg/space/point2.h> #include <vcg/space/point3.h> #include <vcg/space/box3.h> namespace vcg { // Compute the greatest common divisor between two integers a and b int GreatestCommonDivisor(const int a, const int b) { int m = a; int n = b; do { if (m<n) std::swap(m, n); m = m % n; std::swap(m, n); } while (n!=0); return m; } // Doxygen documentation /** \addtogroup index */ /*! @{ */ /*! * This class implements the perfect spatial hashing by S.Lefebvre and H.Hoppe * This is an spatial indexing structure such as the uniform grid, but with lower * memory requirements, since all the empty cells of the uniform grid are removed. * Access to a non-empty cell is performed looking up in two d-dimensional tables, * the offset table and the hash table. * @param OBJECT_TYPE (Template parameter) the type of objects to be indexed * @param SCALAR_TYPE (Template parameter) the scalar type */ template < class OBJECT_TYPE, class SCALAR_TYPE > class PerfectSpatialHashing : public vcg::SpatialIndex< OBJECT_TYPE, SCALAR_TYPE > { // Given an object or a pointer to an object, return the reference to the object template < typename TYPE > struct Dereferencer { static TYPE& Reference(TYPE &t) { return t; } static TYPE& Reference(TYPE* &t) { return *t; } static const TYPE& Reference(const TYPE &t) { return t; } static const TYPE& Reference(const TYPE* &t) { return *t; } }; // Given a type, holds this type in Type template < typename TYPE > struct ReferenceType { typedef TYPE Type; }; // Given as type a "pointer to type", holds the type in Type template < typename TYPE > struct ReferenceType< TYPE * > { typedef typename ReferenceType<TYPE>::Type Type; }; public: typedef SCALAR_TYPE ScalarType; typedef OBJECT_TYPE ObjectType; typedef typename ReferenceType< ObjectType >::Type * ObjectPointer; typedef typename vcg::Box3< ScalarType > BoundingBoxType; typedef typename vcg::Point3< ScalarType > CoordinateType; protected: /*! \struct NeighboringEntryIterator * This class provides a convenient way to iterate over the six neighboring cells of a given cell. */ struct NeighboringEntryIterator { /*! * Default constructor. * @param[in] entry The index of the cell in the UniformGrid around which iterate. * @param[in] table_size The number of cells in the UniformGrid for each side. */ NeighboringEntryIterator(const vcg::Point3i &entry, const int table_size) { m_Center = entry; m_TableSize = table_size; m_CurrentNeighbor.X() = (m_Center.X()+m_TableSize-1)%m_TableSize; m_CurrentNeighbor.Y() = m_Center.Y(); m_CurrentNeighbor.Z() = m_Center.Z(); m_CurrentIteration = 0; } /*! * Increment the iterator to point to the next neighboring entry in the UniformGrid */ void operator++(int) { switch(++m_CurrentIteration) { case 1: m_CurrentNeighbor.X()=(m_Center.X()+1)%m_TableSize; break; case 2: m_CurrentNeighbor.X()=m_Center.X(); m_CurrentNeighbor.Y()=(m_Center.Y()+m_TableSize-1)%m_TableSize; break; case 3: m_CurrentNeighbor.Y()=(m_Center.Y()+1)%m_TableSize; break; case 4: m_CurrentNeighbor.Y()=m_Center.Y(); m_CurrentNeighbor.Z()=(m_Center.Z()+m_TableSize-1)%m_TableSize; break; case 5: m_CurrentNeighbor.Z()=(m_Center.Z()+1)%m_TableSize; break; default: m_CurrentNeighbor = vcg::Point3i(-1, -1, -1); break; } } /*! * Dereferencing operator * \return The neighbor of the given cell at the current iteration */ vcg::Point3i operator*() { return m_CurrentNeighbor; } /*! * Assignment operator * @param[in] The source neighboring iterator * \return The reference to this iterator */ NeighboringEntryIterator& operator =(const NeighboringEntryIterator &it) { m_Center = it.m_Center ; m_CurrentNeighbor = it.m_CurrentNeighbor ; m_CurrentIteration = it.m_CurrentIteration ; m_TableSize = it.m_TableSize ; return *this; } /*! * Less than operator. Since each entry in the UniformGrid has only 6 neighbors, * the iterator over the neighboring entries can be compared with an integer. */ inline bool operator <(const int value) { return m_CurrentIteration<value; } protected: vcg::Point3i m_Center; /*!< The cell whose neighboring cells are to be looked up. */ vcg::Point3i m_CurrentNeighbor; /*!< The neighboring cell at the current iteration. */ int m_CurrentIteration; /*!< The current iteration. */ int m_TableSize; /*!< The number of cell in the UniformGrid for each side */ }; // end of class NeighboringEntryIterator /************************************************************************/ /*! \class UniformGrid * This class represent the domain U in the original article. It is used * only during the construction of the offset and hash tables. */ /************************************************************************/ class UniformGrid { public: typedef vcg::Point3i CellCoordinate; /*! \struct EntryIterator * This class provides a convenient way to iterate over the set of the grid cells. */ struct EntryIterator { friend class UniformGrid; /*! * Default constructor */ EntryIterator(UniformGrid *uniform_grid, const CellCoordinate &position) { m_UniformGrid = uniform_grid; m_CurrentPosition = position; } /*! * Increment operator. Move the iterator to the next cell in the UniformGrid */ void operator++(int) { if (++m_CurrentPosition.Z()==m_UniformGrid->GetResolution()) { m_CurrentPosition.Z() = 0; if (++m_CurrentPosition.Y()==m_UniformGrid->GetResolution()) { m_CurrentPosition.Y() = 0; if (++m_CurrentPosition.X()==m_UniformGrid->GetResolution()) m_CurrentPosition = CellCoordinate(-1, -1, -1); } } } /*! * Copy operator. * @param[in] it The iterator whose value has to be copied. */ void operator =(const EntryIterator &it) { m_UniformGrid = it.m_UniformGrid; m_CurrentPosition = it.m_CurrentPosition; } /*! * Equivalence operator */ bool operator==(const EntryIterator &it) const { return m_CurrentPosition==it.m_CurrentPosition; } /*! * Diversity operator */ bool operator!=(const EntryIterator &it) const { return m_CurrentPosition!=it.m_CurrentPosition; } /*! * Dereferencing operator. * \return The pointer to the vector of the objects contained in the cell pointed to by the iterator. */ std::vector< ObjectPointer >* operator*() { return m_UniformGrid->GetObjects(m_CurrentPosition); } /*! * Return the index of the cell pointed to by the iterator. */ CellCoordinate GetPosition() const { return m_CurrentPosition; } protected: UniformGrid * m_UniformGrid; CellCoordinate m_CurrentPosition; }; // end of struct EntryIterator /*! * Default constructor */ UniformGrid() {} /*! * Default destructor */ ~UniformGrid() {} /*! * These functions return an iterator pointing to the first and the last cell of the grid respectively. */ EntryIterator Begin() { return EntryIterator(this, CellCoordinate( 0, 0, 0)); } EntryIterator End() { return EntryIterator(this, CellCoordinate(-1, -1, -1)); } /*! * Return an iterator that iterates over the six adjacent cells of a given cell. * @param[in] at The cell around which this iterator takes values. * \return The iterator over the neighboring cells of <CODE>at</CODE>. */ NeighboringEntryIterator GetNeighboringEntryIterator(const CellCoordinate &at) { return NeighboringEntryIterator(at, m_CellPerSide); } /*! * Allocate the necessary space for the uniform grid. * @param[in] bounding_box The bounding box enclosing the whole dataset. * @param[in] cell_per_side The resolution of the grid. */ void Allocate(const BoundingBoxType &bounding_box, const int cell_per_side) { m_CellPerSide = cell_per_side; m_BoundingBox = bounding_box; m_CellSize = (m_BoundingBox.max - m_BoundingBox.min)/ScalarType(cell_per_side); m_Grid.resize(m_CellPerSide); for (int i=0; i<m_CellPerSide; i++) { m_Grid[i].resize(m_CellPerSide); for (int j=0; j<m_CellPerSide; j++) m_Grid[i][j].resize(m_CellPerSide); } } /*! * Removes all the reference to the domain data from the UniformGrid cells. */ void Finalize() { m_Grid.clear(); } /*! * Adds a set of elements to the uniform grid. * @param[in] begin The iterator addressing the position of the first element in the range to be added. * @param[in] end The iterator addressing the position one past the final element in the range to be added. */ template < class OBJECT_ITERATOR > void InsertElements(const OBJECT_ITERATOR &begin, const OBJECT_ITERATOR &end) { typedef OBJECT_ITERATOR ObjectIterator; typedef Dereferencer< typename ReferenceType< typename OBJECT_ITERATOR::value_type >::Type > ObjectDereferencer; std::vector< CellCoordinate > cells_occupied; for (ObjectIterator iObject=begin; iObject!=end; iObject++) { ObjectPointer pObject = &ObjectDereferencer::Reference( *iObject ); GetCellsIndex( pObject, cells_occupied); for (std::vector< CellCoordinate >::iterator iCell=cells_occupied.begin(), eCell=cells_occupied.end(); iCell!=eCell; iCell++) GetObjects( *iCell )->push_back( pObject ); cells_occupied.clear(); } } /*! * Given a point contained in the UniformGrid, returns the index of the cell where it's contained. * @param[in] query The 3D point. * \return The index of the UniformGrid entry where this point is contained. */ inline CellCoordinate Interize(const CoordinateType &query) const { CellCoordinate result; result.X() = (int) floorf( (query.X()-m_BoundingBox.min.X())/m_CellSize.X() ); result.Y() = (int) floorf( (query.Y()-m_BoundingBox.min.Y())/m_CellSize.Y() ); result.Z() = (int) floorf( (query.Z()-m_BoundingBox.min.Z())/m_CellSize.Z() ); return result; } /*! * Given a bounding box contained in the UniformGrid, returns its integer-equivalent bounding box. * @param[in] bounding_box The bounding box in the 3D space. * \return The integer representation of the bounding box. */ inline vcg::Box3i Interize(const BoundingBoxType &bounding_box) const { vcg::Box3i result; result.min = Interize(bounding_box.min); result.max = Interize(bounding_box.max); return result; } /*! * Given the pointer to an object, returns the set of cells in the uniform grid containing the object. * @param[in] pObject The pointer to the object * @param[out] cells_occuppied The set of cell index containing the object */ void GetCellsIndex(const ObjectPointer pObject, std::vector< CellCoordinate > & cells_occupied) { BoundingBoxType object_bb; (*pObject).GetBBox(object_bb); CoordinateType corner = object_bb.min; while (object_bb.IsIn(corner)) { CellCoordinate cell_index; cell_index.X() = (int) floorf( (corner.X()-m_BoundingBox.min.X())/m_CellSize.X() ); cell_index.Y() = (int) floorf( (corner.Y()-m_BoundingBox.min.Y())/m_CellSize.Y() ); cell_index.Z() = (int) floorf( (corner.Z()-m_BoundingBox.min.Z())/m_CellSize.Z() ); cells_occupied.push_back( cell_index ); if ((corner.X()+=m_CellSize.X())>object_bb.max.X()) { corner.X() = object_bb.min.X(); if ( (corner.Z()+=m_CellSize.Z())>object_bb.max.Z() ) { corner.Z() = object_bb.min.Z(); corner.Y() += m_CellSize.Y(); } } } } /*! * Return the number of cells of the uniform grid where there are no item of the input dataset. * \return The number of cells occupied by at least one item. */ int GetNumberOfNotEmptyCells() { int number_of_not_empty_cell = 0; for (int i=0; i<m_CellPerSide; i++) for (int j=0; j<m_CellPerSide; j++) for (int k=0; k<m_CellPerSide; k++) if (GetObjects(i, j, k)->size()>0) number_of_not_empty_cell++; return number_of_not_empty_cell; } /*! * Returns the number of entries for each side of the grid. * \return The resolution of the UniformGrid in each dimension. */ inline int GetResolution() const { return m_CellPerSide; } /*! * Return the pointer to a vector containing pointers to the objects falling in a given domain cell. * @param[in] at The index of the cell of the uniform grid where looking for * \return A pointer to a vector of pointers to the objects falling in the cell having index <CODE>at</CODE>. */ std::vector< ObjectPointer >* GetObjects(const int i, const int j, const int k) { return &m_Grid[i][j][k]; } std::vector< ObjectPointer >* GetObjects(const CellCoordinate &at) { return &m_Grid[at.X()][at.Y()][at.Z()];} std::vector< ObjectPointer >* operator[](const CellCoordinate &at) { return &m_Grid[at.X()][at.Y()][at.Z()];} protected: std::vector< std::vector< std::vector< std::vector< ObjectPointer > > > > m_Grid; /*!< The uniform grid */ BoundingBoxType m_BoundingBox; /*!< The bounding box of the uniform grid. */ int m_CellPerSide; /*!< The number of cell per side. */ CoordinateType m_CellSize; /*!< The dimension of each cell. */ }; //end of class UniformGrid /************************************************************************/ /*! \class HashTable * This class substitutes the uniform grid. */ /************************************************************************/ class HashTable { public: typedef vcg::Point3i EntryCoordinate; // We preferred using the Data structure instead of a pointer // to the vector of the domain elements just for extensibility struct Data { /*! * Default constructor */ Data(std::vector< ObjectPointer > *data) { domain_data = data; } std::vector< ObjectPointer > *domain_data; }; /*! * Default constructor */ HashTable() {} /*! * Default destructor */ ~HashTable() { Clear(true); } /*! * */ NeighboringEntryIterator GetNeighborintEntryIterator(const EntryCoordinate &at) { return NeighboringEntryIterator(at, m_EntryPerSide); } /*! * Allocates the space for the hash table; the number of entries created is entry_per_side^3. * @param[in] entry_per_side The number of entries for each size */ void Allocate(const int entry_per_side) { m_EntryPerSide = entry_per_side; m_Table.resize(m_EntryPerSide); for (int i=0; i<m_EntryPerSide; i++) { m_Table[i].resize(m_EntryPerSide); for (int j=0; j<m_EntryPerSide; j++) m_Table[i][j].resize(m_EntryPerSide, NULL); } BuildFreeEntryList(); } /* * Once the PerfectSpatialHash has been computed, all the unnecessary data can be eliminated. * This function frees the empyt_list, and substitutes all the pointers to the UniformGrid * whit brand new pointers to the input objects. */ void Finalize() { Data *pData; for (int i=0; i<m_EntryPerSide; i++) for (int j=0; j<m_EntryPerSide; j++) for (int k=0; k<m_EntryPerSide; k++) if ((pData=GetData(i, j, k))!=NULL) { std::vector< ObjectPointer > *domain_data = pData->domain_data; pData->domain_data = new std::vector< ObjectPointer>( *domain_data ); } m_FreeEntries.clear(); } /*! * Inserts each entry in the hash table in the free entry list. * When this function is called, each entry in the hash table must be free. */ void BuildFreeEntryList() { m_FreeEntries.clear(); for (int i=0; i<m_EntryPerSide; i++) for (int j=0; j<m_EntryPerSide; j++) for (int k=0; k<m_EntryPerSide; k++) { assert(m_Table[i][j][k]==NULL); m_FreeEntries.push_back(EntryCoordinate(i, j, k)); } } /*! * Removes all the entries from the table and clears the free entry list */ void Clear(bool delete_vectors=false) { for (int i=0; i<m_EntryPerSide; i++) for (int j=0; j<m_EntryPerSide; j++) for (int k=0; k<m_EntryPerSide; k++) if (m_Table[i][j][k]!=NULL) { if (delete_vectors) delete m_Table[i][j][k]->domain_data; delete m_Table[i][j][k]; m_Table[i][j][k] = NULL; } m_FreeEntries.clear(); } /*! * Returns the reference to the free entry list * \return The reference to the free entry list */ std::list< EntryCoordinate >* GetFreeEntryList() { return &m_FreeEntries; } /*! * Maps a given domain entry index into a hash table index. * It corresponds to the \f$f_0\f$ function in the original article. */ EntryCoordinate DomainToHashTable(const typename UniformGrid::CellCoordinate &p) { EntryCoordinate result; result.X() = p.X()%m_EntryPerSide; result.Y() = p.Y()%m_EntryPerSide; result.Z() = p.Z()%m_EntryPerSide; return result; } /*! * Inserts a new element in the hash table at the given position. * @param[in] at The position in the hash table where the new element will be created * @param[in] data The set of the domain elements contained in this entry */ void SetEntry(const EntryCoordinate &at, std::vector< ObjectPointer > *data) { assert(IsFree(at)); m_Table[at.X()][at.Y()][at.Z()] = new Data(data); m_FreeEntries.remove(at); } /*! * Given a hash table entry, this function modifies its coordinates in order to guarantee that * they are in the valid range. Call this function before accessing the hash table. * @param[in, out] entry The entry whose coordinates have to be checked. */ void ValidateEntry(EntryCoordinate &entry) { while (entry.X()<0) entry.X()+=m_EntryPerSide; while (entry.Y()<0) entry.Y()+=m_EntryPerSide; while (entry.Z()<0) entry.Z()+=m_EntryPerSide; } /*! * Check if a given position in the hash table is free. * @param[in] at The position of the hash table to check. * \return True if and only if the hash table is free at the given position. */ inline bool IsFree(const EntryCoordinate &at) const { return (GetData(at)==NULL); } /*! */ inline int GetSize() { return m_EntryPerSide; } /*! * Returns the number of free entries. */ inline int GetNumberOfFreeEntries() { return int(m_FreeEntries.size()); } /*! * Return the number of entries where there is some domain data. */ inline int GetNumberOfNotEmptyEntries() { return (int(powf(float(m_EntryPerSide), 3.0f))-int(m_FreeEntries.size())); } /*! * Return the pointer to the data stored in the hash table at the given position. * @param[in] at The position of the hash table where looks for the data. * \return A pointer to a valid data only if a valid pointer is stored in the hash * table at the given position; otherwise return NULL. */ inline Data* GetData (const int i, const int j, const int k) const { return m_Table[i][j][k]; } inline Data* GetData (const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; } inline Data* operator[](const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; } protected: int m_EntryPerSide; /*!< The number of entries for each side of the hash-table. */ std::vector< std::vector< std::vector < Data* > > > m_Table; /*!< The table. */ std::list< EntryCoordinate > m_FreeEntries; /*!< The list containing the free entries. */ }; //end of class HashTable /************************************************************************/ /*! \class OffsetTable * This class containts the offsets used for shifting the access to the hash table. */ /************************************************************************/ class OffsetTable { public: typedef unsigned char OffsetType; typedef vcg::Point3<OffsetType> Offset; typedef Offset * OffsetPointer; typedef vcg::Point3i EntryCoordinate; /*! \struct PreImage * This class represents the pre-image for a given entry in the offset table, that is the set * \f$h_1^{-1}(q)={p \in S s.t. h_1(p)=q}\f$ */ struct PreImage { /*! * Default constructor. * @param[in] at The entry in the offset table where the cells in the preimage are mapped into. * @param[in] preimage The set of UniformGrid cells mapping to this entry. */ PreImage(EntryCoordinate &at, std::vector< typename UniformGrid::CellCoordinate > *preimage) { entry_index = at; pre_image = preimage; cardinality = int(pre_image->size()); } /*! * less-than operator: needed for sorting the preimage slots based on their cardinality. * @param second * \return <code>true</code> if and only if the cardinality of this preimage slot is greater than that of <code>second</code>. */ inline bool operator<(const PreImage &second) const { return (cardinality>second.cardinality); } std::vector< typename UniformGrid::CellCoordinate > * pre_image; /*!< The set of entries in the uniform grid whose image through \f$h_1\f$ is this entry.*/ EntryCoordinate entry_index; /*!< The index of the entry inside the offset table. */ int cardinality; /*!< The cardinality of the pre-image. */ }; // end of struct PreImage /*! * Default constructor */ OffsetTable() { m_EntryPerSide=-1; m_NumberOfOccupiedEntries=0;} /*! * Destructor */ ~OffsetTable() { Clear(); } /*! * Clear the entries in the offset table and in the preimage table. */ void Clear() { for (int i=0; i<m_EntryPerSide; i++) for (int j=0; j<m_EntryPerSide; j++) for (int k=0; k<m_EntryPerSide; k++) if (m_Table[i][j][k]!=NULL) { delete m_Table[i][j][k]; m_Table[i][j][k] = NULL; } m_EntryPerSide = -1; m_H1PreImage.clear(); m_NumberOfOccupiedEntries = 0; } /*! * Allocate the space necessary for a offset table containing size entries for * each dimension and the necessary space for computing the relative anti-image. * @param[in] size The number of entries per side to allocate. */ void Allocate(int size) { m_NumberOfOccupiedEntries = 0; m_EntryPerSide = size; m_Table.resize(m_EntryPerSide); for (int i=0; i<m_EntryPerSide; i++) { m_Table[i].resize(m_EntryPerSide); for (int j=0; j<m_EntryPerSide; j++) m_Table[i][j].resize(m_EntryPerSide, NULL); } m_H1PreImage.resize(m_EntryPerSide); for (int i=0; i<m_EntryPerSide; i++) { m_H1PreImage[i].resize(m_EntryPerSide); for (int j=0; j<m_EntryPerSide; j++) m_H1PreImage[i][j].resize(m_EntryPerSide); } } /*! * */ void Finalize() { m_H1PreImage.clear(); } /*! * Build the pre-image of the \f$h_1\f$ function: the <CODE>m_H1PreImage</CODE> grid contains, for each * cell (i, j, k) a list of the domain grid (the UniformGrid) that are mapped through \f$h_1\f$ into that cell. */ void BuildH1PreImage(const typename UniformGrid::EntryIterator &begin, const typename UniformGrid::EntryIterator &end) { for (typename UniformGrid::EntryIterator iter=begin; iter!=end; iter++) { if ((*iter)->size()==0) continue; typename UniformGrid::CellCoordinate cell_index = iter.GetPosition(); EntryCoordinate at = DomainToOffsetTable(cell_index); m_H1PreImage[at.X()][at.Y()][at.Z()].push_back(cell_index); } } /*! * Sorts the entries of the PreImage table based on their cardinality. * @param[out] preimage The list containing the entries of the preimage sorted by cardinality */ void GetPreImageSortedPerCardinality(std::list< PreImage > &pre_image) { pre_image.clear(); for (int i=0; i<m_EntryPerSide; i++) for (int j=0; j<m_EntryPerSide; j++) for (int k=0; k<m_EntryPerSide; k++) { std::vector< typedef UniformGrid::CellCoordinate > *preimage = &m_H1PreImage[i][j][k]; if (preimage->size()>0) pre_image.push_back( PreImage(typename UniformGrid::CellCoordinate(i, j, k), preimage) ); } pre_image.sort(); } /*! * Check if the entries in the offset table near the given entry contain a valid offset. * @param[in] at The entry of the offset table whose neighboring entries will be checked. * @param[out] offsets The set of consistent offset found by inspecting the neighboring entries. * \return a vector containing possible offsets for the given entry */ void SuggestConsistentOffsets(const EntryCoordinate &at, std::vector< Offset > &offsets) { offsets.clear(); for (int i=-1; i<2; i++) for (int j=-1; j<2; j++) for (int k=-1; k<2; k++) { if (i==0 && j==0 && k==0) continue; int x = (at.X()+i+m_EntryPerSide)%m_EntryPerSide; int y = (at.Y()+j+m_EntryPerSide)%m_EntryPerSide; int z = (at.Z()+k+m_EntryPerSide)%m_EntryPerSide; EntryCoordinate neighboring_entry(x, y, z); if (!IsFree(neighboring_entry)) offsets.push_back( *GetOffset(neighboring_entry) ); } } /*! * Assures that the given entry can be used to access the offset table without throwing an out-of-bound exception. * @param[in,out] entry The entry to be checked. */ void ValidateEntryCoordinate(EntryCoordinate &entry) { while (entry.X()<0) entry.X()+=m_EntryPerSide; while (entry.Y()<0) entry.Y()+=m_EntryPerSide; while (entry.Z()<0) entry.Z()+=m_EntryPerSide; } /*! * Converts the coordinate of a given cell in the UniformGrid to a valid entry in the offset table. * This function corresponds to the \f$h_1\f$ function of the article. * @param[in] coord The index of a domain cell in the UniformGrid. * \return The coordinate of the entry corresponding to <CODE>coord<CODE> through this mapping. */ EntryCoordinate DomainToOffsetTable(const typename UniformGrid::CellCoordinate &coord) { EntryCoordinate result; result.X() = coord.X()%m_EntryPerSide; result.Y() = coord.Y()%m_EntryPerSide; result.Z() = coord.Z()%m_EntryPerSide; return result; } /*! * Adds a new element to the offset table. * @param[in] coord The index of the UniformGrid cell whose offset has to be stored. * @param[in] offset The offset to associate to the given UniformGrid cell. */ void SetOffset(const typename UniformGrid::CellCoordinate &coord, const Offset &offset) { EntryCoordinate entry = DomainToOffsetTable(coord); assert(IsFree(entry)); m_Table[entry.X()][entry.Y()][entry.Z()] = new Offset(offset); m_NumberOfOccupiedEntries++; } /*! * Return a random offset: this function is used during the first steps of the creation process, * when the offsets are computed at random. * @param[out] A random offset */ void GetRandomOffset( Offset &offset ) { offset.X() = OffsetType(rand()%m_MAX_VERSOR_LENGTH); offset.Y() = OffsetType(rand()%m_MAX_VERSOR_LENGTH); offset.Z() = OffsetType(rand()%m_MAX_VERSOR_LENGTH); } /*! * Return the number of entries of the offset table for each dimension. * \return The number of entries for each side */ inline int GetSize() const {return m_EntryPerSide;} /*! * Checks if the given entry in the offset table is free * @param[in] at The coordinate of the entry to be checked. * \return true if and only if the entry with coordinate <CODE>at</CODE> is free. */ inline bool IsFree(const EntryCoordinate &at) const { return GetOffset(at)==NULL; } //{ return m_Table[at.X()][at.Y()][at.Z()]==NULL; } /*! * Return the number of entries containing a valid offset. * \return The number of not empty entries. */ inline int GetNumberOfOccupiedCells() const { return m_NumberOfOccupiedEntries; } /*! * Return the pointer to the offset stored at the given entry. NULL if that entry doesn't contain a offset */ inline OffsetPointer& GetOffset (const int i, const int j, const int k) { return m_Table[i][j][k]; } inline OffsetPointer GetOffset (const int i, const int j, const int k) const { return m_Table[i][j][k]; } inline OffsetPointer& GetOffset (const EntryCoordinate &at) { return m_Table[at.X()][at.Y()][at.Z()]; } inline OffsetPointer GetOffset (const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; } inline OffsetPointer& operator[](const EntryCoordinate &at) { return m_Table[at.X()][at.Y()][at.Z()]; } inline OffsetPointer operator[](const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; } protected: const static int m_MAX_VERSOR_LENGTH = 256; /*!< The maximal length of the single component of each offset. */ int m_EntryPerSide; /*!< The resolution of the offset table. */ int m_NumberOfOccupiedEntries; /*!< The number of entries containing a valid offset. */ std::vector< std::vector< std::vector< OffsetPointer > > > m_Table; /*!< The offset table. */ std::vector< std::vector< std::vector< std::vector< typename UniformGrid::CellCoordinate > > > > m_H1PreImage; /*!< The \f$f1\f$ pre-image. */ }; //end of class OffsetTable /*******************************************************************************************************************************/ /*! \class BinaryImage * This class is used to encode the sparsity of the dataset. Since the hash table stores data associated with a sparse * subset of the domain, it may be necessary to determine if an arbitrary query point lies in this defined domain. */ /*******************************************************************************************************************************/ class BinaryImage { public: /*! * Default constructor */ BinaryImage() { m_Resolution = -1; } /*! * Destructor */ ~BinaryImage() {} /*! * Allocate the space necessary to encode the distribution of the dataset over the domain. * @param[in] size The resolution on each dimension of the bitmap. */ void Allocate(const int size) { m_Resolution = size; m_Mask.resize(m_Resolution); for (int i=0; i<m_Resolution; i++) { m_Mask[i].resize(m_Resolution); for (int j=0; j<m_Resolution; j++) m_Mask[i][j].resize(m_Resolution, false); } } /*! * Removes all flags from the bitmap. This function is called after a failed attempt to create the offset-table. */ void Clear() { for (int i=0; i<m_Resolution; i++) for (int j=0; j<m_Resolution; j++) std::fill(m_Mask[i][j].begin(), m_Mask[i][j].end(), false); } /*! * Checks if a portion of the dataset fall inside the UniformGrid cell having coordinate <CODE>at</CODE>. * @param[in] at The index of the UniformGrid cell to check. * \return <code>true</code> if and only if a portion of the dataset in included in this UniformGrid cell. */ inline bool ContainsData(const typename UniformGrid::CellCoordinate &at) const { return GetFlag(at)==true;} /*! * Returns the number of entries in each dimension. * \return The resolution of the BinaryImage. */ inline int GetResolution() const { return m_Resolution; } /*! * Return the value stored in the d-dimensional bitmap at the given position. * @param[in] i * @param[in] j * @param[in] k * \return */ inline bool operator()(const int i, const int j, const int k) { return m_Mask[i][j][k]; } /*! * Return the value stored at the given position in the d-dimensional bitmap. * @param[in] at * \return */ inline bool operator[](const typename UniformGrid::CellCoordinate &at) { return m_Mask[at.X()][at.Y()][at.Z()]; } inline bool& GetFlag(const int i, const int j, const int k)const { return m_Mask[i][j][k]; } inline void SetFlat(const int i, const int j, const int k) { m_Mask[i][j][k] = true; } inline bool GetFlag(const typename UniformGrid::CellCoordinate &at) const { return m_Mask[at.X()][at.Y()][at.Z()]; } inline void SetFlag(const typename UniformGrid::CellCoordinate &at) { m_Mask[at.X()][at.Y()][at.Z()] = true; } protected: std::vector< std::vector< std::vector< bool > > > m_Mask; /*!< The bitmap image. */ int m_Resolution; /*!< The resolution of the bitmap. */ }; // end of class BinaryImage /*******************************************************************************************************************************/ /*! \struct Neighbor * This class is used to retrieve the neighboring objects in the spatial queries and to sort them. */ /*******************************************************************************************************************************/ struct Neighbor { /*! * Default constructor */ Neighbor() { object = NULL; distance = ScalarType(-1.0); nearest_point.SetZero(); } /*! * Constructor * @param[in] pObject The pointer to the object. * @param[in] dist The distance between the object and the query point. * @param[in] point The point on the object having minimal distance from the query point. */ Neighbor(ObjectPointer pObject, ScalarType dist, CoordinateType point) { object = pObject; distance = dist; nearest_point(point); } /*! * Less than operator. Needed for sorting a range of neighbor based on their distance from the query object. */ inline bool operator<(const Neighbor &second) { return distance<second.distance; } ObjectPointer object; ScalarType distance; CoordinateType nearest_point; }; // end of struct Neighbor ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /************************************************************************/ /* Functions */ /************************************************************************/ public: /*! * The hash table can be constructed following two different approaches: * the first is more fast, but might allocate a offset table bigger than the necessary * the second try to construct the offset table up to m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION times, and then chooses the minimum size for which the construction succeeded. */ enum ConstructionApproach { FastConstructionApproach=0, CompactConstructionApproach=1 }; /*! * Default constructor */ PerfectSpatialHashing() { srand( (unsigned) time(NULL) ); } /*! * Destructor */ ~PerfectSpatialHashing() { /* ... I don't remember if there is something to delete! :D */ } template < class OBJECT_ITERATOR > void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj) { Set<OBJECT_ITERATOR>(bObj, eObj, FastConstructionApproach, NULL); } template < class OBJECT_ITERATOR > void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj, vcg::CallBackPos *callback) { Set<OBJECT_ITERATOR>(bObj, eObj, FastConstructionApproach, callback); } template < class OBJECT_ITERATOR > void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj, const ConstructionApproach approach) { Set<OBJECT_ITERATOR>(bObj, eObj, approach, NULL); } /*! * Add the elements to the PerfectSpatialHashing data structure. Since this structure can handle only * static dataset, the elements mustn't be changed while using this structure. * @param[in] bObj The iterator addressing the first element to be included in the hashing. * @param[in] eObj The iterator addressing the position after the last element to be included in the hashing. * @param[in] approach Either <code>FastConstructionApproach</code> or <code>CompactConstructionApproach</code>. * @param[in] callback The callback to call to provide information about the progress of the computation. */ template < class OBJECT_ITERATOR > void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj, const ConstructionApproach approach, vcg::CallBackPos *callback) { BoundingBoxType bounding_box; BoundingBoxType object_bb; bounding_box.SetNull(); for (OBJECT_ITERATOR iObj=bObj; iObj!=eObj; iObj++) { (*iObj).GetBBox(object_bb); bounding_box.Add(object_bb); } //...and expand it a bit more BoundingBoxType resulting_bb(bounding_box); CoordinateType offset = bounding_box.Dim()*float(m_BOUNDING_BOX_EXPANSION_FACTOR); CoordinateType center = bounding_box.Center(); resulting_bb.Offset(offset); float longest_side = vcg::math::Max( resulting_bb.DimX(), vcg::math::Max(resulting_bb.DimY(), resulting_bb.DimZ()) )/2.0f; resulting_bb.Set(center); resulting_bb.Offset(longest_side); int number_of_objects = int(std::distance(bObj, eObj)); // Try to find a reasonable space partition #ifdef _USE_GRID_UTIL_PARTIONING_ vcg::Point3i resolution; vcg::BestDim<ScalarType>(number_of_objects, resulting_bb.Dim(), resolution); int cells_per_side = resolution.X(); #else ifdef _USE_OCTREE_PARTITIONING_ // Alternative to find the resolution of the uniform grid: int primitives_per_voxel; int depth = 4; do { int number_of_voxel = 1<<(3*depth); // i.e. 8^depth float density = float(number_of_voxel)/float(depth); primitives_per_voxel = int(float(number_of_objects)/density); depth++; } while (primitives_per_voxel>16 && depth<15); int cells_per_side = int(powf(2.0f, float(depth))); #endif m_UniformGrid.Allocate(resulting_bb, cells_per_side); m_UniformGrid.InsertElements(bObj, eObj); m_Bitmap.Allocate(cells_per_side); int number_of_cells_occupied = m_UniformGrid.GetNumberOfNotEmptyCells(); int hash_table_size = (int) ceilf(powf(float(number_of_cells_occupied), 1.0f/float(m_DIMENSION))); if (hash_table_size>256) hash_table_size = (int) ceilf(powf(1.01f*float(number_of_cells_occupied), 1.0f/float(m_DIMENSION))); m_HashTable.Allocate(hash_table_size); switch (approach) { case FastConstructionApproach : PerformFastConstruction(number_of_cells_occupied, callback) ; break; case CompactConstructionApproach: PerformCompactConstruction(number_of_cells_occupied, callback); break; default: assert(false); } Finalize(); } // end of method Set /*! * Returns all the objects contained inside a specified sphere * @param[in] distance_functor * @param[in] marker * @param[in] sphere_center * @param[in] sphere_radius * @param[out] objects * @param[out] distances * @param[out] points * \return */ template <class OBJECT_POINT_DISTANCE_FUNCTOR, class OBJECT_MARKER, class OBJECT_POINTER_CONTAINER, class DISTANCE_CONTAINER, class POINT_CONTAINER> unsigned int GetInSphere ( OBJECT_POINT_DISTANCE_FUNCTOR & distance_functor, OBJECT_MARKER & marker, const CoordType & sphere_center, const ScalarType & sphere_radius, OBJECT_POINTER_CONTAINER & objects, DISTANCE_CONTAINER & distances, POINT_CONTAINER & points, bool sort_per_distance = true, bool allow_zero_distance = true ) { BoundingBoxType query_bb(sphere_center, sphere_radius); vcg::Box3i integer_bb = m_UniformGrid.Interize(query_bb); vcg::Point3i index; std::vector< std::vector< ObjectPointer >* > contained_objects; std::vector< ObjectPointer >* tmp; for (index.X()=integer_bb.min.X(); index.X()<=integer_bb.max.X(); index.X()++) for (index.Y()=integer_bb.min.Y(); index.Y()<=integer_bb.max.Y(); index.Y()++) for (index.Z()=integer_bb.min.Z(); index.Z()<=integer_bb.max.Z(); index.Z()++) if ((tmp=(*this)[index])!=NULL) contained_objects.push_back(tmp); std::vector< Neighbor > results; for (std::vector< std::vector< ObjectPointer >* >::iterator iVec=contained_objects.begin(), eVec=contained_objects.end(); iVec!=eVec; iVec++) for (std::vector< ObjectPointer >::iterator iObj=(*iVec)->begin(), eObj=(*iVec)->end(); iObj!=eObj; iObj++ ) { int r = int(results.size()); results.push_back(Neighbor()); results[r].object = *iObj; results[r].distance = sphere_radius; if (!distance_functor(*results[r].object, sphere_center, results[r].distance, results[r].nearest_point) || (results[r].distance==ScalarType(0.0) && !allow_zero_distance) ) results.pop_back(); } if (sort_per_distance) std::sort( results.begin(), results.end() ); int number_of_objects = int(results.size()); distances.resize(number_of_objects); points.resize(number_of_objects); objects.resize(number_of_objects); for (int i=0, size=int(results.size()); i<size; i++) { distances[i] = results[i].distance; points[i] = results[i].nearest_point; objects[i] = results[i].object; } return number_of_objects; } //end of GetInSphere /*! * Once the offset table has been built, this function can be used to access the data. * Given a 3D point in the space, this function returns the set of ObjectPointers contained * in the same UniformGrid cell where this point is contained. * @param[in] query The 3D query point. * \return The pointer to the vector of ObjectPointers contained in the same UG of query. NULL if any. */ std::vector< ObjectPointer >* operator[](const CoordinateType &query) { typename UniformGrid::CellCoordinate ug_index = m_UniformGrid.Interize(query); if (!m_Bitmap[ug_index]) return NULL; HashTable::EntryCoordinate ht_index = PerfectHashFunction(ug_index); std::vector< ObjectPointer >* result = m_HashTable[ht_index]; return result; } std::vector< ObjectPointer >* operator[](const typename UniformGrid::CellCoordinate &query) { if(!m_Bitmap[query]) return NULL; HashTable::EntryCoordinate ht_index = PerfectHashFunction(query); std::vector< ObjectPointer >* result = m_HashTable[ht_index]->domain_data; return result; } protected: /*! * The injective mapping from the set of occupied cells to a slot in the hash-table * @param[in] query The index of a domain cell whose mapping has to be calculated. * @param[out] result The index of a entry in the hash-table where query is mapped into. */ typename HashTable::EntryCoordinate PerfectHashFunction(const typename UniformGrid::CellCoordinate &query) { typename HashTable::EntryCoordinate result; OffsetTable::OffsetPointer offset = m_OffsetTable[ m_OffsetTable.DomainToOffsetTable(query) ]; result = m_HashTable.DomainToHashTable( Shift(query, *offset) ); return result; } /*! * Performs the addition between a entry coordinate and an offset. * @param[in] entry The index of a given cell. * @param[in] offset The offset that must be applied to the entry. * \return The entry resulting by the addition of entry and offset. */ typename HashTable::EntryCoordinate Shift(const vcg::Point3i &entry, const typename OffsetTable::Offset &offset) { HashTable::EntryCoordinate result; result.X() = entry.X() + int(offset.X()); result.Y() = entry.Y() + int(offset.Y()); result.Z() = entry.Z() + int(offset.Z()); return result; } /*! * Finalizes the data structures at the end of the offset-table construction. * This function eliminates all unnecessary data, and encodes sparsity. * TODO At the moment, the sparsity encoding is implemented thought a bitmap, i.e. a boolean grid * where each slot tells if the relative UniformGrid has a valid entry in the HashTable. */ void Finalize() { #ifdef _DEBUG for (UniformGrid::EntryIterator iUGEntry=m_UniformGrid.Begin(), eUGEntry=m_UniformGrid.End(); iUGEntry!=eUGEntry; iUGEntry++) assert(m_Bitmap.ContainsData(iUGEntry.GetPosition())==((*iUGEntry)->size()>0)); #endif m_HashTable.Finalize(); m_UniformGrid.Finalize(); m_OffsetTable.Finalize(); } /*! * Check if the given offset is valid for a set of domain cell. * @param[in] pre_image * @param[in] offset * \return */ bool IsAValidOffset(const std::vector< typename UniformGrid::CellCoordinate > *pre_image, const typename OffsetTable::Offset &offset) { int ht_size = m_HashTable.GetSize(); int sqr_ht_size = ht_size*ht_size; std::vector< int > involved_entries; for (int i=0, pre_image_size=int((*pre_image).size()); i<pre_image_size; i++) { typename UniformGrid::CellCoordinate domain_entry = (*pre_image)[i]; typename HashTable::EntryCoordinate hash_entry = m_HashTable.DomainToHashTable( Shift(domain_entry, offset) ); if (!m_HashTable.IsFree(hash_entry)) return false; else involved_entries.push_back(hash_entry.X()*sqr_ht_size + hash_entry.Y()*ht_size + hash_entry.Z()); } // In order to guarantee that the PerfectHashFunction is injective, the image of each domain-entry must be unique in the hash-table std::sort(involved_entries.begin(), involved_entries.end()); for (int i=0, j=1, size=int(involved_entries.size()); j<size; i++, j++) if (involved_entries[i]==involved_entries[j]) return false; return true; } /*! * Given the size of the hash table and an initial seed for the size of the offset table, returns an appropriate size * for the offset table in order to avoid less effective constructions. * @param[in] hash_table_size The number of entries for each side of the hash-table. * @param[in] offset_table_size The number of entries for each side of the offset-table. * \return The next appropriate size for the offset table. */ int GetUnefectiveOffsetTableSize(const int hash_table_size, const int offset_table_size) { int result = offset_table_size; while (GreatestCommonDivisor(hash_table_size, result)!=1 || hash_table_size%result==0) result += (hash_table_size%2==0) ? (result%2)+1 : 1; //Change the offset table size, otherwise the hash construction should be ineffective return result; } /*! * Start the construction of the offset table trying to complete as quickly as possible. * Sometimes the dimension of the offset table will not be minimal. * @param[in] number_of_filled_cells The number of entries in the uniform grid containing some elements of the dataset. */ void PerformFastConstruction(const int number_of_filled_cells, vcg::CallBackPos *callback) { int offset_table_size = (int) ceilf(powf(m_SIGMA*float(number_of_filled_cells), 1.0f/float(m_DIMENSION))); int hash_table_size = m_HashTable.GetSize(); int failed_construction_count = 0; do { offset_table_size += failed_construction_count++; offset_table_size = GetUnefectiveOffsetTableSize(hash_table_size, offset_table_size); } while(!OffsetTableConstructionSucceded(offset_table_size, callback)); } /*! * Start the construction of the offset table trying to minimize its dimension. * The offset table size is chosen by performing a binary search over possible values for the offset table size. * For this reason, this method will generally require more time than PerformFastConstruction. */ void PerformCompactConstruction(const int number_of_filled_cells, vcg::CallBackPos *callback) { int min_successfully_dimension = std::numeric_limits<int>::max(); int hash_table_size = m_HashTable.GetSize(); int half_hash_table_size = int(float(hash_table_size)/2.0f); // According to the original article, a maximum number of trials are to be made in order to select the optimal (i.e. minimal) offset table size for (int t=0; t<m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION; t++) { int lower_bound = GetUnefectiveOffsetTableSize(hash_table_size, int(double(rand())/double(RAND_MAX)*half_hash_table_size + 1) ); int upper_bound = GetUnefectiveOffsetTableSize(hash_table_size, int(((double) rand() / (double) RAND_MAX) * hash_table_size + half_hash_table_size)); // The construction of the offset table using this pair of values surely succeed for max, but not for min // The optimal value for the offset table size is then found via binary search over this pair of values int candidate_offset_table_size; int last_tried_size = -1; while (lower_bound<upper_bound) { candidate_offset_table_size = GetUnefectiveOffsetTableSize(hash_table_size, int(floorf((lower_bound+upper_bound)/2.0f))); // If in the previous iteration the offset table has been successfully constructed with the same size, // a minimum for the range [lower_bound, upper_bound] has been found if (last_tried_size==candidate_offset_table_size) break; if ( OffsetTableConstructionSucceded((last_tried_size=candidate_offset_table_size), callback) ) { upper_bound = candidate_offset_table_size; min_successfully_dimension = vcg::math::Min(candidate_offset_table_size, min_successfully_dimension); } else lower_bound = candidate_offset_table_size; m_HashTable.Clear(); m_HashTable.BuildFreeEntryList(); m_OffsetTable.Clear(); m_Bitmap.Clear(); } #ifdef _DEBUD printf("\nPerfectSpatialHashing: minimum offset table size found at the %d-th iteration was %d\n", (t+1), min_successfully_dimension); #endif } // Finally the OffsetTable must be constructed using the minimum valid size while (!OffsetTableConstructionSucceded(min_successfully_dimension, callback)) { m_HashTable.Clear(); m_HashTable.BuildFreeEntryList(); m_OffsetTable.Clear(); m_Bitmap.Clear(); } } /*! * Try to construct the offset table for a given size * \param[in] offset_table_size The size of the offset table. * \return <CODE>true</CODE> if and only if the construction of the offset table succeeds. */ bool OffsetTableConstructionSucceded(const int offset_table_size, vcg::CallBackPos *callback) { m_OffsetTable.Allocate(offset_table_size); // Create the Offset table m_OffsetTable.BuildH1PreImage(m_UniformGrid.Begin(), m_UniformGrid.End()); // Build the f0 pre-image std::list< OffsetTable::PreImage > preimage_slots; m_OffsetTable.GetPreImageSortedPerCardinality(preimage_slots); char msg[128]; sprintf(msg, "Building offset table of resolution %d", m_OffsetTable.GetSize()); int step = int(preimage_slots.size())/100; int number_of_slots = int(preimage_slots.size()); int perc = 0; int iter = 0; for (std::list< OffsetTable::PreImage >::iterator iPreImage=preimage_slots.begin(), ePreImage=preimage_slots.end(); iPreImage!=ePreImage; iPreImage++, iter++) { if (callback!=NULL && iter%step==0 && (perc=iter*100/number_of_slots)<100) (*callback)(perc, msg); bool found_valid_offset = false; typename OffsetTable::Offset candidate_offset; // Heuristic #1: try to set the offset value to one stored in a neighboring entry of the offset table std::vector< typename OffsetTable::Offset > consistent_offsets; m_OffsetTable.SuggestConsistentOffsets( (*iPreImage).entry_index, consistent_offsets); for (std::vector< typename OffsetTable::Offset >::iterator iOffset=consistent_offsets.begin(), eOffset=consistent_offsets.end(); iOffset!=eOffset && !found_valid_offset; iOffset++) if (IsAValidOffset(iPreImage->pre_image, *iOffset)) { found_valid_offset = true; candidate_offset = *iOffset; } // Heuristic #2: if (!found_valid_offset) { std::vector< typename UniformGrid::CellCoordinate > *pre_image = (*iPreImage).pre_image; for (std::vector< typename UniformGrid::CellCoordinate >::iterator iPreImage=pre_image->begin(), ePreImage=pre_image->end(); iPreImage!=ePreImage && !found_valid_offset; iPreImage++) for (NeighboringEntryIterator iUGNeighbourhood=m_UniformGrid.GetNeighboringEntryIterator(*iPreImage); iUGNeighbourhood<6 && !found_valid_offset; iUGNeighbourhood++ ) if (!m_OffsetTable.IsFree( m_OffsetTable.DomainToOffsetTable( *iUGNeighbourhood ) )) { HashTable::EntryCoordinate ht_entry = PerfectHashFunction(*iUGNeighbourhood); for (NeighboringEntryIterator iHTNeighbourhood=m_HashTable.GetNeighborintEntryIterator(ht_entry); iHTNeighbourhood<6 && !found_valid_offset; iHTNeighbourhood++) if (m_HashTable.IsFree(*iHTNeighbourhood)) { candidate_offset.Import( *iHTNeighbourhood-m_HashTable.DomainToHashTable(*iPreImage) ) ; // m_OffsetTable.ValidateEntry( candidate_offset ); Is'n necessary, becouse the offset type is unsigned char. if (IsAValidOffset(pre_image, candidate_offset)) found_valid_offset = true; } } } if (!found_valid_offset) { // At the beginning, the offset can be found via random searches for (int i=0; i<m_MAX_NUM_OF_RANDOM_GENERATED_OFFSET && !found_valid_offset; i++) { HashTable::EntryCoordinate base_entry = (*iPreImage).pre_image->at(0); do m_OffsetTable.GetRandomOffset(candidate_offset); while (!m_HashTable.IsFree( m_HashTable.DomainToHashTable( Shift(base_entry, candidate_offset) ) )); if (IsAValidOffset( (*iPreImage).pre_image, candidate_offset)) found_valid_offset = true; } // The chance to find a valid offset table via random searches decreases toward the end of the offset table construction: // So a exhaustive search over all the free hash table entries is performed. for (std::list< HashTable::EntryCoordinate >::const_iterator iFreeCell=m_HashTable.GetFreeEntryList()->begin(), eFreeCell=m_HashTable.GetFreeEntryList()->end(); iFreeCell!=eFreeCell && !found_valid_offset; iFreeCell++) { UniformGrid::CellCoordinate domain_entry = (*iPreImage).pre_image->at(0); OffsetTable::EntryCoordinate offset_entry = m_OffsetTable.DomainToOffsetTable(domain_entry); HashTable::EntryCoordinate hashtable_entry = m_HashTable.DomainToHashTable(domain_entry); candidate_offset.Import(*iFreeCell - hashtable_entry); if ( IsAValidOffset(iPreImage->pre_image, candidate_offset) ) found_valid_offset = true; } } // If a valid offset has been found, the construction of the offset table continues, // otherwise the offset table must be enlarged and the construction repeated if (found_valid_offset) { m_OffsetTable.SetOffset( (*iPreImage->pre_image).at(0), candidate_offset); for (int c=0, pre_image_cardinality = iPreImage->cardinality; c<pre_image_cardinality; c++) { HashTable::EntryCoordinate ht_entry = PerfectHashFunction( (*iPreImage->pre_image).at(c)); std::vector< ObjectPointer > *domain_data = m_UniformGrid[ (*iPreImage->pre_image).at(c) ]; m_HashTable.SetEntry(ht_entry, domain_data /*, (*iPreImage->pre_image).at(c)*/); // might be useful for encoding sparsity m_Bitmap.SetFlag((*iPreImage->pre_image).at(c)); } } else { m_OffsetTable.Clear(); m_HashTable.Clear(); m_HashTable.BuildFreeEntryList(); m_Bitmap.Clear(); return false; } } if (callback!=NULL) (*callback)(100, msg); return true; } // end of OffsetTableConstructionSucceded /************************************************************************/ /* Data Members */ /************************************************************************/ protected: UniformGrid m_UniformGrid; /*!< The uniform grid used for partitioning the volume. */ OffsetTable m_OffsetTable; /*!< The offset table corresponding to \f$\Phi\f$ in the article. */ HashTable m_HashTable; /*!< The hash table that will substitute the uniform grid. */ BinaryImage m_Bitmap; const static float m_BOUNDING_BOX_EXPANSION_FACTOR; const static float m_SIGMA; const static int m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION; const static int m_MAX_NUM_OF_RANDOM_GENERATED_OFFSET; const static int m_DIMENSION; }; //end of class PerfectSpatialHashing /*! @} */ //end of Doxygen documentation }//end of namespace vcg template < class OBJECT_TYPE, class SCALAR_TYPE > const int vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_MAX_NUM_OF_RANDOM_GENERATED_OFFSET = 32; template < class OBJECT_TYPE, class SCALAR_TYPE > const int vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION = 5; template < class OBJECT_TYPE, class SCALAR_TYPE > const int vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_DIMENSION = 3; template < class OBJECT_TYPE, class SCALAR_TYPE > const SCALAR_TYPE vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_BOUNDING_BOX_EXPANSION_FACTOR = SCALAR_TYPE(0.035); template < class OBJECT_TYPE, class SCALAR_TYPE > const SCALAR_TYPE vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_SIGMA = SCALAR_TYPE(1.0f/(2.0f*SCALAR_TYPE(m_DIMENSION))); #endif //VCG_SPACE_INDEX_PERFECT_SPATIAL_HASHING_H