/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_FACE_PLUS #define __VCG_FACE_PLUS #include #include #include #include #include #include #include namespace vcg { /*------------------------------------------------------------------*/ /* The base class of all the recusive definition chain. It is just a container of the typenames of the various simplexes. These typenames must be known form all the derived classes. */ template class FaceTypeHolder: public UserTypes { public: template void ImportData(const LeftF & ){} static void Name(std::vector & /* name */){} // prot inline int VN() const { return 3;} inline int Prev(const int & i) const { return (i+(3-1))%3;} inline int Next(const int & i) const { return (i+1)%3;} inline void Alloc(const int & ){} inline void Dealloc(){} }; /* The base class form which we start to add our components. it has the empty definition for all the standard members (coords, color flags) Note: in order to avoid both virtual classes and ambiguous definitions all the subsequent overrides must be done in a sequence of derivation. In other words we cannot derive and add in a single derivation step (with multiple ancestor), both the real (non-empty) normal and color but we have to build the type a step a time (deriving from a single ancestor at a time). */ template class FaceBase: public face::EmptyCore< FaceTypeHolder > { }; /* The Real Big Face class; The class __FaceArityMax__ is the one that is the Last to be derived, and therefore is the only one to know the real members (after the many overrides) so all the functions with common behaviour using the members defined in the various Empty/nonEmpty component classes MUST be defined here. I.e. IsD() that uses the overridden Flags() member must be defined here. */ template < class UserTypes, template class A, template class B, template class C, template class D, template class E, template class F, template class G, template class H, template class I, template class J > class FaceArityMax: public J, A, B, C, D, E, F, G, H, I> > { public: typedef typename FaceArityMax::ScalarType ScalarType; // ----- Flags stuff ----- inline int & UberFlags () { return this->Flags(); } inline int UberFlags() const { return this->Flags(); } enum { DELETED = 0x00000001, // Face is deleted from the mesh NOTREAD = 0x00000002, // Face of the mesh is not readable NOTWRITE = 0x00000004, // Face of the mesh is not writable VISITED = 0x00000010, // Face has been visited. Usualy this is a per-algorithm used bit. SELECTED = 0x00000020, // Face is selected. Algorithms should try to work only on selected face (if explicitly requested) // Border _flags, it is assumed that BORDERi = BORDER0<Flags() & DELETED) != 0;} /// checks if the Face is readable bool IsR() const {return (this->Flags() & NOTREAD) == 0;} /// checks if the Face is modifiable bool IsW() const {return (this->Flags() & NOTWRITE)== 0;} /// This funcion checks whether the Face is both readable and modifiable bool IsRW() const {return (this->Flags() & (NOTREAD | NOTWRITE)) == 0;} /// checks if the Face is Modified bool IsS() const {return (this->Flags() & SELECTED) != 0;} /// checks if the Face is Modified bool IsV() const {return (this->Flags() & VISITED) != 0;} /** Set the flag value @param flagp Valore da inserire nel flag */ void SetFlags(int flagp) {this->Flags()=flagp;} /** Set the flag value @param flagp Valore da inserire nel flag */ void ClearFlags() {this->Flags()=0;} /// deletes the Face from the mesh void SetD() {this->Flags() |=DELETED;} /// un-delete a Face void ClearD() {this->Flags() &=(~DELETED);} /// marks the Face as readable void SetR() {this->Flags() &=(~NOTREAD);} /// marks the Face as not readable void ClearR() {this->Flags() |=NOTREAD;} /// marks the Face as writable void SetW() {this->Flags() &=(~NOTWRITE);} /// marks the Face as notwritable void ClearW() {this->Flags() |=NOTWRITE;} /// select the Face void SetS() {this->Flags() |=SELECTED;} /// Un-select a Face void ClearS() {this->Flags() &= ~SELECTED;} /// select the Face void SetV() {this->Flags() |=VISITED;} /// Un-select a Face void ClearV() {this->Flags() &= ~VISITED;} /// This function checks if the face is selected bool IsB(int i) const {return (this->Flags() & (BORDER0<Flags() |=(BORDER0<Flags() &= (~(BORDER0<Flags() & (CREASE0<Flags() |=(CREASE0<Flags() &= (~(CREASE0<Flags() & (FAUX0<Flags() & (FAUX0|FAUX1|FAUX2)) != 0;} /// This function select the face void SetF(int i) {this->Flags() |=(FAUX0<Flags() &= (~(FAUX0<Flags() &= (~(FAUX0|FAUX1|FAUX2)); } /// Return the first bit that is not still used static int &FirstUnusedBitFlag() { static int b =USER0; return b; } /// Allocate a bit among the flags that can be used by user. It updates the FirstUnusedBitFlag. static inline int NewBitFlag() { int bitForTheUser = FirstUnusedBitFlag(); FirstUnusedBitFlag()=FirstUnusedBitFlag()<<1; return bitForTheUser; } /// De-allocate a pre allocated bit. It updates the FirstUnusedBitFlag. // Note you must deallocate bit in the inverse order of the allocation (as in a stack) static inline bool DeleteBitFlag(int bitval) { if(FirstUnusedBitFlag()>>1==bitval) { FirstUnusedBitFlag() = FirstUnusedBitFlag()>>1; return true; } assert(0); return false; } /// This function checks if the given user bit is true bool IsUserBit(int userBit){return (this->Flags() & userBit) != 0;} /// This function set the given user bit void SetUserBit(int userBit){this->Flags() |=userBit;} /// This function clear the given user bit void ClearUserBit(int userBit){this->Flags() &= (~userBit);} void GetBBox(Box3& bb ) const { if(this->IsD()) { bb.SetNull(); return; } bb.Set(this->cP(0)); bb.Add(this->cP(1)); bb.Add(this->cP(2)); } }; /* These are the three main classes that are used by the library user to define its own Facees. The user MUST specify the names of all the type involved in a generic complex. so for example when defining a Face of a trimesh you must know the name of the type of the edge and of the face. Typical usage example: A Face with coords, flags and normal for use in a standard trimesh: class MyFaceNf : public FaceSimp2< VertProto, EdgeProto, MyFaceNf, face::Flag, face::Normal3f > {}; A Face with coords, and normal for use in a tetrahedral mesh AND in a standard trimesh: class TetraFace : public FaceSimp3< VertProto, EdgeProto, TetraFace, TetraProto, face::Coord3d, face::Normal3f > {}; A summary of the components that can be added to a face (see components.h for details): VertexRef NormalFromVert, WedgeNormal Normal3s, Normal3f, Normal3d WedgeTexCoord2s, WedgeTexCoord2f, WedgeTexCoord2d BitFlags WedgeColor, Color4b Qualitys, Qualityf, Qualityd Mark //Incremental mark (int) VFAdj //Topology vertex face adjacency (pointers to next face in the ring of the vertex FFAdj //topology: face face adj pointers to adjacent faces */ template class A = DefaultDeriver, template class B = DefaultDeriver, template class C = DefaultDeriver, template class D = DefaultDeriver, template class E = DefaultDeriver, template class F = DefaultDeriver, template class G = DefaultDeriver, template class H = DefaultDeriver, template class I = DefaultDeriver, template class J = DefaultDeriver > class Face: public FaceArityMax { public: typedef AllTypes::AFaceType IAm; typedef UserTypes TypesPool;}; }// end namespace #endif