#ifndef VCGLIB_MESHTREE_H #define VCGLIB_MESHTREE_H namespace vcg { template class MeshTree { public: class MeshNode { public: bool glued; MeshType *m; MeshNode(MeshType *_m) : m{_m}, glued{false} {} vcg::Matrix44 &tr() { return m->cm.Tr; } const vcg::Box3 &bbox() const { return m->cm.bbox; } int Id() { return m->id(); } }; class Param { public: int OGSize = 5000; float arcThreshold = 0.3f; float recalcThreshold = 0.1f; }; std::map nodeMap; std::list resultList; vcg::OccupancyGrid OG; vcg::CallBackPos * cb; MeshType *MM(unsigned int i) { return nodeMap[i]->m; } MeshTree(); void clear() { for (auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { delete ni->second; } nodeMap.clear(); resultList.clear(); } void deleteResult(MeshTree::MeshNode *mp) { auto li = std::begin(resultList); while (li != resultList.end()) { if (li->MovName==mp->Id() || li->FixName==mp->Id()) { li=resultList.erase(li); } else { ++li; } } } vcg::AlignPair::Result* findResult(int id1, int id2) { for (auto li = std::begin(resultList); li != std::end(resultList); ++li) { if ((li->MovName==id1 && li->FixName==id2) || (li->MovName==id2 && li->FixName==id1) ) { return &*li; } } return 0; } MeshTree::MeshNode *find(int id) { MeshTree::MeshNode *mp = nodeMap[id]; if (mp==0 || mp->Id()!=id) { assert("You are trying to find an unexistent mesh"==0); } return mp; } MeshTree::MeshNode *find(MeshType *m) { for (auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { if (ni->second->m==m) return ni->second; } assert("You are trying to find an unexistent mesh" ==0); return 0; } int gluedNum() { int cnt = 0; for (auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { MeshTree::MeshNode *mn=ni->second; if (mn->glued) ++cnt; } return cnt; } void Process(vcg::AlignPair::Param &ap, Param &mtp) { // QString buf; // cb(0,qUtf8Printable(buf.sprintf("Starting Processing of %i glued meshes out of %zu meshes\n",gluedNum(),nodeMap.size()))); /******* Occupancy Grid Computation *************/ // cb(0,qUtf8Printable(buf.sprintf("Computing Overlaps %i glued meshes...\n",gluedNum() ))); OG.Init(static_cast(nodeMap.size()), vcg::Box3d::Construct(gluedBBox()), mtp.OGSize); for(auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { MeshTree::MeshNode *mn = ni->second; if (mn->glued) { OG.AddMesh(mn->m->cm, vcg::Matrix44d::Construct(mn->tr()), mn->Id()); } } OG.Compute(); OG.Dump(stdout); // Note: the s and t of the OG translate into fix and mov, respectively. /*************** The long loop of arc computing **************/ // count existing arcs within current error threshold float percentileThr = 0f; if (resultList.size() > 0) { vcg::Distribution H; for (auto li = std::begin(resultList); li != std::end(resultList); ++li) { H.Add(li->err); } percentileThr = H.Percentile(1.0f - mtp.recalcThreshold); } std::size_t totalArcNum = 0; int preservedArcNum = 0, recalcArcNum = 0; while(totalArcNum mtp.arcThreshold) { AlignPair::Result *curResult = findResult(OG.SVA[totalArcNum].s, OG.SVA[totalArcNum].t); if (curResult) { if (curResult->err < percentileThr) { ++preservedArcNum; } else { ++recalcArcNum; } } else { resultList.push_back(AlignPair::Result()); resultList.back().FixName = OG.SVA[totalArcNum].s; resultList.back().MovName = OG.SVA[totalArcNum].t; resultList.back().err = std::numeric_limits::max(); } ++totalArcNum; } //if there are no arcs at all complain and return if (totalArcNum == 0) { // cb(0, qUtf8Printable(buf.sprintf("\n Failure. There are no overlapping meshes?\n No candidate alignment arcs. Nothing Done.\n"))); return; } int num_max_thread = 1; #ifdef _OPENMP if (totalArcNum > 32) num_max_thread = omp_get_max_threads(); #endif // cb(0,qUtf8Printable(buf.sprintf("Arc with good overlap %6zu (on %6zu)\n",totalArcNum,OG.SVA.size()))); // cb(0,qUtf8Printable(buf.sprintf(" %6i preserved %i Recalc \n",preservedArcNum,recalcArcNum))); bool hasValidAlign = false; #pragma omp parallel for schedule(dynamic, 1) num_threads(num_max_thread) // on windows, omp does not support unsigned types for indices on cycles for (int i = 0 ;i < static_cast(totalArcNum); ++i) { std::fprintf(stdout,"%4i -> %4i Area:%5i NormArea:%5.3f\n",OG.SVA[i].s,OG.SVA[i].t,OG.SVA[i].area,OG.SVA[i].norm_area); AlignPair::Result *curResult = findResult(OG.SVA[i].s,OG.SVA[i].t); // // missing arc and arc with great error must be recomputed. if (curResult->err >= percentileThr) { ProcessArc(OG.SVA[i].s, OG.SVA[i].t, *curResult, ap); curResult->area = OG.SVA[i].norm_area; if (curResult->isValid()) { hasValidAlign = true; std::pair dd = curResult->computeAvgErr(); #pragma omp critical //cb(0,qUtf8Printable(buf.sprintf("(%3i/%3zu) %2i -> %2i Aligned AvgErr dd=%f -> dd=%f \n",i+1,totalArcNum,OG.SVA[i].s,OG.SVA[i].t,dd.first,dd.second))); } else { #pragma omp critical //cb(0,qUtf8Printable(buf.sprintf( "(%3i/%3zu) %2i -> %2i Failed Alignment of one arc %s\n",i+1,totalArcNum,OG.SVA[i].s,OG.SVA[i].t,vcg::AlignPair::errorMsg(curResult->status)))); } } } //if there are no valid arcs complain and return if (!hasValidAlign) { // cb(0,qUtf8Printable(buf.sprintf("\n Failure. No successful arc among candidate Alignment arcs. Nothing Done.\n"))); return; } vcg::Distribution H; // stat for printing for (auto li = std::begin(resultList); li != std::end(resultList); ++li) { if ((*li).isValid()) { H.Add(li->err); } } //cb(0,qUtf8Printable(buf.sprintf("Completed Mesh-Mesh Alignment: Avg Err %5.3f; Median %5.3f; 90%% %5.3f\n", H.Avg(), H.Percentile(0.5f), H.Percentile(0.9f)))); ProcessGlobal(ap); } void ProcessGlobal(vcg::AlignPair::Param &ap) { /************** Preparing Matrices for global alignment *************/ std::vector GluedIdVec; std::vector GluedTrVec; std::map names; for (auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { MeshTree::MeshNode *mn=ni->second; if (mn->glued) { GluedIdVec.push_back(mn->Id()); GluedTrVec.push_back(vcg::Matrix44d::Construct(mn->tr())); names[mn->Id()]=qUtf8Printable(mn->m->label()); } } vcg::AlignGlobal AG; std::vector ResVecPtr; for (auto li = std::begin(resultList); li != std::end(resultList); ++li) { if ((*li).isValid()) { ResVecPtr.push_back(&*li); } } AG.BuildGraph(ResVecPtr, GluedTrVec, GluedIdVec); float StartGlobErr = 0.001f; while (!AG.GlobalAlign(names, StartGlobErr, 100, ap.MatchMode==vcg::AlignPair::Param::MMRigid, stdout)){ StartGlobErr *= 2; AG.BuildGraph(ResVecPtr,GluedTrVec, GluedIdVec); } std::vector GluedTrVecOut(GluedTrVec.size()); AG.GetMatrixVector(GluedTrVecOut,GluedIdVec); // Now get back the results! for (std::size_t ii = 0; ii < GluedTrVecOut.size(); ++ii) { MM(GluedIdVec[ii])->cm.Tr.Import(GluedTrVecOut[ii]); } } void ProcessArc(int fixId, int movId, vcg::AlignPair::Result &result, vcg::AlignPair::Param ap) { // l'allineatore globale cambia le varie matrici di posizione di base delle mesh // per questo motivo si aspetta i punti nel sistema di riferimento locale della mesh fix // Si fanno tutti i conti rispetto al sistema di riferimento locale della mesh fix vcg::Matrix44d FixM = vcg::Matrix44d::Construct(find(fixId)->tr()); vcg::Matrix44d MovM = vcg::Matrix44d::Construct(find(movId)->tr()); vcg::Matrix44d MovToFix = Inverse(FixM) * MovM; ProcessArc(fixId,movId,MovToFix,result,ap); } void ProcessArc(int fixId, int movId, vcg::Matrix44d &MovToFix, vcg::AlignPair::Result &result, vcg::AlignPair::Param ap) { vcg::AlignPair::A2Mesh Fix; vcg::AlignPair aa; // 1) Convert fixed mesh and put it into the grid. MM(fixId)->updateDataMask(MeshModel::MM_FACEMARK); aa.convertMesh(MM(fixId)->cm,Fix); vcg::AlignPair::A2Grid UG; vcg::AlignPair::A2GridVert VG; if (MM(fixId)->cm.fn==0 || ap.UseVertexOnly) { Fix.initVert(vcg::Matrix44d::Identity()); vcg::AlignPair::InitFixVert(&Fix,ap,VG); } else { Fix.init(vcg::Matrix44d::Identity()); vcg::AlignPair::initFix(&Fix, ap, UG); } // 2) Convert the second mesh and sample a points on it. MM(movId)->updateDataMask(MeshModel::MM_FACEMARK); std::vector tmpmv; aa.convertVertex(MM(movId)->cm.vert,tmpmv); aa.sampleMovVert(tmpmv, ap.SampleNum, ap.SampleMode); aa.mov=&tmpmv; aa.fix=&Fix; aa.ap = ap; vcg::Matrix44d In=MovM; // Perform the ICP algorithm aa.align(In,UG,VG,result); result.FixName=fixId; result.MovName=movId; } inline Box3m bbox() { Box3m FullBBox; for (auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { FullBBox.Add(Matrix44m::Construct(ni->second->tr()),ni->second->bbox()); } return FullBBox; } inline Box3m gluedBBox() { Box3m FullBBox; for (auto ni = std::begin(nodeMap); ni != std::end(nodeMap); ++ni) { if (ni->second->glued) { FullBBox.Add(Matrix44m::Construct(ni->second->tr()), ni->second->bbox()); } } return FullBBox; } }; } #endif //VCGLIB_MESHTREE_H