/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_TOPOLOGY #define __VCG_TRI_UPDATE_TOPOLOGY #include #include #include #include namespace vcg { namespace tri { /// \ingroup trimesh /// \headerfile topology.h vcg/complex/algorithms/update/topology.h /// \brief Generation of per-vertex and per-face topological information. template class UpdateTopology { public: typedef UpdateMeshType MeshType; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::EdgePointer EdgePointer; typedef typename MeshType::EdgeIterator EdgeIterator; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; /// \headerfile topology.h vcg/complex/algorithms/update/topology.h /// \brief Auxiliairy data structure for computing face face adjacency information. /** It identifies and edge storing two vertex pointer and a face pointer where it belong. */ class PEdge { public: VertexPointer v[2]; // the two Vertex pointer are ordered! FacePointer f; // the face where this edge belong int z; // index in [0..2] of the edge of the face PEdge() {} void Set( FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nzVN()); v[0] = pf->V(nz); v[1] = pf->V(pf->Next(nz)); assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes) if( v[0] > v[1] ) std::swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const PEdge & pe ) const { if( v[0]pe.v[0] ) return false; else return v[1] < pe.v[1]; } inline bool operator == ( const PEdge & pe ) const { return v[0]==pe.v[0] && v[1]==pe.v[1]; } /// Convert from edge barycentric coord to the face baricentric coord a point on the current edge. /// Face barycentric coordinates are relative to the edge face. inline Point3 EdgeBarycentricToFaceBarycentric(ScalarType u) const { Point3 interp(0,0,0); interp[ this->z ] = u; interp[(this->z+1)%3] = 1.0f-u; return interp; } }; // Fill a vector with all the edges of the mesh. // each edge is stored in the vector the number of times that it appears in the mesh, with the referring face. // optionally it can skip the faux edges (to retrieve only the real edges of a triangulated polygonal mesh) static void FillEdgeVector(MeshType &m, std::vector &e, bool includeFauxEdge=true) { FaceIterator pf; typename std::vector::iterator p; // Alloco il vettore ausiliario //e.resize(m.fn*3); FaceIterator fi; int n_edges = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN(); e.resize(n_edges); p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) if( ! (*pf).IsD() ) for(int j=0;j<(*pf).VN();++j) if(includeFauxEdge || !(*pf).IsF(j)) { (*p).Set(&(*pf),j); ++p; } if(includeFauxEdge) assert(p==e.end()); else e.resize(p-e.begin()); } static void FillUniqueEdgeVector(MeshType &m, std::vector &Edges, bool includeFauxEdge=true) { FillEdgeVector(m,Edges,includeFauxEdge); sort(Edges.begin(), Edges.end()); // Lo ordino per vertici typename std::vector< PEdge>::iterator newEnd = std::unique(Edges.begin(), Edges.end()); Edges.resize(newEnd-Edges.begin()); } /*! \brief Initialize the edge vector all the edges that can be inferred from current face vector, setting up all the current adjacency relations * * */ static void AllocateEdge(MeshType &m) { // Delete all the edges (if any) for(EdgeIterator ei=m.edge.begin();ei!=m.edge.end();++ei) tri::Allocator::DeleteEdge(m,*ei); tri::Allocator::CompactEdgeVector(m); // Compute and add edges std::vector Edges; FillUniqueEdgeVector(m,Edges); assert(m.edge.empty()); tri::Allocator::AddEdges(m,Edges.size()); assert(m.edge.size()==Edges.size()); // Setup adjacency relations if(tri::HasEVAdjacency(m)) { for(size_t i=0; i< Edges.size(); ++i) { m.edge[i].V(0) = Edges[i].v[0]; m.edge[i].V(1) = Edges[i].v[1]; } } if(tri::HasEFAdjacency(m)) // Note it is an unordered relation. { for(size_t i=0; i< Edges.size(); ++i) { std::vector fpVec; std::vector eiVec; face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec); m.edge[i].EFp() = Edges[i].f; m.edge[i].EFi() = Edges[i].z; } } if(tri::HasFEAdjacency(m)) { for(size_t i=0; i< Edges.size(); ++i) { std::vector fpVec; std::vector eiVec; face::EFStarFF(Edges[i].f,Edges[i].z,fpVec,eiVec); for(size_t j=0;jFEp(eiVec[j])=&(m.edge[i]); // Edges[i].f->FE(Edges[i].z) = &(m.edge[i]); // Connect in loop the non manifold // FaceType* fpit=fp; // int eit=ei; // do // { // faceVec.push_back(fpit); // indVed.push_back(eit); // FaceType *new_fpit = fpit->FFp(eit); // int new_eit = fpit->FFi(eit); // fpit=new_fpit; // eit=new_eit; // } while(fpit != fp); // m.edge[i].EFp() = Edges[i].f; // m.edge[i].EFi() = ; } } } /// \brief Update the Face-Face topological relation by allowing to retrieve for each face what other faces shares their edges. static void FaceFace(MeshType &m) { RequireFFAdjacency(m); if( m.fn == 0 ) return; std::vector e; FillEdgeVector(m,e); sort(e.begin(), e.end()); // Lo ordino per vertici int ne = 0; // Numero di edge reali typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); //for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario do { if( pe==e.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); //assert((*q).z< 3); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< (*q_next).f->VN()); (*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce (*q).f->FFi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< (*q).f->VN()); (*q).f->FFp((*q).z) = ps->f; (*q).f->FFi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==e.end()) break; ++pe; } while(true); } /// \brief Update the Vertex-Face topological relation. /** The function allows to retrieve for each vertex the list of faces sharing this vertex. After this call all the VF component are initialized. Isolated vertices have a null list of faces. \sa vcg::vertex::VFAdj \sa vcg::face::VFAdj */ static void VertexFace(MeshType &m) { RequireVFAdjacency(m); for(VertexIterator vi=m.vert.begin();vi!=m.vert.end();++vi) { (*vi).VFp() = 0; (*vi).VFi() = 0; // note that (0,-1) means uninitiazlied while 0,0 is the valid initialized values for isolated vertices. } for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) if( ! (*fi).IsD() ) { for(int j=0;j<(*fi).VN();++j) { (*fi).VFp(j) = (*fi).V(j)->VFp(); (*fi).VFi(j) = (*fi).V(j)->VFi(); (*fi).V(j)->VFp() = &(*fi); (*fi).V(j)->VFi() = j; } } } /// \headerfile topology.h vcg/complex/algorithms/update/topology.h /// \brief Auxiliairy data structure for computing face face adjacency information. /** It identifies and edge storing two vertex pointer and a face pointer where it belong. */ class PEdgeTex { public: typename FaceType::TexCoordType v[2]; // the two TexCoord are ordered! FacePointer f; // the face where this edge belong int z; // index in [0..2] of the edge of the face PEdgeTex() {} void Set( FacePointer pf, const int nz ) { assert(pf!=0); assert(nz>=0); assert(nz<3); v[0] = pf->WT(nz); v[1] = pf->WT(pf->Next(nz)); assert(v[0] != v[1]); // The face pointed by 'f' is Degenerate (two coincident vertexes) if( v[1] < v[0] ) std::swap(v[0],v[1]); f = pf; z = nz; } inline bool operator < ( const PEdgeTex & pe ) const { if( v[0]FFp(i) == F2 iff F1 and F2 have the same tex coords along edge i */ static void FaceFaceFromTexCoord(MeshType &m) { RequireFFAdjacency(m); RequirePerFaceWedgeTexCoord(m); std::vector e; FaceIterator pf; typename std::vector::iterator p; if( m.fn == 0 ) return; // e.resize(m.fn*3); // Alloco il vettore ausiliario FaceIterator fi; int n_edges = 0; for(fi = m.face.begin(); fi != m.face.end(); ++fi) if(! (*fi).IsD()) n_edges+=(*fi).VN(); e.resize(n_edges); p = e.begin(); for(pf=m.face.begin();pf!=m.face.end();++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<(*pf).VN();++j) { if( (*pf).WT(j) != (*pf).WT((*pf).Next(j))) { (*p).Set(&(*pf),j); ++p; } } e.resize(p-e.begin()); // remove from the end of the edge vector the unitiailized ones //assert(p==e.end()); // this formulation of the assert argument is not really correct, will crash on visual studio sort(e.begin(), e.end()); int ne = 0; // number of real edges typename std::vector::iterator pe,ps; ps = e.begin();pe=e.begin(); //for(ps = e.begin(),pe=e.begin();pe<=e.end();++pe) // Scansione vettore ausiliario do { if( pe==e.end() || (*pe) != (*ps) ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); assert((*q).z< 3); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< (*q_next).f->VN()); (*q).f->FFp(q->z) = (*q_next).f; // Collegamento in lista delle facce (*q).f->FFi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< (*q).f->VN()); (*q).f->FFp((*q).z) = ps->f; (*q).f->FFi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==e.end()) break; ++pe; } while(true); } /// \brief Test correctness of VFtopology static void TestVertexFace(MeshType &m) { SimpleTempData numVertex(m.vert,0); assert(tri::HasPerVertexVFAdjacency(m)); FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) { if (!(*fi).IsD()) { numVertex[(*fi).V0(0)]++; numVertex[(*fi).V1(0)]++; numVertex[(*fi).V2(0)]++; } } VertexIterator vi; vcg::face::VFIterator VFi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { if (!vi->IsD()) if(vi->VFp()!=0) // unreferenced vertices MUST have VF == 0; { int num=0; assert(vi->VFp() >= &*m.face.begin()); assert(vi->VFp() <= &m.face.back()); VFi.f=vi->VFp(); VFi.z=vi->VFi(); while (!VFi.End()) { num++; assert(!VFi.F()->IsD()); assert((VFi.F()->V(VFi.I()))==&(*vi)); ++VFi; } int num1=numVertex[&(*vi)]; assert(num==num1); /*assert(num>1);*/ } } } /// \brief Test correctness of FFtopology (only for 2Manifold Meshes!) static void TestFaceFace(MeshType &m) { assert(HasFFAdjacency(m)); for(FaceIterator fi=m.face.begin();fi!=m.face.end();++fi) { if (!fi->IsD()) { for (int i=0;i<(*fi).VN();i++) { FaceType *ffpi=fi->FFp(i); int e=fi->FFi(i); //invariant property of FF topology for two manifold meshes assert(ffpi->FFp(e) == &(*fi)); assert(ffpi->FFi(e) == i); // Test that the two faces shares the same edge // Vertices of the i-th edges of the first face VertexPointer v0i= fi->V0(i); VertexPointer v1i= fi->V1(i); // Vertices of the corresponding edge on the other face VertexPointer ffv0i= ffpi->V0(e); VertexPointer ffv1i= ffpi->V1(e); assert( (ffv0i==v0i) || (ffv0i==v1i) ); assert( (ffv1i==v0i) || (ffv1i==v1i) ); } } } } /// Auxiliairy data structure for computing edge edge adjacency information. /// It identifies an edge storing a vertex pointer and a edge pointer where it belong. class PVertexEdge { public: VertexPointer v; // the two Vertex pointer are ordered! EdgePointer e; // the edge where this vertex belong int z; // index in [0..1] of the vertex of the edge PVertexEdge( ) {} PVertexEdge( EdgePointer pe, const int nz ) { assert(pe!=0); assert(nz>=0); assert(nz<2); v= pe->V(nz); e = pe; z = nz; } inline bool operator < ( const PVertexEdge & pe ) const { return ( v v; if( m.en == 0 ) return; // printf("Inserting Edges\n"); for(EdgeIterator pf=m.edge.begin(); pf!=m.edge.end(); ++pf) // Lo riempio con i dati delle facce if( ! (*pf).IsD() ) for(int j=0;j<2;++j) { // printf("egde %i ind %i (%i %i)\n",tri::Index(m,&*pf),j,tri::Index(m,pf->V(0)),tri::Index(m,pf->V(1))); v.push_back(PVertexEdge(&*pf,j)); } // printf("en = %i (%i)\n",m.en,m.edge.size()); sort(v.begin(), v.end()); // Lo ordino per vertici int ne = 0; // Numero di edge reali typename std::vector::iterator pe,ps; // for(ps = v.begin(),pe=v.begin();pe<=v.end();++pe) // Scansione vettore ausiliario ps = v.begin();pe=v.begin(); do { // printf("v %i -> e %i\n",tri::Index(m,(*ps).v),tri::Index(m,(*ps).e)); if( pe==v.end() || !(*pe == *ps) ) // Trovo blocco di edge uguali { typename std::vector::iterator q,q_next; for (q=ps;q=0); assert((*q).z< 2); q_next = q; ++q_next; assert((*q_next).z>=0); assert((*q_next).z< 2); (*q).e->EEp(q->z) = (*q_next).e; // Collegamento in lista delle facce (*q).e->EEi(q->z) = (*q_next).z; } assert((*q).z>=0); assert((*q).z< 2); (*q).e->EEp((*q).z) = ps->e; (*q).e->EEi((*q).z) = ps->z; ps = pe; ++ne; // Aggiorno il numero di edge } if(pe==v.end()) break; ++pe; } while(true); } static void VertexEdge(MeshType &m) { RequireVEAdjacency(m); VertexIterator vi; EdgeIterator ei; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { (*vi).VEp() = 0; (*vi).VEi() = 0; } for(ei=m.edge.begin();ei!=m.edge.end();++ei) if( ! (*ei).IsD() ) { for(int j=0;j<2;++j) { (*ei).VEp(j) = (*ei).V(j)->VEp(); (*ei).VEi(j) = (*ei).V(j)->VEi(); (*ei).V(j)->VEp() = &(*ei); (*ei).V(j)->VEi() = j; } } } }; // end class } // End namespace } // End namespace #endif