/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.12 2006/06/21 11:06:16 ganovelli changed return type of Zero() (to void) Revision 1.11 2005/04/13 09:40:30 ponchio Including math/bash.h Revision 1.10 2005/03/18 16:34:42 fiorin minor changes to comply gcc compiler Revision 1.9 2005/01/21 18:02:11 ponchio Removed dependence from matrix44 and changed VectProd Revision 1.8 2005/01/12 11:25:02 ganovelli added Dimension Revision 1.7 2004/10/11 17:46:11 ganovelli added definition of vector product (not implemented) Revision 1.6 2004/05/10 11:16:19 ganovelli include assert.h added Revision 1.5 2004/03/31 10:09:58 cignoni missing return value in zero() Revision 1.4 2004/03/11 17:17:49 tarini added commets (doxy), uniformed with new style, now using math::, ... added HomoNormalize(), Zero()... remade StableDot() (hand made sort). Revision 1.1 2004/02/10 01:11:28 cignoni Edited Comments and GPL license ****************************************************************************/ #ifndef __VCGLIB_POINT4 #define __VCGLIB_POINT4 #include #include namespace vcg { /** \addtogroup space */ /*@{*/ /** The templated class for representing a point in 4D space. The class is templated over the ScalarType class that is used to represent coordinates. All the usual operator (* + - ...) are defined. */ template class Point4 { public: /// The only data member. Hidden to user. T _v[4]; public: typedef T ScalarType; enum {Dimension = 4}; //@{ /** @name Standard Constructors and Initializers No casting operators have been introduced to avoid automatic unattended (and costly) conversion between different point types **/ inline Point4 () { } inline Point4 ( const T nx, const T ny, const T nz , const T nw ) { _v[0] = nx; _v[1] = ny; _v[2] = nz; _v[3] = nw; } inline Point4 ( const T p[4] ) { _v[0] = p[0]; _v[1]= p[1]; _v[2] = p[2]; _v[3]= p[3]; } inline Point4 ( const Point4 & p ) { _v[0]= p._v[0]; _v[1]= p._v[1]; _v[2]= p._v[2]; _v[3]= p._v[3]; } inline void SetZero() { _v[0] = _v[1] = _v[2] = _v[3]= 0; } template /// importer from different Point4 types inline void Import( const Point4 & b ) { _v[0] = T(b[0]); _v[1] = T(b[1]); _v[2] = T(b[2]); _v[3] = T(b[3]); } template inline void FromEigenVector( const EigenVector & b ) { _v[0] = T(b[0]); _v[1] = T(b[1]); _v[2] = T(b[2]); _v[3] = T(b[3]); } /// constructor that imports from different Point4 types template static inline Point4 Construct( const Point4 & b ) { return Point4(T(b[0]),T(b[1]),T(b[2]),T(b[3])); } static inline Point4 Zero(void) { return Point4(0,0,0,0); } static inline Point4 One(void) { return Point4(1,1,1,1); } //@} //@{ /** @name Data Access. access to data is done by overloading of [] or explicit naming of coords (x,y,z,w) **/ inline const T & operator [] ( const int i ) const { assert(i>=0 && i<4); return _v[i]; } inline T & operator [] ( const int i ) { assert(i>=0 && i<4); return _v[i]; } inline T &X() {return _v[0];} inline T &Y() {return _v[1];} inline T &Z() {return _v[2];} inline T &W() {return _v[3];} inline T const * V() const { return _v; } inline T * V() { return _v; } inline const T & V ( const int i ) const { assert(i>=0 && i<4); return _v[i]; } inline T & V ( const int i ) { assert(i>=0 && i<4); return _v[i]; } /// Padding function: give a default 0 value to all the elements that are not in the [0..2] range. /// Useful for managing in a consistent way object that could have point2 / point3 / point4 inline T Ext( const int i ) const { if(i>=0 && i<=3) return _v[i]; else return 0; } //@} //@{ /** @name Linear operators and the likes **/ inline Point4 operator + ( const Point4 & p) const { return Point4( _v[0]+p._v[0], _v[1]+p._v[1], _v[2]+p._v[2], _v[3]+p._v[3] ); } inline Point4 operator - ( const Point4 & p) const { return Point4( _v[0]-p._v[0], _v[1]-p._v[1], _v[2]-p._v[2], _v[3]-p._v[3] ); } inline Point4 operator * ( const T s ) const { return Point4( _v[0]*s, _v[1]*s, _v[2]*s, _v[3]*s ); } inline Point4 operator / ( const T s ) const { return Point4( _v[0]/s, _v[1]/s, _v[2]/s, _v[3]/s ); } inline Point4 & operator += ( const Point4 & p) { _v[0] += p._v[0]; _v[1] += p._v[1]; _v[2] += p._v[2]; _v[3] += p._v[3]; return *this; } inline Point4 & operator -= ( const Point4 & p ) { _v[0] -= p._v[0]; _v[1] -= p._v[1]; _v[2] -= p._v[2]; _v[3] -= p._v[3]; return *this; } inline Point4 & operator *= ( const T s ) { _v[0] *= s; _v[1] *= s; _v[2] *= s; _v[3] *= s; return *this; } inline Point4 & operator /= ( const T s ) { _v[0] /= s; _v[1] /= s; _v[2] /= s; _v[3] /= s; return *this; } inline Point4 operator - () const { return Point4( -_v[0], -_v[1], -_v[2], -_v[3] ); } inline Point4 VectProd ( const Point4 &x, const Point4 &z ) const { Point4 res; const Point4 &y = *this; res[0] = y[1]*x[2]*z[3]-y[1]*x[3]*z[2]-x[1]*y[2]*z[3]+ x[1]*y[3]*z[2]+z[1]*y[2]*x[3]-z[1]*y[3]*x[2]; res[1] = y[0]*x[3]*z[2]-z[0]*y[2]*x[3]-y[0]*x[2]* z[3]+z[0]*y[3]*x[2]+x[0]*y[2]*z[3]-x[0]*y[3]*z[2]; res[2] = -y[0]*z[1]*x[3]+x[0]*z[1]*y[3]+y[0]*x[1]* z[3]-x[0]*y[1]*z[3]-z[0]*x[1]*y[3]+z[0]*y[1]*x[3]; res[3] = -z[0]*y[1]*x[2]-y[0]*x[1]*z[2]+x[0]*y[1]* z[2]+y[0]*z[1]*x[2]-x[0]*z[1]*y[2]+z[0]*x[1]*y[2]; return res; } //@} //@{ /** @name Norms and normalizations **/ /// Euclidian normal inline T Norm() const { return math::Sqrt( _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); } /// Squared euclidian normal inline T SquaredNorm() const { return _v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3]; } /// Euclidian normalization inline Point4 & Normalize() { T n = sqrt(_v[0]*_v[0] + _v[1]*_v[1] + _v[2]*_v[2] + _v[3]*_v[3] ); if(n>0.0) { _v[0] /= n; _v[1] /= n; _v[2] /= n; _v[3] /= n; } return *this; } /// Homogeneous normalization (division by W) inline Point4 & HomoNormalize(){ if (_v[3]!=0.0) { _v[0] /= _v[3]; _v[1] /= _v[3]; _v[2] /= _v[3]; _v[3]=1.0; } return *this; }; //@} //@{ /** @name Comparison operators (lexicographical order) **/ inline bool operator == ( const Point4& p ) const { return _v[0]==p._v[0] && _v[1]==p._v[1] && _v[2]==p._v[2] && _v[3]==p._v[3]; } inline bool operator != ( const Point4 & p ) const { return _v[0]!=p._v[0] || _v[1]!=p._v[1] || _v[2]!=p._v[2] || _v[3]!=p._v[3]; } inline bool operator < ( Point4 const & p ) const { return (_v[3]!=p._v[3])?(_v[3] ( const Point4 & p ) const { return (_v[3]!=p._v[3])?(_v[3]>p._v[3]): (_v[2]!=p._v[2])?(_v[2]>p._v[2]): (_v[1]!=p._v[1])?(_v[1]>p._v[1]): (_v[0]>p._v[0]); } inline bool operator <= ( const Point4 & p ) const { return (_v[3]!=p._v[3])?(_v[3]< p._v[3]): (_v[2]!=p._v[2])?(_v[2]< p._v[2]): (_v[1]!=p._v[1])?(_v[1]< p._v[1]): (_v[0]<=p._v[0]); } inline bool operator >= ( const Point4 & p ) const { return (_v[3]!=p._v[3])?(_v[3]> p._v[3]): (_v[2]!=p._v[2])?(_v[2]> p._v[2]): (_v[1]!=p._v[1])?(_v[1]> p._v[1]): (_v[0]>=p._v[0]); } //@} //@{ /** @name Dot products **/ // dot product inline T operator * ( const Point4 & p ) const { return _v[0]*p._v[0] + _v[1]*p._v[1] + _v[2]*p._v[2] + _v[3]*p._v[3]; } inline T dot( const Point4 & p ) const { return (*this) * p; } inline Point4 operator ^ ( const Point4& /*p*/ ) const { assert(0);// not defined by two vectors (only put for metaprogramming) return Point4(); } /// slower version, more stable (double precision only) T StableDot ( const Point4 & p ) const { T k0=_v[0]*p._v[0], k1=_v[1]*p._v[1], k2=_v[2]*p._v[2], k3=_v[3]*p._v[3]; int exp0,exp1,exp2,exp3; frexp( double(k0), &exp0 );frexp( double(k1), &exp1 ); frexp( double(k2), &exp2 );frexp( double(k3), &exp3 ); if (exp0>exp1) { std::swap(k0,k1); std::swap(exp0,exp1); } if (exp2>exp3) { std::swap(k2,k3); std::swap(exp2,exp3); } if (exp0>exp2) { std::swap(k0,k2); std::swap(exp0,exp2); } if (exp1>exp3) { std::swap(k1,k3); std::swap(exp1,exp3); } if (exp2>exp3) { std::swap(k2,k3); std::swap(exp2,exp3); } return ( (k0 + k1) + k2 ) +k3; } //@} }; // end class definition template T Angle( const Point4& p1, const Point4 & p2 ) { T w = p1.Norm()*p2.Norm(); if(w==0) return -1; T t = (p1*p2)/w; if(t>1) t=1; return T( math::Acos(t) ); } template inline T Norm( const Point4 & p ) { return p.Norm(); } template inline T SquaredNorm( const Point4 & p ) { return p.SquaredNorm(); } template inline T Distance( const Point4 & p1, const Point4 & p2 ) { return Norm(p1-p2); } template inline T SquaredDistance( const Point4 & p1, const Point4 & p2 ) { return SquaredNorm(p1-p2); } /// slower version of dot product, more stable (double precision only) template double StableDot ( Point4 const & p0, Point4 const & p1 ) { return p0.StableDot(p1); } typedef Point4 Point4s; typedef Point4 Point4i; typedef Point4 Point4f; typedef Point4 Point4d; /*@}*/ } // end namespace #endif