/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004-2016 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_GRID_UTIL #define __VCGLIB_GRID_UTIL #include #include #include #ifndef WIN32 #define __int64 long long #define __cdecl #endif namespace vcg { /** BasicGrid Basic Class abstracting a gridded structure in a 3d space; Usueful for having coherent float to integer conversion in a unique place: Some Notes: - bbox is the real occupation of the box in the space; - siz is the number of cells for each side OBJTYPE: Type of the indexed objects. SCALARTYPE: Scalars type for structure's internal data (may differ from object's scalar type). */ template class BasicGrid //:public SpatialIndex { public: typedef SCALARTYPE ScalarType; typedef Box3 Box3x; typedef Point3 CoordType; typedef BasicGrid GridType; Box3x bbox; CoordType dim; /// Spatial Dimention (edge legth) of the bounding box Point3i siz; /// Number of cells forming the grid CoordType voxel; /// Dimensions of a single cell /* Derives the right values of Dim and voxel starting from the current values of siz and bbox */ void ComputeDimAndVoxel() { this->dim = this->bbox.max - this->bbox.min; this->voxel[0] = this->dim[0]/this->siz[0]; this->voxel[1] = this->dim[1]/this->siz[1]; this->voxel[2] = this->dim[2]/this->siz[2]; } /* Given a 3D point, returns the coordinates of the cell where the point is * @param p is a 3D point * @return integer coordinates of the cell */ inline Point3i GridP( const Point3 & p ) const { Point3i pi; PToIP(p, pi); return pi; } /* Given a 3D point p, returns the index of the corresponding cell * @param p is a 3D point in the space * @return integer coordinates pi of the cell */ inline void PToIP(const CoordType & p, Point3i &pi ) const { CoordType t = p - bbox.min; pi[0] = int( t[0] / voxel[0] ); pi[1] = int( t[1] / voxel[1] ); pi[2] = int( t[2] / voxel[2] ); } /* Given a cell index return the lower corner of the cell * @param integer coordinates pi of the cell * @return p is a 3D point representing the lower corner of the cell */ template inline void IPiToPf(const Point3i & pi, Point3 &p ) const { p[0] = bbox.min[0] + ((OtherScalarType)pi[0])*voxel[0]; p[1] = bbox.min[1] + ((OtherScalarType)pi[1])*voxel[1]; p[2] = bbox.min[2] + ((OtherScalarType)pi[2])*voxel[2]; } /* Returns the matrix that applied to a point in grid space * transforms it in the original space. */ inline Matrix44 IPtoPfMatrix() const { Matrix44 m; m.SetScale(voxel); Matrix44 t; t.SetTranslate(bbox.min); return t*m; } /* Given a cell index return the corresponding box * @param integer coordinates pi of the cell * @return b is the corresponding box in coordinates */ inline void IPiToBox(const Point3i & pi, Box3x & b ) const { CoordType p; p[0] = ((ScalarType)pi[0])*voxel[0]; p[1] = ((ScalarType)pi[1])*voxel[1]; p[2] = ((ScalarType)pi[2])*voxel[2]; p += bbox.min; b.min = p; b.max = (p + voxel); } /* Given a cell index return the center of the cell itself * @param integer coordinates pi of the cell * @return b is the corresponding box in coordinates */inline void IPiToBoxCenter(const Point3i & pi, CoordType & c ) const { CoordType p; IPiToPf(pi,p); c = p + voxel/ScalarType(2.0); } // Same of IPiToPf but for the case that you just want to transform // from a space to the other. template void IPfToPf(const Point3 & pi, Point3 &p ) const { p[0] = ((OtherScalarType)pi[0])*voxel[0] + bbox.min[0]; p[1] = ((OtherScalarType)pi[1])*voxel[1] + bbox.min[1]; p[2] = ((OtherScalarType)pi[2])*voxel[2] + bbox.min[2]; } /* Given a cell in coordinates, compute the corresponding cell in integer coordinates * @param b is the cell in coordinates * @return ib is the correspondent box in integer coordinates */ inline void BoxToIBox( const Box3x & b, Box3i & ib ) const { PToIP(b.min, ib.min); PToIP(b.max, ib.max); //assert(ib.max[0]>=0 && ib.max[1]>=0 && ib.max[2]>=0); } /* Given a cell in integer coordinates, compute the corresponding cell in coordinates * @param ib is the cell in integer coordinates * @return b is the correspondent box in coordinates */ /// Dato un box in voxel ritorna gli estremi del box reale void IBoxToBox( const Box3i & ib, Box3x & b ) const { IPiToPf(ib.min,b.min); IPiToPf(ib.max+Point3i(1,1,1),b.max); } }; template void BestDim( const Box3 box, const scalar_type voxel_size, Point3i & dim ) { Point3 box_size = box.max-box.min; __int64 elem_num = (__int64)(box_size[0]/voxel_size +0.5) *( __int64)(box_size[1]/voxel_size +0.5) * (__int64)(box_size[2]/voxel_size +0.5); BestDim(elem_num,box_size,dim); } /** Calcolo dimensioni griglia. Calcola la dimensione della griglia in funzione della ratio del bounding box e del numero di elementi */ template void BestDim( const __int64 elems, const Point3 & size, Point3i & dim ) { const __int64 mincells = 1; // Numero minimo di celle const double GFactor = 1; // GridEntry = NumElem*GFactor double diag = size.Norm(); // Diagonale del box double eps = diag*1e-4; // Fattore di tolleranza assert(elems>0); assert(size[0]>=0.0); assert(size[1]>=0.0); assert(size[2]>=0.0); __int64 ncell = (__int64)(elems*GFactor); // Calcolo numero di voxel if(ncelleps) { if(size[1]>eps) { if(size[2]>eps) { double k = pow((double)(ncell/(size[0]*size[1]*size[2])),double(1.0/3.f)); dim[0] = int(size[0] * k); dim[1] = int(size[1] * k); dim[2] = int(size[2] * k); } else { dim[0] = int(::sqrt(ncell*size[0]/size[1])); dim[1] = int(::sqrt(ncell*size[1]/size[0])); } } else { if(size[2]>eps) { dim[0] = int(::sqrt(ncell*size[0]/size[2])); dim[2] = int(::sqrt(ncell*size[2]/size[0])); } else dim[0] = int(ncell); } } else { if(size[1]>eps) { if(size[2]>eps) { dim[1] = int(::sqrt(ncell*size[1]/size[2])); dim[2] = int(::sqrt(ncell*size[2]/size[1])); } else dim[1] = int(ncell); } else if(size[2]>eps) dim[2] = int(ncell); } dim[0] = std::max(dim[0],1); dim[1] = std::max(dim[1],1); dim[2] = std::max(dim[2],1); } } #endif