/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /** \file face/pos.h * Definition of vcg:face::Pos class. * This file contain the definition of vcg::face::Pos class and the derived vcg::face::PosN class. */ #ifndef __VCG_FACE_POS #define __VCG_FACE_POS #include namespace vcg { namespace face { /** \addtogroup face */ /*@{*/ // Needed Prototypes (pos is include before topology) template bool IsBorder(FaceType const & f, const int j ); template bool IsManifold(FaceType const & f, const int j ); /** Templated over the class face, it stores a \em position over a face in a mesh. It contain a pointer to the current face, the index of one edge and a pointer to one of the vertices of the edge. See also the JumpingPos in jumping_pos.h for an iterator that loops around the faces of a vertex without requiring the VF topology. */ template class Pos { public: /// The vertex type typedef typename FaceType::VertexType VertexType; ///The Pos type typedef Pos PosType; /// The scalar type typedef typename VertexType::ScalarType ScalarType; /// Pointer to the face of the half-edge typename FaceType::FaceType *f; /// Index of the edge int z; /// Pointer to the vertex VertexType *v; /// Default constructor Pos(){} /// Constructor which associates the half-edge element with a face, its edge and its vertex Pos(FaceType * const fp, int const zp, VertexType * const vp){f=fp; z=zp; v=vp;} Pos(FaceType * const fp, int const zp){f=fp; z=zp; v=f->V(zp);} Pos(FaceType * const fp, VertexType * const vp) { f = fp; v = vp; for(int i = 0; i < f->VN(); ++i) if (f->V(i) == v) { z = f->Prev(i); break;} } // Official Access functions functions VertexType *& V(){ return v; } int & E(){ return z; } FaceType *& F(){ return f; } VertexType * V() const { return v; } int E() const { return z; } FaceType * F() const { return f; } // Returns the face index of the vertex inside the face. // Note that this is DIFFERENT from using the z member that denotes the edge index inside the face. // It should holds that Vind != (z+1)%3 && Vind == z || Vind = z+2%3 int VInd() { for(int i = 0; i < f->VN(); ++i) if(v==f->V(i)) return i; assert(0); return -1; } /// Operator to compare two half-edge inline bool operator == ( PosType const & p ) const { return (f==p.f && z==p.z && v==p.v); } /// Operator to compare two half-edge inline bool operator != ( PosType const & p ) const { return (f!=p.f || z!=p.z || v!=p.v); } /// Operator to order half-edge; it's compare at the first the face pointers, then the index of the edge and finally the vertex pointers inline bool operator <= ( PosType const & p) const { return (f!=p.f)?(fFFp(z); z = t->FFi(z); } // Paolo Cignoni 19/6/99 // Si muove sulla faccia adiacente a f, lungo uno spigolo che // NON e' j, e che e' adiacente a v // in questo modo si scandiscono tutte le facce incidenti in un // vertice f facendo Next() finche' non si ritorna all'inizio // Nota che sul bordo rimbalza, cioe' se lo spigolo !=j e' di bordo // restituisce sempre la faccia f ma con nj che e' il nuovo spigolo di bordo // vecchi parametri: FaceType * & f, VertexType * v, int & j /// It moves on the adjacent face incident to v, via a different edge that j void NextE() { assert( f->V(z)==v || f->V(f->Next(z))==v ); // L'edge j deve contenere v FlipE(); FlipF(); assert( f->V(z)==v || f->V(f->Next(z))==v ); } // Cambia edge mantenendo la stessa faccia e lo stesso vertice /// Changes edge maintaining the same face and the same vertex void FlipE() { assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v)); if(f->V(f->Next(z))==v) z=f->Next(z); else z= f->Prev(z); assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v)); } // Cambia Faccia mantenendo lo stesso vertice e lo stesso edge // Vale che he.flipf.flipf= he // Se l'he e' di bordo he.flipf()==he // Si puo' usare SOLO se l'edge e' 2manifold altrimenti // si deve usare nextf /// Changes face maintaining the same vertex and the same edge void FlipF() { assert( f->FFp(z)->FFp(f->FFi(z))==f ); // two manifoldness check assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z))==v)); FaceType *nf=f->FFp(z); int nz=f->FFi(z); assert(nf->V(f->Prev(nz))!=v && (nf->V(f->Next(nz))==v || nf->V((nz))==v)); f=nf; z=nz; assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); } /// Changes vertex maintaining the same face and the same edge void FlipV() { assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); if(f->V(f->Next(z))==v) v=f->V(z); else v=f->V(f->Next(z)); assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); } // return the vertex that it should have if we make FlipV; VertexType *VFlip() { assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); if(f->V(f->Next(z))==v) return f->V(z); else return f->V(f->Next(z)); } // return the vertex that it should have if we make FlipV; const VertexType *VFlip() const { assert(f->cV(f->Prev(z))!=v && (f->cV(f->Next(z))==v || f->cV(z)==v)); if(f->cV(f->Next(z))==v) return f->cV(z); else return f->cV(f->Next(z)); } // return the face that it should have if we make FlipF; const FaceType *FFlip() const { assert( f->FFp(z)->FFp(f->FFi(z))==f ); assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V((z+0)%f->VN())==v)); FaceType *nf=f->FFp(z); return nf; } // Trova il prossimo half-edge di bordo (nhe) // tale che // --nhe.f adiacente per vertice a he.f // --nhe.v adiacente per edge di bordo a he.v // l'idea e' che se he e' un half edge di bordo // si puo scorrere tutto un bordo facendo // // hei=he; // do // hei.Nextb() // while(hei!=he); /// Finds the next half-edge border void NextB( ) { assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); assert(f->FFp(z)==f); // f is border along j // Si deve cambiare faccia intorno allo stesso vertice v //finche' non si trova una faccia di bordo. do NextE(); while(!IsBorder()); // L'edge j e' di bordo e deve contenere v assert(IsBorder() &&( f->V(z)==v || f->V(f->Next(z))==v )); FlipV(); assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); assert(f->FFp(z)==f); // f is border along j } /// Checks if the half-edge is of border bool IsBorder() { return face::IsBorder(*f,z); } bool IsManifold() { return face::IsManifold(*f,z); } /*! * Returns the number of vertices incident on the vertex pos is currently pointing to. */ int NumberOfIncidentVertices() { int count = 0; bool on_border = false; CheckIncidentFaces(count, on_border); if(on_border) return (count/2)+1; else return count; } /*! * Returns the number of faces incident on the vertex pos is currently pointing to. */ int NumberOfIncidentFaces() { int count = 0; bool on_border = false; CheckIncidentFaces(count, on_border); if(on_border) return count/2; else return count; } /*! * Returns the number of faces incident on the edge the pos is currently pointing to. * useful to compute the complexity of a non manifold edge */ int NumberOfFacesOnEdge() const { int count = 0; PosType ht = *this; do { ht.NextF(); ++count; } while (ht!=*this); return count; } /** Function to inizialize an half-edge. @param fp Puntatore alla faccia @param zp Indice dell'edge @param vp Puntatore al vertice */ void Set(FaceType * const fp, int const zp, VertexType * const vp) { f=fp;z=zp;v=vp; assert(f->V(f->Prev(z))!=v && (f->V(f->Next(z))==v || f->V(z)==v)); } void Set(FaceType * const pFace, VertexType * const pVertex) { f = pFace; v = pVertex; for(int i = 0; i < f->VN(); ++i) if(f->V(i) == v ) {z = f->Prev(i);break;} } void Assert() #ifdef _DEBUG { FaceType ht=*this; ht.FlipF(); ht.FlipF(); assert(ht==*this); ht.FlipE(); ht.FlipE(); assert(ht==*this); ht.FlipV(); ht.FlipV(); assert(ht==*this); } #else {} #endif protected: void CheckIncidentFaces(int & count, bool & on_border) { PosType ht = *this; do { ++count; ht.NextE(); if(ht.IsBorder()) on_border=true; } while (ht != *this); } }; template /** Class PosN. This structure is equivalent to a Pos, but it contains a normal. @param FaceType (Template-Parameter) Specifies the type of the faces */ class PosN : public Pos { public: typedef typename FaceType::CoordType CoordType; //normale per visualizzazione creaseangle CoordType normal; }; /** Class VFIterator. This class is used as an iterator over the VF adjacency. It allow to easily traverse all the faces around a given vertex v; The faces are traversed in no particular order. No Manifoldness requirement. typical example: VertexPointer v; vcg::face::VFIterator vfi(v); for (;!vfi.End();++vfi) vfi.F()->ClearV(); // Alternative vcg::face::VFIterator vfi(f, 1); while (!vfi.End()){ vfi.F()->ClearV(); ++vfi; } See also the JumpingPos in jumping_pos.h for an iterator that loops around the faces of a vertex using FF topology and without requiring the VF topology. */ template class VFIterator { public: /// The vertex type typedef typename FaceType::VertexType VertexType; /// The Base face type typedef FaceType VFIFaceType; /// The vector type typedef typename VertexType::CoordType CoordType; /// The scalar type typedef typename VertexType::ScalarType ScalarType; /// Pointer to the face of the half-edge FaceType *f; /// Index of the vertex int z; /// Default constructor VFIterator(){} /// Constructor which associates the half-edge elementet with a face and its vertex VFIterator(FaceType * _f, const int & _z){f = _f; z = _z; assert(z>=0 && "VFAdj must be initialized");} /// Constructor which takes a pointer to vertex VFIterator(VertexType * _v){f = _v->VFp(); z = _v->VFi(); assert(z>=0 && "VFAdj must be initialized");} VFIFaceType *& F() { return f;} int & I() { return z;} // Access to the vertex. Having a VFIterator vfi, it corresponds to // vfi.V() = vfi.F()->V(vfi.I()) inline VertexType *V() const { return f->V(z);} inline VertexType * const & V0() const { return f->V0(z);} inline VertexType * const & V1() const { return f->V1(z);} inline VertexType * const & V2() const { return f->V2(z);} bool End() const {return f==0;} VFIFaceType *operator++() { FaceType* t = f; f = f->VFp(z); z = t->VFi(z); return f; } }; /*@}*/ } // end namespace } // end namespace #endif