/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.27 2005/06/17 05:28:47 cignoni Completed Shear Matrix code and comments, Added use of swap inside Transpose Added more complete comments on the usage of Decompose Revision 1.26 2005/06/10 15:04:12 cignoni Added Various missing functions: SetShearXY, SetShearXZ, SetShearYZ, SetScale for point3 and Decompose Completed *=(scalar); made uniform GetRow and GetColumn Revision 1.25 2005/04/14 11:35:09 ponchio *** empty log message *** Revision 1.24 2005/03/18 00:14:39 cignoni removed small gcc compiling issues Revision 1.23 2005/03/15 11:40:56 cignoni Added operator*=( std::vector ...) to apply a matrix to a vector of vertexes (replacement of the old style mesh.Apply(tr). Revision 1.22 2004/12/15 18:45:50 tommyfranken *** empty log message *** Revision 1.21 2004/10/22 14:41:30 ponchio return in operator+ added. Revision 1.20 2004/10/18 15:03:14 fiorin Updated interface: all Matrix classes have now the same interface Revision 1.19 2004/10/07 14:23:57 ganovelli added function to take rows and comlumns. Added toMatrix and fromMatrix to comply RotationTYpe prototype in Similarity.h Revision 1.18 2004/05/28 13:01:50 ganovelli changed scalar to ScalarType Revision 1.17 2004/05/26 15:09:32 cignoni better comments in set rotate Revision 1.16 2004/05/07 10:05:50 cignoni Corrected abuse of for index variable scope Revision 1.15 2004/05/04 23:19:41 cignoni Clarified initial comment, removed vector*matrix operator (confusing!) Corrected translate and Rotate, removed gl stuff. Revision 1.14 2004/05/04 02:34:03 ganovelli wrong use of operator [] corrected Revision 1.13 2004/04/07 10:45:54 cignoni Added: [i][j] access, V() for the raw float values, constructor from T[16] Revision 1.12 2004/03/25 14:57:49 ponchio ****************************************************************************/ #ifndef __VCGLIB_MATRIX44 #define __VCGLIB_MATRIX44 #include #include #include #include #include namespace vcg { /* Annotations: Opengl stores matrix in column-major order. That is, the matrix is stored as: a0 a4 a8 a12 a1 a5 a9 a13 a2 a6 a10 a14 a3 a7 a11 a15 Usually in opengl (see opengl specs) vectors are 'column' vectors so usually matrix are PRE-multiplied for a vector. So the command glTranslate generate a matrix that is ready to be premultipled for a vector: 1 0 0 tx 0 1 0 ty 0 0 1 tz 0 0 0 1 Matrix44 stores matrix in row-major order i.e. a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 So for the use of that matrix in opengl with their supposed meaning you have to transpose them before feeding to glMultMatrix. This mechanism is hidden by the templated function defined in wrap/gl/math.h; If your machine has the ARB_transpose_matrix extension it will use the appropriate; The various gl-like command SetRotate, SetTranslate assume that you are making matrix for 'column' vectors. */ template class Matrix44Diag:public Point4{ public: /** @name Matrix33 Class Matrix33Diag. This is the class for definition of a diagonal matrix 4x4. @param S (Templete Parameter) Specifies the ScalarType field. */ Matrix44Diag(const S & p0,const S & p1,const S & p2,const S & p3):Point4(p0,p1,p2,p3){}; Matrix44Diag( const Point4 & p ):Point4(p){}; }; /** This class represent a 4x4 matrix. T is the kind of element in the matrix. */ template class Matrix44 { protected: T _a[16]; public: typedef T ScalarType; ///@{ /** $name Constructors * No automatic casting and default constructor is empty */ Matrix44() {}; ~Matrix44() {}; Matrix44(const Matrix44 &m); Matrix44(const T v[]); /// Number of columns inline unsigned int ColumnsNumber() const { return 4; }; /// Number of rows inline unsigned int RowsNumber() const { return 4; }; T &ElementAt(const int row, const int col); T ElementAt(const int row, const int col) const; //T &operator[](const int i); //const T &operator[](const int i) const; T *V(); const T *V() const ; T *operator[](const int i); const T *operator[](const int i) const; // return a copy of the i-th column Point4 GetColumn4(const int& i)const{ assert(i>=0 && i<4); return Point4(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i),ElementAt(3,i)); //return Point4(_a[i],_a[i+4],_a[i+8],_a[i+12]); } Point3 GetColumn3(const int& i)const{ assert(i>=0 && i<4); return Point3(ElementAt(0,i),ElementAt(1,i),ElementAt(2,i)); } Point4 GetRow4(const int& i)const{ assert(i>=0 && i<4); return Point4(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2),ElementAt(i,3)); // return *((Point4*)(&_a[i<<2])); alternativa forse + efficiente } Point3 GetRow3(const int& i)const{ assert(i>=0 && i<4); return Point3(ElementAt(i,0),ElementAt(i,1),ElementAt(i,2)); // return *((Point4*)(&_a[i<<2])); alternativa forse + efficiente } Matrix44 operator+(const Matrix44 &m) const; Matrix44 operator-(const Matrix44 &m) const; Matrix44 operator*(const Matrix44 &m) const; Matrix44 operator*(const Matrix44Diag &m) const; Point4 operator*(const Point4 &v) const; bool operator==(const Matrix44 &m) const; bool operator!= (const Matrix44 &m) const; Matrix44 operator-() const; Matrix44 operator*(const T k) const; void operator+=(const Matrix44 &m); void operator-=(const Matrix44 &m); void operator*=( const Matrix44 & m ); void operator*=( const T k ); template void ToMatrix(Matrix44Type & m) const {for(int i = 0; i < 16; i++) m.V()[i]=V()[i];} template void FromMatrix(const Matrix44Type & m){for(int i = 0; i < 16; i++) V()[i]=m.V()[i];} void SetZero(); void SetIdentity(); void SetDiagonal(const T k); Matrix44 &SetScale(const T sx, const T sy, const T sz); Matrix44 &SetScale(const Point3 &t); Matrix44 &SetTranslate(const Point3 &t); Matrix44 &SetTranslate(const T sx, const T sy, const T sz); Matrix44 &SetShearXY(const T sz); Matrix44 &SetShearXZ(const T sy); Matrix44 &SetShearYZ(const T sx); ///use radiants for angle. Matrix44 &SetRotate(T AngleRad, const Point3 & axis); T Determinant() const; template void Import(const Matrix44 &m) { for(int i = 0; i < 16; i++) _a[i] = (T)(m.V()[i]); } }; /** Class for solving A * x = b. */ template class LinearSolve: public Matrix44 { public: LinearSolve(const Matrix44 &m); Point4 Solve(const Point4 &b); // solve A · x = b ///If you need to solve some equation you can use this function instead of Matrix44 one for speed. T Determinant() const; protected: ///Holds row permutation. int index[4]; //hold permutation ///Hold sign of row permutation (used for determinant sign) T d; bool Decompose(); }; /*** Postmultiply */ //template Point3 operator*(const Point3 &p, const Matrix44 &m); ///Premultiply template Point3 operator*(const Matrix44 &m, const Point3 &p); template Matrix44 &Transpose(Matrix44 &m); //return NULL matrix if not invertible template Matrix44 &Invert(Matrix44 &m); template Matrix44 Inverse(const Matrix44 &m); typedef Matrix44 Matrix44s; typedef Matrix44 Matrix44i; typedef Matrix44 Matrix44f; typedef Matrix44 Matrix44d; template Matrix44::Matrix44(const Matrix44 &m) { memcpy((T *)_a, (T *)m._a, 16 * sizeof(T)); } template Matrix44::Matrix44(const T v[]) { memcpy((T *)_a, v, 16 * sizeof(T)); } template T &Matrix44::ElementAt(const int row, const int col) { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } template T Matrix44::ElementAt(const int row, const int col) const { assert(row >= 0 && row < 4); assert(col >= 0 && col < 4); return _a[(row<<2) + col]; } //template T &Matrix44::operator[](const int i) { // assert(i >= 0 && i < 16); // return ((T *)_a)[i]; //} // //template const T &Matrix44::operator[](const int i) const { // assert(i >= 0 && i < 16); // return ((T *)_a)[i]; //} template T *Matrix44::operator[](const int i) { assert(i >= 0 && i < 16); return _a+i*4; } template const T *Matrix44::operator[](const int i) const { assert(i >= 0 && i < 4); return _a+i*4; } template T *Matrix44::V() { return _a;} template const T *Matrix44::V() const { return _a;} template Matrix44 Matrix44::operator+(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret.V()[i] = V()[i] + m.V()[i]; return ret; } template Matrix44 Matrix44::operator-(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 16; i++) ret.V()[i] = V()[i] - m.V()[i]; return ret; } template Matrix44 Matrix44::operator*(const Matrix44 &m) const { Matrix44 ret; for(int i = 0; i < 4; i++) for(int j = 0; j < 4; j++) { T t = 0.0; for(int k = 0; k < 4; k++) t += ElementAt(i, k) * m.ElementAt(k, j); ret.ElementAt(i, j) = t; } return ret; } template Matrix44 Matrix44::operator*(const Matrix44Diag &m) const { Matrix44 ret = (*this); for(int i = 0; i < 4; ++i) for(int j = 0; j < 4; ++j) ret[i][j]*=m[i]; return ret; } template Point4 Matrix44::operator*(const Point4 &v) const { Point4 ret; for(int i = 0; i < 4; i++){ T t = 0.0; for(int k = 0; k < 4; k++) t += ElementAt(i,k) * v[k]; ret[i] = t; } return ret; } template bool Matrix44::operator==(const Matrix44 &m) const { for(int i = 0 ; i < 16; i++) if(operator[](i) != m[i]) return false; return true; } template bool Matrix44::operator!=(const Matrix44 &m) const { for(int i = 0 ; i < 16; i++) if(operator[](i) != m[i]) return true; return false; } template Matrix44 Matrix44::operator-() const { Matrix44 res; for(int i = 0; i < 16; i++) res.V()[i] = -V()[i]; return res; } template Matrix44 Matrix44::operator*(const T k) const { Matrix44 res; for(int i = 0; i < 16; i++) res.V()[i] =V()[i] * k; return res; } template void Matrix44::operator+=(const Matrix44 &m) { for(int i = 0; i < 16; i++) V()[i] += m.V()[i]; } template void Matrix44::operator-=(const Matrix44 &m) { for(int i = 0; i < 16; i++) V()[i] -= m.V()[i]; } template void Matrix44::operator*=( const Matrix44 & m ) { *this = *this *m; /*for(int i = 0; i < 4; i++) { //sbagliato Point4 t(0, 0, 0, 0); for(int k = 0; k < 4; k++) { for(int j = 0; j < 4; j++) { t[k] += ElementAt(i, k) * m.ElementAt(k, j); } } for(int l = 0; l < 4; l++) ElementAt(i, l) = t[l]; } */ } template < class PointType , class T > void operator*=( std::vector &vert, const Matrix44 & m ) { typename std::vector::iterator ii; for(ii=vert.begin();ii!=vert.end();++ii) (*ii).P()=m * (*ii).P(); } template void Matrix44::operator*=( const T k ) { for(int i = 0; i < 16; i++) _a[i] *= k; } template void Matrix44::SetZero() { memset((T *)_a, 0, 16 * sizeof(T)); } template void Matrix44::SetIdentity() { SetDiagonal(1); } template void Matrix44::SetDiagonal(const T k) { SetZero(); ElementAt(0, 0) = k; ElementAt(1, 1) = k; ElementAt(2, 2) = k; ElementAt(3, 3) = 1; } template Matrix44 &Matrix44::SetScale(const Point3 &t) { SetScale(t[0], t[1], t[2]); return *this; } template Matrix44 &Matrix44::SetScale(const T sx, const T sy, const T sz) { SetZero(); ElementAt(0, 0) = sx; ElementAt(1, 1) = sy; ElementAt(2, 2) = sz; ElementAt(3, 3) = 1; return *this; } template Matrix44 &Matrix44::SetTranslate(const Point3 &t) { SetTranslate(t[0], t[1], t[2]); return *this; } template Matrix44 &Matrix44::SetTranslate(const T sx, const T sy, const T sz) { SetIdentity(); ElementAt(0, 3) = sx; ElementAt(1, 3) = sy; ElementAt(2, 3) = sz; return *this; } template Matrix44 &Matrix44::SetRotate(T AngleRad, const Point3 & axis) { //angle = angle*(T)3.14159265358979323846/180; e' in radianti! T c = math::Cos(AngleRad); T s = math::Sin(AngleRad); T q = 1-c; Point3 t = axis; t.Normalize(); ElementAt(0,0) = t[0]*t[0]*q + c; ElementAt(0,1) = t[0]*t[1]*q - t[2]*s; ElementAt(0,2) = t[0]*t[2]*q + t[1]*s; ElementAt(0,3) = 0; ElementAt(1,0) = t[1]*t[0]*q + t[2]*s; ElementAt(1,1) = t[1]*t[1]*q + c; ElementAt(1,2) = t[1]*t[2]*q - t[0]*s; ElementAt(1,3) = 0; ElementAt(2,0) = t[2]*t[0]*q -t[1]*s; ElementAt(2,1) = t[2]*t[1]*q +t[0]*s; ElementAt(2,2) = t[2]*t[2]*q +c; ElementAt(2,3) = 0; ElementAt(3,0) = 0; ElementAt(3,1) = 0; ElementAt(3,2) = 0; ElementAt(3,3) = 1; return *this; } /* Shear Matrixes XY 1 k 0 0 x x+ky 0 1 0 0 y y 0 0 1 0 z z 0 0 0 1 1 1 1 0 k 0 x x+kz 0 1 0 0 y y 0 0 1 0 z z 0 0 0 1 1 1 1 1 0 0 x x 0 1 k 0 y y+kz 0 0 1 0 z z 0 0 0 1 1 1 */ template Matrix44 & Matrix44:: SetShearXY( const T sh) {// shear the X coordinate as the Y coordinate change SetIdentity(); ElementAt(0,1) = sh; return *this; } template Matrix44 & Matrix44:: SetShearXZ( const T sh) {// shear the X coordinate as the Z coordinate change SetIdentity(); ElementAt(0,2) = sh; return *this; } template Matrix44 &Matrix44:: SetShearYZ( const T sh) {// shear the Y coordinate as the Z coordinate change SetIdentity(); ElementAt(1,2) = sh; return *this; } /* Given a non singular, non projective matrix (e.g. with the last row equal to [0,0,0,1] ) This procedure decompose it in a sequence of Scale,Shear,Rotation e Translation - ScaleV and Tranv are obiviously scaling and translation. - ShearV contains three scalars with, respectively ShearXY, ShearXZ e ShearYZ - RotateV contains the rotations (in degree!) around the x,y,z axis The input matrix is modified leaving inside it a simple roto translation. To obtain the original matrix the above transformation have to be applied in the strict following way: OriginalMatrix = Trn * Rtx*Rty*Rtz * ShearYZ*ShearXZ*ShearXY * Scl Example Code: double srv() { return (double(rand()%40)-20)/2.0; } // small random value srand(time(0)); Point3d ScV(10+srv(),10+srv(),10+srv()),ScVOut(-1,-1,-1); Point3d ShV(srv(),srv(),srv()),ShVOut(-1,-1,-1); Point3d RtV(10+srv(),srv(),srv()),RtVOut(-1,-1,-1); Point3d TrV(srv(),srv(),srv()),TrVOut(-1,-1,-1); Matrix44d Scl; Scl.SetScale(ScV); Matrix44d Sxy; Sxy.SetShearXY(ShV[0]); Matrix44d Sxz; Sxz.SetShearXZ(ShV[1]); Matrix44d Syz; Syz.SetShearYZ(ShV[2]); Matrix44d Rtx; Rtx.SetRotate(math::ToRad(RtV[0]),Point3d(1,0,0)); Matrix44d Rty; Rty.SetRotate(math::ToRad(RtV[1]),Point3d(0,1,0)); Matrix44d Rtz; Rtz.SetRotate(math::ToRad(RtV[2]),Point3d(0,0,1)); Matrix44d Trn; Trn.SetTranslate(TrV); Matrix44d StartM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy *Scl; Matrix44d ResultM=StartM; Decompose(ResultM,ScVOut,ShVOut,RtVOut,TrVOut); Scl.SetScale(ScVOut); Sxy.SetShearXY(ShVOut[0]); Sxz.SetShearXZ(ShVOut[1]); Syz.SetShearYZ(ShVOut[2]); Rtx.SetRotate(math::ToRad(RtVOut[0]),Point3d(1,0,0)); Rty.SetRotate(math::ToRad(RtVOut[1]),Point3d(0,1,0)); Rtz.SetRotate(math::ToRad(RtVOut[2]),Point3d(0,0,1)); Trn.SetTranslate(TrVOut); // Now Rebuild is equal to StartM Matrix44d RebuildM = Trn * Rtx*Rty*Rtz * Syz*Sxz*Sxy * Scl ; */ template bool Decompose(Matrix44 &M, Point3 &ScaleV, Point3 &ShearV, Point3 &RotV,Point3 &TranV) { if(!(M[3][0]==0 && M[3][1]==0 && M[3][2]==0 && M[3][3]==1) ) // the matrix is projective return false; if(math::Abs(M.Determinant())<1e-10) return false; // matrix should be at least invertible... // First Step recover the traslation TranV=M.GetColumn3(3); // Second Step Recover Scale and Shearing interleaved ScaleV[0]=Norm(M.GetColumn3(0)); Point3d R[3]; R[0]=M.GetColumn3(0); R[0].Normalize(); ShearV[0]=R[0]*M.GetColumn3(1); // xy shearing R[1]= M.GetColumn3(1)-R[0]*ShearV[0]; assert(math::Abs(R[1]*R[0])<1e-10); ScaleV[1]=Norm(R[1]); // y scaling R[1]=R[1]/ScaleV[1]; ShearV[0]=ShearV[0]/ScaleV[1]; ShearV[1]=R[0]*M.GetColumn3(2); // xz shearing R[2]= M.GetColumn3(2)-R[0]*ShearV[1]; assert(math::Abs(R[2]*R[0])<1e-10); R[2] = R[2]-R[1]*(R[2]*R[1]); assert(math::Abs(R[2]*R[1])<1e-10); assert(math::Abs(R[2]*R[0])<1e-10); ScaleV[2]=Norm(R[2]); ShearV[1]=ShearV[1]/ScaleV[2]; R[2]=R[2]/ScaleV[2]; assert(math::Abs(R[2]*R[1])<1e-10); assert(math::Abs(R[2]*R[0])<1e-10); ShearV[2]=R[1]*M.GetColumn3(2); // yz shearing ShearV[2]=ShearV[2]/ScaleV[2]; int i,j; for(i=0;i<3;++i) for(j=0;j<3;++j) M[i][j]=R[j][i]; // Third and last step: Recover the rotation //now the matrix should be a pure rotation matrix so its determinant is +-1 double det=M.Determinant(); if(math::Abs(det)<1e-10) return false; // matrix should be at least invertible... assert(math::Abs(math::Abs(det)-1.0)<1e-10); // it should be +-1... if(det<0) { ScaleV *= -1; M *= -1; } double alpha,beta,gamma; // rotations around the x,y and z axis beta=asin( M[0][2]); double cosbeta=cos(beta); if(math::Abs(cosbeta) > 1e-5) { alpha=asin(-M[1][2]/cosbeta); if((M[2][2]/cosbeta) < 0 ) alpha=M_PI-alpha; gamma=asin(-M[0][1]/cosbeta); if((M[0][0]/cosbeta)<0) gamma = M_PI-gamma; } else { alpha=asin(-M[1][0]); if(M[1][1]<0) alpha=M_PI-alpha; gamma=0; } RotV[0]=math::ToDeg(alpha); RotV[1]=math::ToDeg(beta); RotV[2]=math::ToDeg(gamma); return true; } template T Matrix44::Determinant() const { LinearSolve solve(*this); return solve.Determinant(); } template Point3 operator*(const Matrix44 &m, const Point3 &p) { T w; Point3 s; s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3); s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3); s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3); w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3); if(w!= 0) s /= w; return s; } //template Point3 operator*(const Point3 &p, const Matrix44 &m) { // T w; // Point3 s; // s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(1, 0)*p[1] + m.ElementAt(2, 0)*p[2] + m.ElementAt(3, 0); // s[1] = m.ElementAt(0, 1)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(2, 1)*p[2] + m.ElementAt(3, 1); // s[2] = m.ElementAt(0, 2)*p[0] + m.ElementAt(1, 2)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(3, 2); // w = m.ElementAt(0, 3)*p[0] + m.ElementAt(1, 3)*p[1] + m.ElementAt(2, 3)*p[2] + m.ElementAt(3, 3); // if(w != 0) s /= w; // return s; //} template Matrix44 &Transpose(Matrix44 &m) { for(int i = 1; i < 4; i++) for(int j = 0; j < i; j++) { math::Swap(m.ElementAt(i, j), m.ElementAt(j, i)); } return m; } template Matrix44 &Invert(Matrix44 &m) { LinearSolve solve(m); for(int j = 0; j < 4; j++) { //Find inverse by columns. Point4 col(0, 0, 0, 0); col[j] = 1.0; col = solve.Solve(col); for(int i = 0; i < 4; i++) m.ElementAt(i, j) = col[i]; } return m; } template Matrix44 Inverse(const Matrix44 &m) { LinearSolve solve(m); Matrix44 res; for(int j = 0; j < 4; j++) { //Find inverse by columns. Point4 col(0, 0, 0, 0); col[j] = 1.0; col = solve.Solve(col); for(int i = 0; i < 4; i++) res.ElementAt(i, j) = col[i]; } return res; } /* LINEAR SOLVE IMPLEMENTATION */ template LinearSolve::LinearSolve(const Matrix44 &m): Matrix44(m) { if(!Decompose()) { for(int i = 0; i < 4; i++) index[i] = i; Matrix44::SetZero(); } } template T LinearSolve::Determinant() const { T det = d; for(int j = 0; j < 4; j++) det *= this-> ElementAt(j, j); return det; } /*replaces a matrix by its LU decomposition of a rowwise permutation. d is +or -1 depeneing of row permutation even or odd.*/ #define TINY 1e-100 template bool LinearSolve::Decompose() { /* Matrix44 A; for(int i = 0; i < 16; i++) A[i] = operator[](i); SetIdentity(); Point4 scale; // Set scale factor, scale(i) = max( |a(i,j)| ), for each row for(int i = 0; i < 4; i++ ) { index[i] = i; // Initialize row index list T scalemax = (T)0.0; for(int j = 0; j < 4; j++) scalemax = (scalemax > math::Abs(A.ElementAt(i,j))) ? scalemax : math::Abs(A.ElementAt(i,j)); scale[i] = scalemax; } // Loop over rows k = 1, ..., (N-1) int signDet = 1; for(int k = 0; k < 3; k++ ) { // Select pivot row from max( |a(j,k)/s(j)| ) T ratiomax = (T)0.0; int jPivot = k; for(int i = k; i < 4; i++ ) { T ratio = math::Abs(A.ElementAt(index[i], k))/scale[index[i]]; if(ratio > ratiomax) { jPivot = i; ratiomax = ratio; } } // Perform pivoting using row index list int indexJ = index[k]; if( jPivot != k ) { // Pivot indexJ = index[jPivot]; index[jPivot] = index[k]; // Swap index jPivot and k index[k] = indexJ; signDet *= -1; // Flip sign of determinant } // Perform forward elimination for(int i=k+1; i < 4; i++ ) { T coeff = A.ElementAt(index[i],k)/A.ElementAt(indexJ,k); for(int j=k+1; j < 4; j++ ) A.ElementAt(index[i],j) -= coeff*A.ElementAt(indexJ,j); A.ElementAt(index[i],k) = coeff; //for( j=1; j< 4; j++ ) // ElementAt(index[i],j) -= A.ElementAt(index[i], k)*ElementAt(indexJ, j); } } for(int i = 0; i < 16; i++) operator[](i) = A[i]; d = signDet; // this = A; return true; */ d = 1; //no permutation still T scaling[4]; int i,j,k; //Saving the scvaling information per row for(i = 0; i < 4; i++) { T largest = 0.0; for(j = 0; j < 4; j++) { T t = math::Abs(this->ElementAt(i, j)); if (t > largest) largest = t; } if (largest == 0.0) { //oooppps there is a zero row! return false; } scaling[i] = (T)1.0 / largest; } int imax; for(j = 0; j < 4; j++) { for(i = 0; i < j; i++) { T sum = this->ElementAt(i,j); for(int k = 0; k < i; k++) sum -= this->ElementAt(i,k)*this->ElementAt(k,j); this->ElementAt(i,j) = sum; } T largest = 0.0; for(i = j; i < 4; i++) { T sum = this->ElementAt(i,j); for(k = 0; k < j; k++) sum -= this->ElementAt(i,k)*this->ElementAt(k,j); this->ElementAt(i,j) = sum; T t = scaling[i] * math::Abs(sum); if(t >= largest) { largest = t; imax = i; } } if (j != imax) { for (int k = 0; k < 4; k++) { T dum = this->ElementAt(imax,k); this->ElementAt(imax,k) = this->ElementAt(j,k); this->ElementAt(j,k) = dum; } d = -(d); scaling[imax] = scaling[j]; } index[j]=imax; if (this->ElementAt(j,j) == 0.0) this->ElementAt(j,j) = (T)TINY; if (j != 3) { T dum = (T)1.0 / (this->ElementAt(j,j)); for (i = j+1; i < 4; i++) this->ElementAt(i,j) *= dum; } } return true; } template Point4 LinearSolve::Solve(const Point4 &b) { Point4 x(b); int first = -1, ip; for(int i = 0; i < 4; i++) { ip = index[i]; T sum = x[ip]; x[ip] = x[i]; if(first!= -1) for(int j = first; j <= i-1; j++) sum -= this->ElementAt(i,j) * x[j]; else if(sum) first = i; x[i] = sum; } for (int i = 3; i >= 0; i--) { T sum = x[i]; for (int j = i+1; j < 4; j++) sum -= this->ElementAt(i, j) * x[j]; x[i] = sum / this->ElementAt(i, i); } return x; } } //namespace #endif