/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.16 2008/04/03 23:15:40 cignoni added optional mark and cleaned up some nasty type bugs. Revision 1.15 2008/03/17 11:39:15 ganovelli added curvature and curvatruredir (compiled .net 2005 and gcc) Revision 1.14 2008/03/11 09:22:07 cignoni Completed the garbage collecting functions CompactVertexVector and CompactFaceVector. Revision 1.13 2008/02/05 20:42:43 cignoni Other small typos Revision 1.12 2008/02/04 21:26:49 ganovelli added ImportLocal which imports all local attributes into vertexplus and faceplus. A local attribute is everything (N(), C(), Q()....) except pointers to other simplices (i.e. FFAdj, VFAdj, VertexRef) which are set to NULL. Added some function for const attributes Revision 1.11 2007/12/11 18:25:31 cignoni added missing include limits Revision 1.10 2007/12/11 11:36:03 cignoni Added the CompactVertexVector garbage collecting function. Revision 1.9 2006/12/11 23:42:00 ganovelli bug Index()() instead of Index() Revision 1.8 2006/12/04 11:17:42 ganovelli added forward declaration of TriMesh Revision 1.7 2006/11/07 17:22:52 cignoni many gcc compiling issues Revision 1.6 2006/11/07 15:13:57 zifnab1974 Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem Revision 1.5 2006/11/07 11:29:24 cignoni Corrected some errors in the reflections Has*** functions Revision 1.4 2006/10/31 16:02:59 ganovelli vesione 2005 compliant Revision 1.3 2006/02/28 11:59:55 ponchio g++ compliance: begin() -> (*this).begin() and for end(), size(), Base(), Index() Revision 1.2 2005/12/12 11:17:32 cignoni Corrected update function, now only the needed simplexes should be updated. Revision 1.1 2005/10/14 15:07:59 cignoni First Really Working version ****************************************************************************/ /* Note OCF = Optional Component Fast (hopefully) compare with OCC(Optional Component Compact) Mainly the trick here is to store a base pointer in each simplex... ****************************************************************************/ #ifndef __VCG_VERTEX_PLUS_COMPONENT_OCF #define __VCG_VERTEX_PLUS_COMPONENT_OCF #include #include #include namespace vcg { namespace vertex { /* All the Components that can be added to a vertex should be defined in the namespace vert: */ template class vector_ocf: public std::vector { typedef std::vector BaseType; typedef typename vector_ocf::iterator ThisTypeIterator; public: vector_ocf():std::vector(){ QualityEnabled = false; ColorEnabled = false; MarkEnabled = false; NormalEnabled = false; VFAdjacencyEnabled = false; CurvatureEnabled = false; CurvatureEnabled = false; CurvatureDirEnabled = false; RadiusEnabled = false; } // override di tutte le funzioni che possono spostare // l'allocazione in memoria del container void push_back(const VALUE_TYPE & v) { BaseType::push_back(v); BaseType::back()._ovp = this; if (ColorEnabled) CV.push_back(vcg::Color4b(vcg::Color4b::White)); if (MarkEnabled) MV.push_back(0); if (NormalEnabled) NV.push_back(typename VALUE_TYPE::NormalType()); if (VFAdjacencyEnabled) AV.push_back(VFAdjType()); if (CurvatureEnabled) CuV.push_back(typename VALUE_TYPE::CurvatureType()); if (CurvatureDirEnabled) CuDV.push_back(typename VALUE_TYPE::CurvatureDirType()); if (RadiusEnabled) RadiusV.push_back(typename VALUE_TYPE::RadiusType()); } void pop_back(); void resize(const unsigned int & _size) { const unsigned int oldsize = BaseType::size(); BaseType::resize(_size); if(oldsize<_size){ ThisTypeIterator firstnew = BaseType::begin(); advance(firstnew,oldsize); _updateOVP(firstnew,(*this).end()); } if (ColorEnabled) CV.resize(_size); if (MarkEnabled) MV.resize(_size); if (NormalEnabled) NV.resize(_size); if (VFAdjacencyEnabled) AV.resize(_size); if (CurvatureEnabled) CuV.resize(_size); if (CurvatureDirEnabled) CuDV.resize(_size); if (RadiusEnabled) RadiusV.resize(_size); } void reserve(const unsigned int & _size) { BaseType::reserve(_size); if (ColorEnabled) CV.reserve(_size); if (MarkEnabled) MV.reserve(_size); if (NormalEnabled) NV.reserve(_size); if (VFAdjacencyEnabled) AV.reserve(_size); if (CurvatureEnabled) CuV.reserve(_size); if (CurvatureDirEnabled) CuDV.reserve(_size); if (RadiusEnabled) RadiusV.reserve(_size); } void _updateOVP(ThisTypeIterator lbegin, ThisTypeIterator lend) { ThisTypeIterator vi; for(vi=lbegin;vi!=lend;++vi) (*vi)._ovp=this; } // this function is called by the specialized Reorder function, that is called whenever someone call the allocator::CompactVertVector void ReorderVert(std::vector &newVertIndex ) { size_t i=0; if (ColorEnabled) assert( CV.size() == newVertIndex.size() ); if (MarkEnabled) assert( MV.size() == newVertIndex.size() ); if (NormalEnabled) assert( NV.size() == newVertIndex.size() ); if (VFAdjacencyEnabled) assert( AV.size() == newVertIndex.size() ); if (CurvatureEnabled) assert(CuV.size() == newVertIndex.size() ); if (CurvatureDirEnabled)assert(CuDV.size() == newVertIndex.size() ); assert( (!RadiusEnabled) || RadiusV.size() == newVertIndex.size() ); for(i=0;i::max() ) { assert(newVertIndex[i] <= i); if (ColorEnabled) CV[newVertIndex[i]] = CV[i]; if (MarkEnabled) MV[newVertIndex[i]] = MV[i]; if (NormalEnabled) NV[newVertIndex[i]] = NV[i]; if (VFAdjacencyEnabled) AV[newVertIndex[i]] = AV[i]; if (CurvatureEnabled) CuV[newVertIndex[i]] = CuV[i]; if (CurvatureDirEnabled) CuDV[newVertIndex[i]] =CuDV[i]; if (RadiusEnabled) RadiusV[newVertIndex[i]] = RadiusV[i]; } } if (ColorEnabled) CV.resize(BaseType::size()); if (MarkEnabled) MV.resize(BaseType::size()); if (NormalEnabled) NV.resize(BaseType::size()); if (VFAdjacencyEnabled) AV.resize(BaseType::size()); if (CurvatureEnabled) CuV.resize(BaseType::size()); if (CurvatureDirEnabled) CuDV.resize(BaseType::size()); if (RadiusEnabled) RadiusV.resize(BaseType::size()); } //////////////////////////////////////// // Enabling Eunctions bool IsQualityEnabled() const {return QualityEnabled;} void EnableQuality() { assert(VALUE_TYPE::HasQualityOcf()); QualityEnabled=true; QV.resize((*this).size()); } void DisableQuality() { assert(VALUE_TYPE::HasQualityOcf()); QualityEnabled=false; QV.clear(); } bool IsColorEnabled() const {return ColorEnabled;} void EnableColor() { assert(VALUE_TYPE::HasColorOcf()); ColorEnabled=true; CV.resize((*this).size()); } void DisableColor() { assert(VALUE_TYPE::HasColorOcf()); ColorEnabled=false; CV.clear(); } bool IsMarkEnabled() const {return MarkEnabled;} void EnableMark() { assert(VALUE_TYPE::HasMarkOcf()); MarkEnabled=true; MV.resize((*this).size()); } void DisableMark() { assert(VALUE_TYPE::HasMarkOcf()); MarkEnabled=false; MV.clear(); } bool IsNormalEnabled() const {return NormalEnabled;} void EnableNormal() { assert(VALUE_TYPE::HasNormalOcf()); NormalEnabled=true; NV.resize((*this).size()); } void DisableNormal() { assert(VALUE_TYPE::HasNormalOcf()); NormalEnabled=false; NV.clear(); } void EnableVFAdjacency() { assert(VALUE_TYPE::HasVFAdjacencyOcf()); VFAdjacencyEnabled=true; AV.resize((*this).size()); } void DisableVFAdjacency() { assert(VALUE_TYPE::HasVFAdjacencyOcf()); VFAdjacencyEnabled=false; AV.clear(); } bool IsCurvatureEnabled() const {return CurvatureEnabled;} void EnableCurvature() { assert(VALUE_TYPE::HasCurvatureOcf()); CurvatureEnabled=true; CuV.resize((*this).size()); } void DisableCurvature() { assert(VALUE_TYPE::HasCurvatureOcf()); CurvatureEnabled=false; CuV.clear(); } bool IsCurvatureDirEnabled() const {return CurvatureDirEnabled;} void EnableCurvatureDir() { assert(VALUE_TYPE::HasCurvatureDirOcf()); CurvatureDirEnabled=true; CuDV.resize((*this).size()); } void DisableCurvatureDir() { assert(VALUE_TYPE::HasCurvatureDirOcf()); CurvatureDirEnabled=false; CuDV.clear(); } bool IsRadiusEnabled() const {return RadiusEnabled;} void EnableRadius() { assert(VALUE_TYPE::HasRadiusOcf()); RadiusEnabled=true; RadiusV.resize((*this).size()); } void DisableRadius() { assert(VALUE_TYPE::HasRadiusOcf()); RadiusEnabled=false; RadiusV.clear(); } struct VFAdjType { typename VALUE_TYPE::FacePointer _fp ; int _zp ; }; public: std::vector QV; std::vector CuV; std::vector CuDV; std::vector RadiusV; std::vector CV; std::vector NV; std::vector AV; std::vector MV; bool QualityEnabled; bool ColorEnabled; bool NormalEnabled; bool VFAdjacencyEnabled; bool CurvatureEnabled; bool CurvatureDirEnabled; bool MarkEnabled; bool RadiusEnabled; }; //template<> void EnableAttribute(){ NormalEnabled=true;} /*------------------------- COORD -----------------------------------------*/ /*----------------------------- VFADJ ------------------------------*/ template class VFAdjOcf: public T { public: typename T::FacePointer &VFp() { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._fp; } typename T::FacePointer cVFp() const { if(! (*this).Base().VFAdjacencyEnabled ) return 0; else return (*this).Base().AV[(*this).Index()]._fp; } int &VFi() { assert((*this).Base().VFAdjacencyEnabled); return (*this).Base().AV[(*this).Index()]._zp; } template void ImportLocal(const LeftV & leftV) { if((*this).Base().VFAdjacencyEnabled) // init the data only if they are enabled! { VFp() = NULL; VFi() = -1; } T::ImportLocal(leftV); } static bool HasVFAdjacency() { return true; } static bool HasVFAdjacencyOcf() {assert(!T::HasVFAdjacencyOcf()); return true; } private: }; /*------------------------- Normal -----------------------------------------*/ template class NormalOcf: public T { public: typedef A NormalType; static bool HasNormal() { return true; } static bool HasNormalOcf() { return true; } NormalType &N() { // you cannot use Normals before enabling them with: yourmesh.vert.EnableNormal() assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } const NormalType &N() const { // you cannot use Normals before enabling them with: yourmesh.vert.EnableNormal() assert((*this).Base().NormalEnabled); return (*this).Base().NV[(*this).Index()]; } template void ImportLocal(const LeftV & leftV){ if((*this).Base().NormalEnabled && leftV.Base().NormalEnabled ) // copy the data only if they are enabled in both vertices N().Import(leftV.cN()); T::ImporLocal(leftV);} }; template class Normal3sOcf: public NormalOcf {}; template class Normal3fOcf: public NormalOcf {}; template class Normal3dOcf: public NormalOcf {}; ///*-------------------------- COLOR ----------------------------------*/ template class ColorOcf: public T { public: typedef A ColorType; ColorType &C() { assert((*this).Base().NormalEnabled); return (*this).Base().CV[(*this).Index()]; } const ColorType &cC() const { assert((*this).Base().ColorEnabled); return (*this).Base().CV[(*this).Index()]; } template void ImportLocal(const LeftV & leftV) { if((*this).Base().ColorEnabled && leftV.Base().ColorEnabled ) // copy the data only if they are enabled in both vertices C() = leftV.cC(); T::ImporLocal(leftV); } static bool HasColor() { return true; } static bool HasColorOcf() { assert(!T::HasColorOcf()); return true; } }; template class Color4bOcf: public ColorOcf {}; ///*-------------------------- QUALITY ----------------------------------*/ template class QualityOcf: public T { public: typedef A QualityType; QualityType &Q() { assert((*this).Base().QualityEnabled); return (*this).Base().QV[(*this).Index()]; } template void ImportLocal(const LeftV & leftV) { if((*this).Base().QualityEnabled && leftV.Base().QualityEnabled ) // copy the data only if they are enabled in both vertices Q() = leftV.cQ(); T::ImporLocal(leftV); } static bool HasQuality() { return true; } static bool HasQualityOcf() { assert(!T::HasQualityOcf()); return true; } }; template class QualityfOcf: public QualityOcf {}; ///*-------------------------- MARK ----------------------------------*/ template class MarkOcf: public T { public: inline int & IMark() { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } inline int IMark() const { assert((*this).Base().MarkEnabled); return (*this).Base().MV[(*this).Index()]; } template void ImportLocal(const LeftV & leftV) { //if((*this).Base().MarkEnabled && leftV.Base().MarkEnabled ) // WRONG I do not know anything about leftV! if((*this).Base().MarkEnabled) // copy the data only if they are enabled in both vertices IMark() = leftV.IMark(); T::ImportLocal(leftV); } static bool HasMark() { return true; } static bool HasMarkOcf() { return true; } inline void InitIMark() { IMark() = 0; } }; ///*-------------------------- CURVATURE ----------------------------------*/ template class CurvatureOcf: public TT { public: typedef Point2 CurvatureType; typedef typename CurvatureType::ScalarType ScalarType; ScalarType &Kh(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0];} ScalarType &Kg(){ assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1];} const ScalarType &cKh() const { assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][0];} const ScalarType &cKg() const { assert((*this).Base().CurvatureEnabled); return (*this).Base().CuV[(*this).Index()][1];} template void ImportLocal(const LeftV & leftV){ // if((*this).Base().CurvatureEnabled && leftV.Base().CurvatureEnabled ) // WRONG I do not know anything about leftV! if((*this).Base().CurvatureEnabled) { (*this).Base().CuV[(*this).Index()][0] = leftV.cKh(); (*this).Base().CuV[(*this).Index()][1] = leftV.cKg(); } TT::ImportLocal(leftV); } static bool HasCurvatureOcf() { return true; } static void Name(std::vector & name){name.push_back(std::string("CurvatureOcf"));TT::Name(name);} private: }; template class CurvaturefOcf: public CurvatureOcf {}; template class CurvaturedOcf: public CurvatureOcf {}; ///*-------------------------- CURVATURE DIR ----------------------------------*/ template struct CurvatureDirTypeOcf{ typedef Point3 VecType; typedef S ScalarType; CurvatureDirTypeOcf () {} Point3max_dir,min_dir; S k1,k2; }; template class CurvatureDirOcf: public TT { public: typedef A CurvatureDirType; typedef typename CurvatureDirType::VecType VecType; typedef typename CurvatureDirType::ScalarType ScalarType; VecType &PD1(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].max_dir;} VecType &PD2(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].min_dir;} const VecType &cPD1() const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuV[(*this).Index()].max_dir;} const VecType &cPD2() const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuV[(*this).Index()].min_dir;} ScalarType &K1(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;} ScalarType &K2(){ assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;} const ScalarType &cK1() const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k1;} const ScalarType &cK2()const {assert((*this).Base().CurvatureDirEnabled); return (*this).Base().CuDV[(*this).Index()].k2;} static bool HasCurvatureDirOcf() { return true; } static void Name(std::vector & name){name.push_back(std::string("CurvatureDirOcf"));TT::Name(name);} private: }; template class CurvatureDirfOcf: public CurvatureDirOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirfOcf"));T::Name(name);} }; template class CurvatureDirdOcf: public CurvatureDirOcf, T> { public: static void Name(std::vector & name){name.push_back(std::string("CurvatureDirdOcf"));T::Name(name);} }; ///*-------------------------- RADIUS ----------------------------------*/ template class RadiusOcf: public TT { public: typedef A RadiusType; typedef RadiusType ScalarType; RadiusType &R(){ assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];} const RadiusType &cR() const { assert((*this).Base().RadiusEnabled); return (*this).Base().RadiusV[(*this).Index()];} template void ImportLocal(const LeftV & leftV) { //if ((*this).Base().RadiusEnabled && leftV.Base().RadiusEnabled ) // WRONG I do not know anything about leftV! if ((*this).Base().RadiusEnabled) (*this).Base().RadiusV[(*this).Index()] = leftV.cR(); TT::ImportLocal(leftV); } static bool HasRadius() { return true; } static bool HasRadiusOcf() { return true; } static void Name(std::vector & name){name.push_back(std::string("RadiusOcf")); TT::Name(name);} private: }; template class RadiusfOcf: public RadiusOcf {}; template class RadiusdOcf: public RadiusOcf {}; ///*-------------------------- InfoOpt ----------------------------------*/ template < class T> class InfoOcf: public T { public: vector_ocf &Base() const { return *_ovp;} inline int Index() const { typename T::VertType const *tp=static_cast(this); int tt2=tp- &*(_ovp->begin()); return tt2; } public: vector_ocf *_ovp; static bool HasQualityOcf() { return false; } static bool HasVFAdjacencyOcf() { return false; } }; } // end namespace vert namespace tri { template < class, class,class > class TriMesh; template < class VertexType, class FaceContainerType, class EdgeContainerType > bool HasPerVertexRadius (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType, EdgeContainerType > & m) { if(VertexType::HasRadiusOcf()) return m.vert.IsRadiusEnabled(); else return VertexType::HasRadius(); } template < class VertexType, class FaceContainerType, class EdgeContainerType > bool HasPerVertexQuality (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType , EdgeContainerType> & m) { if(VertexType::HasQualityOcf()) return m.vert.IsQualityEnabled(); else return VertexType::HasQuality(); } template < class VertexType, class FaceContainerType, class EdgeContainerType > bool HasPerVertexCurvature (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType, EdgeContainerType > & m) { if(VertexType::HasCurvatureOcf()) return m.vert.IsCurvatureEnabled(); else return VertexType::HasCurvature(); } template < class VertexType, class FaceContainerType, class EdgeContainerType > bool HasPerVertexCurvatureDir (const TriMesh < vertex::vector_ocf< VertexType > , FaceContainerType, EdgeContainerType > & m) { if(VertexType::HasCurvatureDirOcf()) return m.vert.IsCurvatureDirEnabled(); else return VertexType::HasCurvatureDir(); } template < class VertexType > void ReorderVert( std::vector &newVertIndex, vertex::vector_ocf< VertexType > &vertVec) { vertVec.ReorderVert(newVertIndex); } } }// end namespace vcg #endif