/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.16 2006/11/22 13:43:28 giec Code refactory and added minimum weight triangolation. Revision 1.15 2006/11/13 10:11:38 giec Clear some useless code Revision 1.14 2006/11/07 15:13:56 zifnab1974 Necessary changes for compilation with gcc 3.4.6. Especially the hash function is a problem Revision 1.13 2006/11/07 11:47:11 cignoni gcc compiling issues Revision 1.12 2006/11/07 07:56:43 cignoni Added missing std:: Revision 1.11 2006/11/06 16:12:29 giec Leipa ear now compute max dihedral angle. Revision 1.10 2006/10/31 11:30:41 ganovelli changed access throught iterator with static call to comply 2005 compiler Revision 1.9 2006/10/20 07:44:45 cignoni Added missing std:: Revision 1.8 2006/10/18 15:06:47 giec New policy for compute quality in TrivialEar. Bugfixed LeipaEar. Added new algorithm "selfintersection" with test for self intersection. Revision 1.7 2006/10/10 09:12:02 giec Bugfix and added a new type of ear (Liepa like) Revision 1.6 2006/10/09 10:07:07 giec Optimized version of "EAR HOLE FILLING", the Ear is selected according to its dihedral angle. Revision 1.5 2006/10/06 15:28:14 giec first working implementationof "EAR HOLE FILLING". Revision 1.4 2006/10/02 12:06:40 giec BugFix Revision 1.3 2006/09/27 15:33:32 giec It close one simple hole . . . Revision 1.2 2006/09/27 09:29:53 giec Frist working release whit a few bugs. It almost fills the hole ... Revision 1.1 2006/09/25 09:17:44 cignoni First Non working Version ****************************************************************************/ #ifndef __VCG_TRI_UPDATE_HOLE #define __VCG_TRI_UPDATE_HOLE #include <vcg/math/base.h> #include <vcg/complex/trimesh/clean.h> #include <vcg/space/point3.h> #include <vector> #define FLT_MAX 3.402823466e+38F /* max float rappresentable */ /* Questa Classe serve per gestire la non duplicazione degli edge durante la chiusura di un buco. */ namespace vcg { namespace tri { template<class MESH> class HoleInfo { public: HoleInfo(){} HoleInfo(face::Pos<typename MESH::FaceType> const &pHole, int const pHoleSize, Box3<typename MESH::ScalarType> &pHoleBB) { p=pHole; size=pHoleSize; bb=pHoleBB; } HoleInfo(face::Pos<typename MESH::FaceType> const &pHole, int const pHoleSize, Box3<typename MESH::ScalarType> &pHoleBB, int FI) { p=pHole; size=pHoleSize; bb=pHoleBB; faceindex = FI; } typename face::Pos<typename MESH::FaceType> p; int size; Box3<typename MESH::ScalarType> bb; int faceindex; void Refresh(MESH &m) { p.f = (typename MESH::FacePointer)(faceindex + &(*(m.face.begin()))); } bool operator < (const HoleInfo & hh) const {return size < hh.size;} bool operator > (const HoleInfo & hh) const {return size > hh.size;} bool operator == (const HoleInfo & hh) const {return size == hh.size;} bool operator != (const HoleInfo & hh) const {return size != hh.size;} bool operator >= (const HoleInfo & hh) const {return size >= hh.size;} bool operator <= (const HoleInfo & hh) const {return size <= hh.size;} typename MESH::ScalarType Perimeter() { typename MESH::ScalarType sum=0; face::Pos<typename MESH::FaceType> ip = p; do { sum+=Distance(ip.v->cP(),ip.VFlip()->cP()); ip.NextB(); } while (ip != p); return sum; } }; //function prototype template <class MESH> int GetHoleInfo(MESH &m,bool Selected ,std::vector<typename tri::HoleInfo<MESH> >& VHI); template<class MESH> void triangulate(std::vector<typename MESH::VertexPointer > &m,int i, int j, std::vector< std::vector<int> > vi, std::vector<face::Pos<typename MESH::FaceType> > vv); template <class MESH> void getBoundHole (face::Pos<typename MESH::FaceType> sp,std::vector<face::Pos<typename MESH::FaceType> >&ret); /* Un ear e' identificato da due hedge pos. i vertici dell'ear sono e0.FlipV().v e0.v e1.v Vale che e1== e0.NextB(); e che e1.FlipV() == e0; Situazioni ear non manifold, e degeneri (buco triangolare) T XXXXXXXXXXXXX A /XXXXX B en/XXXXX /XXXXXXXXXXXXXXX /XXXXXX /XXXXXX XXXXXXep==en XXX ep\ /en XXXX /e1 XXXX XXXXXX ----/| XX ------ ----/| XX ------ ----/|XXX XXXXXX| /e1 XX XXXXXX| /e1 XX XXXXXX| o/e0 XX XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXXXXX| /XXXXXX XXX e0|o/XXXXXXX XXX e0|o/XXXXXXX XXX ep| /XXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXX \|/XXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX */ template<class MSH_TYPE> class TrivialEar { public: face::Pos<typename MSH_TYPE::FaceType> e0; face::Pos<typename MSH_TYPE::FaceType> e1; typedef typename MSH_TYPE::ScalarType ScalarType; ScalarType quality; ScalarType angle; std::vector<typename MSH_TYPE::FaceType>* vf; TrivialEar(){} TrivialEar(const face::Pos<typename MSH_TYPE::FaceType> & ep) { e0=ep; assert(e0.IsBorder()); e1=e0; e1.NextB(); ComputeQuality(); ComputeAngle(); } void SetAdiacenseRing(std::vector<typename MSH_TYPE::FaceType>* ar){vf = ar;} void ComputeAngle() { Point3f p1 = e0.VFlip()->P() - e0.v->P(); Point3f p2 = e1.v->P() - e0.v->P(); ScalarType w = p2.Norm()*p1.Norm(); if(w==0) angle =90; ScalarType p = (p2*p1); p= p/w; p = acos(p); if(p < -1) p = -1; if(p > 1) p = 1; Point3f t = p2^p1; ScalarType n = t* e0.v->N(); if(n<0) { p = 2.0 *(float)M_PI - p; } angle = p; } virtual inline bool operator < ( const TrivialEar & c ) const { return quality < c.quality; } bool IsNull(){return e0.IsNull() || e1.IsNull();} void SetNull(){e0.SetNull();e1.SetNull();} virtual void ComputeQuality() { ScalarType ar; ar = ( (e0.VFlip()->P() - e0.v->P()) ^ ( e1.v->P() - e0.v->P()) ).Norm() ; ScalarType area = (ar); ScalarType l1 = Distance( e0.v->P(),e1.v->P()); ScalarType l2 = Distance( e0.v->P(),e0.VFlip()->P()); ScalarType l3 = Distance( e0.VFlip()->P(),e1.v->P()); quality = area / ( (l1 *l1) + (l2 * l2) + (l3 * l3) ); }; bool IsUpToDate() {return (e0.IsBorder() && e1.IsBorder());}; bool IsConvex(){return (angle > (float)M_PI);} bool Degen() { face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0 face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1 // caso ear degenere per buco triangolare if(ep==en) return true;//provo a togliere sto controllo // Caso ear non manifold a if(ep.v==en.v) return true; // Caso ear non manifold b if(ep.VFlip()==e1.v) return true; return false; } virtual bool Close(TrivialEar &ne0, TrivialEar &ne1, typename MSH_TYPE::FaceType * f) { // simple topological check if(e0.f==e1.f) { printf("Avoided bad ear"); return false; } //usato per generare una delle due nuove orecchie. face::Pos<typename MSH_TYPE::FaceType> ep=e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0 face::Pos<typename MSH_TYPE::FaceType> en=e1; en.NextB(); // he successivo a e1 (*f).V(0) = e0.VFlip(); (*f).V(1) = e0.v; (*f).V(2) = e1.v; (*f).FFp(0) = e0.f; (*f).FFi(0) = e0.z; (*f).FFp(1) = e1.f; (*f).FFi(1) = e1.z; (*f).FFp(2) = f; (*f).FFi(2) = 2; e0.f->FFp(e0.z)=f; e0.f->FFi(e0.z)=0; e1.f->FFp(e1.z)=f; e1.f->FFi(e1.z)=1; // caso ear degenere per buco triangolare if(ep==en) { printf("Closing the last triangle"); f->FFp(2)=en.f; f->FFi(2)=en.z; en.f->FFp(en.z)=f; en.f->FFi(en.z)=2; ne0.SetNull(); ne1.SetNull(); } // Caso ear non manifold a else if(ep.v==en.v) { printf("Ear Non manif A\n"); face::Pos<typename MSH_TYPE::FaceType> enold=en; en.NextB(); f->FFp(2)=enold.f; f->FFi(2)=enold.z; enold.f->FFp(enold.z)=f; enold.f->FFi(enold.z)=2; ne0=TrivialEar(ep); ne1=TrivialEar(en); } // Caso ear non manifold b else if(ep.VFlip()==e1.v) { printf("Ear Non manif B\n"); face::Pos<typename MSH_TYPE::FaceType> epold=ep; ep.FlipV(); ep.NextB(); ep.FlipV(); f->FFp(2)=epold.f; f->FFi(2)=epold.z; epold.f->FFp(epold.z)=f; epold.f->FFi(epold.z)=2; ne0=TrivialEar(ep); ne1=TrivialEar(en); } else // caso standard // Now compute the new ears; { ne0=TrivialEar(ep); ne1=TrivialEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,e1.v)); } return true; } }; //Ear with FillHoleMinimumWeight's quality policy template<class MSH_TYPE> class MinimumWeightEar : public TrivialEar<MSH_TYPE> { public: typename MSH_TYPE::ScalarType dihedral; typename MSH_TYPE::ScalarType area; MinimumWeightEar(){} MinimumWeightEar(const face::Pos<typename MSH_TYPE::FaceType> & ep) { this->e0=ep; assert(this->e0.IsBorder()); this->e1=this->e0; this->e1.NextB(); this->ComputeQuality(); this->ComputeAngle(); } virtual inline bool operator < ( const MinimumWeightEar & c ) const { if(dihedral < c.dihedral)return true; else return ((dihedral == c.dihedral) && (area < c.area)); } virtual void ComputeQuality() { //comute quality by (dihedral ancgle, area/sum(edge^2) ) Point3f n1 = (this->e0.v->N() + this->e1.v->N() + this->e0.VFlip()->N() ) / 3; face::Pos<typename MSH_TYPE::FaceType> tmp = this->e1; tmp.FlipE();tmp.FlipV(); Point3f n2=(this->e1.VFlip()->N() + this->e1.v->N() + tmp.v->N() ) / 3; tmp = this->e0; tmp.FlipE(); tmp.FlipV(); Point3f n3=(this->e0.VFlip()->N() + this->e0.v->N() + tmp.v->N() ) / 3; dihedral = std::max(Angle(n1,n2),Angle(n1,n3)); typename MSH_TYPE::ScalarType ar; ar = ( (this->e0.VFlip()->P() - this->e0.v->P()) ^ ( this->e1.v->P() - this->e0.v->P()) ).Norm() ; area = ar ; } }; //Ear for selfintersection algorithm template<class MSH_TYPE> class SelfIntersectionEar : public TrivialEar<MSH_TYPE> { public: SelfIntersectionEar(){} SelfIntersectionEar(const face::Pos<typename MSH_TYPE::FaceType> & ep) { this->e0=ep; assert(this->e0.IsBorder()); this->e1=this->e0; this->e1.NextB(); this->ComputeQuality(); this->ComputeAngle(); } virtual bool Close(SelfIntersectionEar &ne0, SelfIntersectionEar &ne1, typename MSH_TYPE::FaceType * f) { // simple topological check if(this->e0.f==this->e1.f) { printf("Avoided bad ear"); return false; } face::Pos<typename MSH_TYPE::FaceType> ep=this->e0; ep.FlipV(); ep.NextB(); ep.FlipV(); // he precedente a e0 face::Pos<typename MSH_TYPE::FaceType> en=this->e1; en.NextB(); // he successivo a e1 //costruisco la faccia e poi testo, o copio o butto via. (*f).V(0) = this->e0.VFlip(); (*f).V(1) = this->e0.v; (*f).V(2) = this->e1.v; (*f).FFp(0) = this->e0.f; (*f).FFi(0) = this->e0.z; (*f).FFp(1) = this->e1.f; (*f).FFi(1) = this->e1.z; (*f).FFp(2) = f; (*f).FFi(2) = 2; int a1, a2; a1= this->e0.z; a2= this->e1.z; this->e0.f->FFp(this->e0.z)=f; this->e0.f->FFi(this->e0.z)=0; this->e1.f->FFp(this->e1.z)=f; this->e1.f->FFi(this->e1.z)=1; typename std::vector<typename MSH_TYPE::FaceType>::iterator it; for(it = (* this->vf).begin();it!= (* this->vf).end();++it) { if(!it->IsD()) if( tri::Clean<MSH_TYPE>::TestIntersection(&(*f),&(*it))) { this->e0.f->FFp(this->e0.z)= this->e0.f; this->e0.f->FFi(this->e0.z)=a1; this->e1.f->FFp(this->e1.z)=this->e1.f; this->e1.f->FFi(this->e1.z)=a2; return false; } } // caso ear degenere per buco triangolare if(ep==en) { printf("Closing the last triangle"); f->FFp(2)=en.f; f->FFi(2)=en.z; en.f->FFp(en.z)=f; en.f->FFi(en.z)=2; ne0.SetNull(); ne1.SetNull(); } // Caso ear non manifold a else if(ep.v==en.v) { printf("Ear Non manif A\n"); face::Pos<typename MSH_TYPE::FaceType> enold=en; en.NextB(); f->FFp(2)=enold.f; f->FFi(2)=enold.z; enold.f->FFp(enold.z)=f; enold.f->FFi(enold.z)=2; ne0=SelfIntersectionEar(ep); ne0.SetAdiacenseRing(this->vf); ne1=SelfIntersectionEar(en); ne1.SetAdiacenseRing(this->vf); } // Caso ear non manifold b else if(ep.VFlip()==this->e1.v) { printf("Ear Non manif B\n"); face::Pos<typename MSH_TYPE::FaceType> epold=ep; ep.FlipV(); ep.NextB(); ep.FlipV(); f->FFp(2)=epold.f; f->FFi(2)=epold.z; epold.f->FFp(epold.z)=f; epold.f->FFi(epold.z)=2; ne0=SelfIntersectionEar(ep); ne0.SetAdiacenseRing(this->vf); ne1=SelfIntersectionEar(en); ne1.SetAdiacenseRing(this->vf); } else// Now compute the new ears; { ne0=SelfIntersectionEar(ep); ne0.SetAdiacenseRing(this->vf); ne1=SelfIntersectionEar(face::Pos<typename MSH_TYPE::FaceType>(f,2,this->e1.v)); ne1.SetAdiacenseRing(this->vf); } return true; } }; // Funzione principale per chiudier un buco in maniera topologicamente corretta. // Gestisce situazioni non manifold ragionevoli // (tutte eccetto quelle piu' di 2 facce per 1 edge). // Controlla che non si generino nuove situazioni non manifold chiudendo orecchie // che sottendono un edge che gia'esiste. template <class MESH, class EAR> void FillHoleEar(MESH &m, tri::HoleInfo<MESH> &h ,int UBIT, std::vector<typename MESH::FaceType > *vf =0) { //Aggiungo le facce e aggiorno il puntatore alla faccia! std::vector<typename MESH::FacePointer *> app; app.push_back( &h.p.f ); typename MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, h.size-2, app); h.Refresh(m); assert(h.p.IsBorder());//test fondamentale altrimenti qualcosa s'e' rotto! std::vector<EAR > H; //vettore di orecchie H.reserve(h.size); //prendo le informazioni sul buco face::Pos<typename MESH::FaceType> ff = h.p; face::Pos<typename MESH::FaceType> fp = h.p; do{ EAR app = EAR(fp); app.SetAdiacenseRing(vf); H.push_back( app ); fp.NextB();//semmai da provare a sostituire il codice della NextB(); assert(fp.IsBorder()); }while(fp!=ff); bool fitted = false; int cnt=h.size; typename MESH::FaceIterator tmp; make_heap(H.begin(), H.end()); //finche' il buco non e' chiuso o non ci sono piu' orecchie da analizzare. while( cnt > 2 && !H.empty() ) { pop_heap(H.begin(), H.end()); EAR en0,en1; typename MESH::FaceIterator Fadd = f; if(H.back().IsUpToDate() && H.back().IsConvex()) { if(H.back().Degen()){ // Nota che nel caso di ear degeneri si DEVE permettere la creazione di un edge che gia'esiste. printf("\n -> Evitata orecchia brutta!"); } else { if(H.back().Close(en0,en1,&*f)) { if(!en0.IsNull()){ H.push_back(en0); push_heap( H.begin(), H.end()); } if(!en1.IsNull()){ H.push_back(en1); push_heap( H.begin(), H.end()); } --cnt; f->SetUserBit(UBIT); if(vf != 0) (*vf).push_back(*f); ++f; fitted = true; } } //ultimo buco o unico buco. if(cnt == 3 && !fitted) { if(H.back().Close(en0,en1,&*f)) { --cnt; tmp = f; if(vf != 0)(*vf).push_back(*f); ++f; } } }//is update() fitted = false; //non ho messo il triangolo quindi tolgo l'orecchio e continuo. H.pop_back(); }//fine del while principale. //tolgo le facce non utilizzate. while(f!=m.face.end()) { (*f).SetD(); ++f; m.fn--; } } template<class MESH, class EAR> void holeFillingEar(MESH &m, int sizeHole,bool Selected = false) { std::vector<typename tri::HoleInfo<MESH> > vinfo; int UBIT = GetHoleInfo<MESH>(m, Selected,vinfo); typename std::vector<typename tri::HoleInfo<MESH> >::iterator ith; typename tri::HoleInfo<MESH> app; for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith) { app=(tri::HoleInfo<MESH>)*ith; if(app.size < sizeHole){ FillHoleEar<MESH, EAR >(m, app,UBIT); } } typename MESH::FaceIterator fi; for(fi = m.face.begin(); fi!=m.face.end(); ++fi) { if(!(*fi).IsD()) (*fi).ClearUserBit(UBIT); } } template<class MESH, class EAR> void holeFillingIntersection(MESH &m, int sizeHole,bool Selected = false) { std::vector<typename tri::HoleInfo<MESH> > vinfo; int UBIT = GetHoleInfo<MESH>(m, Selected,vinfo); std::vector<typename MESH::FaceType > vf; face::Pos<typename MESH::FaceType>sp; face::Pos<typename MESH::FaceType>ap; typename std::vector<tri::HoleInfo<MESH> >::iterator ith; tri::HoleInfo<MESH> app; for(ith = vinfo.begin(); ith!= vinfo.end(); ++ith) { app=(tri::HoleInfo<MESH>)*ith; if(app.size < sizeHole){ app.Refresh(m); //colleziono il ring intorno al buco per poi fare il test sul'intersezione sp = app.p; do { ap = sp; do { ap.FlipE(); ap.FlipF(); vf.push_back(*ap.f); }while(!ap.IsBorder()); sp.NextB(); }while(sp != app.p); FillHoleEar<MESH, EAR >(m, app,UBIT,&vf); vf.clear(); } } typename MESH::FaceIterator fi; for(fi = m.face.begin(); fi!=m.face.end(); ++fi) { if(!(*fi).IsD()) (*fi).ClearUserBit(UBIT); } } template <class MESH> int GetHoleInfo(MESH &m,bool Selected ,std::vector<typename tri::HoleInfo<MESH> >& VHI) { typename MESH::FaceIterator fi; int UBIT = MESH::FaceType::LastBitFlag(); for(fi = m.face.begin(); fi!=m.face.end(); ++fi) { if(!(*fi).IsD()) { if(Selected && !(*fi).IsS()) { //se devo considerare solo i triangoli selezionati e //quello che sto considerando non lo e' lo marchio e vado avanti (*fi).SetUserBit(UBIT); } else { if( !(*fi).IsUserBit(UBIT) ) { (*fi).SetUserBit(UBIT); for(int j =0; j<3 ; ++j) { if( (*fi).IsB(j) ) {//Trovato una faccia di bordo non ancora visitata. face::Pos<typename MESH::FaceType> sp(&*fi, j, (*fi).V(j)); face::Pos<typename MESH::FaceType> fp=sp; int holesize=0; Box3<typename MESH::ScalarType> hbox; hbox.Add(sp.v->cP()); do { sp.f->SetUserBit(UBIT); hbox.Add(sp.v->cP()); ++holesize; sp.NextB(); assert(sp.IsBorder()); }while(sp != fp); int tmp = ((int)(sp.f - &(*(m.face.begin())))); //ho recuperato l'inofrmazione su tutto il buco VHI.push_back( tri::HoleInfo<MESH>(sp,holesize,hbox, tmp) ); } }//for sugli edge del triangolo }//se e' gia stato visitato }//S & !S }//!IsD() }//for principale!!! return UBIT; } //Minimum Weight Algorithm class Weight { public: Weight() { ang = 180; ar = FLT_MAX ;} Weight( float An, float Ar ) { ang=An ; ar= Ar;} ~Weight() {} float angle() const { return ang; } float area() const { return ar; } Weight operator+( const Weight & other ) const {return Weight( std::max( angle(), other.angle() ), area() + other.area());} bool operator<( const Weight & rhs ) const {return ( angle() < rhs.angle() ||(angle() == rhs.angle() && area() < rhs.area())); } private: float ang; float ar; }; /* \ / \/ v1*---------*v4 / \ / hole/ \ / / \ / /ear \ / -*---------*- / v3 v2\ */ template <class MESH> float ComputeDihedralAngle(typename MESH::VertexPointer v1,typename MESH::VertexPointer v2, typename MESH::VertexPointer v3,typename MESH::VertexPointer v4) { typename MESH::CoordType n1 = ((v1->P() - v2->P()) ^ (v3->P() - v1->P()) ).Normalize(); typename MESH::CoordType n2 = ((v2->P() - v1->P()) ^ (v4->P() - v2->P()) ).Normalize(); typename MESH::ScalarType t = (n1 * n2 ) ; return ( acos(t)* 180.0 / M_PI); } template<class MESH> bool existEdge(face::Pos<typename MESH::FaceType> pi,face::Pos<typename MESH::FaceType> pf) { face::Pos<typename MESH::FaceType> app = pi; face::Pos<typename MESH::FaceType> appF = pi; face::Pos<typename MESH::FaceType> tmp; assert(pi.IsBorder()); appF.NextB(); appF.FlipV(); do { tmp = app; tmp.FlipV(); if(tmp.v == pf.v) return true; app.FlipE(); app.FlipF(); if(app == pi)return false; }while(app != appF); return false; } template<class MESH> Weight computeWeight( int i, int j, int k, std::vector<face::Pos<typename MESH::FaceType> > pv, std::vector< std::vector< int > > v) { face::Pos<typename MESH::FaceType> pi = pv[i]; face::Pos<typename MESH::FaceType> pj = pv[j]; face::Pos<typename MESH::FaceType> pk = pv[k]; //test complex edge if(existEdge<MESH>(pi,pj) || existEdge<MESH>(pj,pk)|| existEdge<MESH>(pk,pi) ) { return Weight(); } // Return an infinite weight, if one of the neighboring patches // could not be created. if(v[i][j] == -1){return Weight();} if(v[j][k] == -1){return Weight();} //calcolo il massimo angolo diedrale, se esiste. float angle = 0.0f; face::Pos<typename MESH::FaceType> px; if(i + 1 == j) { px = pj; px.FlipE(); px.FlipV(); angle = std::max<float>(angle , ComputeDihedralAngle<MESH>(pi.v, pj.v, pk.v, px.v) ); } else { angle = std::max<float>( angle, ComputeDihedralAngle<MESH>(pi.v,pj.v, pk.v, pv[ v[i][j] ].v)); } if(j + 1 == k) { px = pk; px.FlipE(); px.FlipV(); angle = std::max<float>(angle , ComputeDihedralAngle<MESH>(pj.v, pk.v, pi.v, px.v) ); } else { angle = std::max<float>( angle, ComputeDihedralAngle<MESH>(pj.v,pk.v, pi.v, pv[ v[j][k] ].v)); } if( i == 0 && k == (int)v.size() - 1) { px = pi; px.FlipE(); px.FlipV(); angle = std::max<float>(angle , ComputeDihedralAngle<MESH>(pk.v, pi.v, pj.v,px.v ) ); } typename MESH::ScalarType area = ( (pj.v->P() - pi.v->P()) ^ (pk.v->P() - pi.v->P()) ).Norm() * 0.5; return Weight(angle, area); } template <class MESH> std::vector<typename MESH::VertexPointer > calculateMinimumWeightTriangulation(MESH &m, std::vector<face::Pos<typename MESH::FaceType> > vv ) { std::vector< std::vector< Weight > > w; //matrice dei pesi minimali di ogni orecchio preso in conzideraione std::vector< std::vector< int > > vi;//memorizza l'indice del terzo vertice del triangolo //hole size int nv = vv.size(); w.clear(); w.resize( nv, std::vector<Weight>( nv, Weight() ) ); vi.resize( nv, std::vector<int>( nv, 0 ) ); //inizializzo tutti i pesi possibili del buco for ( int i = 0; i < nv-1; ++i ) w[i][i+1] = Weight( 0, 0 ); //doppio ciclo for per calcolare di tutti i possibili triangoli i loro pesi. for ( int j = 2; j < nv; ++j ) { for ( int i = 0; i + j < nv; ++i ) { //per ogni triangolazione mi mantengo il minimo valore del peso tra i triangoli possibili Weight minval; //indice del vertice che da il peso minimo nella triangolazione corrente int minIndex = -1; //ciclo tra i vertici in mezzo a i due prefissati for ( int m = i + 1; m < i + j; ++m ) { Weight a = w[i][m]; Weight b = w[m][i+j]; Weight newval = a + b + computeWeight<MESH>( i, m, i+j, vv, vi); if ( newval < minval ) { minval = newval; minIndex = m; } } w[i][i+j] = minval; vi[i][i+j] = minIndex; } } //Triangulate int i, j; i=0; j=nv-1; std::vector<typename MESH::VertexPointer > vf; vf.clear(); triangulate<MESH>(vf, i, j, vi, vv); return vf; } template<class MESH> void triangulate(std::vector<typename MESH::VertexPointer > &m,int i, int j, std::vector< std::vector<int> > vi, std::vector<face::Pos<typename MESH::FaceType> > vv) { if(i + 1 == j){return;} if(i==j)return; int k = vi[i][j]; if(k == -1) return; m.push_back(vv[i].v); m.push_back(vv[k].v); m.push_back(vv[j].v); triangulate<MESH>(m, i, k, vi, vv); triangulate<MESH>(m, k, j, vi, vv); } template <class MESH> void FillHoleMinimumWeight(MESH &m, bool Selected) { typename MESH::FaceIterator fi; std::vector<face::Pos<typename MESH::FaceType> > vvi; std::vector<typename MESH::FacePointer * > vfp; std::vector<typename tri::HoleInfo<MESH> > vinfo; typename std::vector<typename tri::HoleInfo<MESH> >::iterator VIT; int UBIT = GetHoleInfo<MESH>(m, Selected,vinfo); for(VIT = vinfo.begin(); VIT != vinfo.end();++VIT) { vvi.push_back(VIT->p); } typename std::vector<face::Pos<typename MESH::FaceType> >::iterator ith; typename std::vector<face::Pos<typename MESH::FaceType> >::iterator ithn; typename std::vector<typename MESH::VertexPointer >::iterator itf; std::vector<face::Pos<typename MESH::FaceType> > app; face::Pos<typename MESH::FaceType> ps; std::vector<typename MESH::FaceType > tr; std::vector<typename MESH::VertexPointer > vf; for(ith = vvi.begin(); ith!= vvi.end(); ++ith) { tr.clear(); vf.clear(); app.clear(); vfp.clear(); for(ithn = vvi.begin(); ithn!= vvi.end(); ++ithn) vfp.push_back(&(ithn->f)); ps = *ith; getBoundHole<MESH>(ps,app); vf = calculateMinimumWeightTriangulation(m, app); if(vf.size() == 0)continue;//non e' stata trovata la triangolazione typename MESH::FaceIterator f = tri::Allocator<MESH>::AddFaces(m, app.size()-2, vfp); for(itf = vf.begin();itf != vf.end(); ) { (*f).V(0) = (*itf++); (*f).V(1) = (*itf++); (*f).V(2) = (*itf++); ++f; } } } template <class MESH> void getBoundHole (face::Pos<typename MESH::FaceType> sp,std::vector<face::Pos<typename MESH::FaceType> >&ret) { face::Pos<typename MESH::FaceType> fp = sp; //take vertex around the hole do { assert(fp.IsBorder()); ret.push_back(fp); fp.NextB(); }while(sp != fp); } } // end namespace } #endif