/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB__SMOOTH #define __VCGLIB__SMOOTH #include #include #include #include #include #include namespace vcg { namespace tri { /// /** \addtogroup trimesh */ /*@{*/ /// Class of static functions to smooth and fair meshes and their attributes. template class Smooth { public: typedef SmoothMeshType MeshType; typedef typename MeshType::VertexType VertexType; typedef typename MeshType::VertexType::CoordType CoordType; typedef typename MeshType::VertexPointer VertexPointer; typedef typename MeshType::VertexIterator VertexIterator; typedef typename MeshType::ScalarType ScalarType; typedef typename MeshType::FaceType FaceType; typedef typename MeshType::FacePointer FacePointer; typedef typename MeshType::FaceIterator FaceIterator; typedef typename MeshType::FaceContainer FaceContainer; typedef typename vcg::Box3 Box3Type; typedef typename vcg::face::VFIterator VFLocalIterator; class ScaleLaplacianInfo { public: CoordType PntSum; ScalarType LenSum; }; // This is precisely what curvature flow does. // Curvature flow smoothes the surface by moving along the surface // normal n with a speed equal to the mean curvature void VertexCoordLaplacianCurvatureFlow(MeshType &/*m*/, int /*step*/, ScalarType /*delta*/) { } // Another Laplacian smoothing variant, // here we sum the baricenter of the faces incidents on each vertex weighting them with the angle static void VertexCoordLaplacianAngleWeighted(MeshType &m, int step, ScalarType delta) { ScaleLaplacianInfo lpz; lpz.PntSum=CoordType(0,0,0); lpz.LenSum=0; SimpleTempData TD(m.vert,lpz); FaceIterator fi; for(int i=0;iP() + (*fi).V(1)->P() + (*fi).V(2)->P())/3.0; CoordType e0=((*fi).V(0)->P() - (*fi).V(1)->P()).Normalize(); CoordType e1=((*fi).V(1)->P() - (*fi).V(2)->P()).Normalize(); CoordType e2=((*fi).V(2)->P() - (*fi).V(0)->P()).Normalize(); a[0]=AngleN(-e0,e2); a[1]=AngleN(-e1,e0); a[2]=AngleN(-e2,e1); //assert(fabs(M_PI -a[0] -a[1] -a[2])<0.0000001); for(int j=0;j<3;++j){ CoordType dir= (mp-(*fi).V(j)->P()).Normalize(); TD[(*fi).V(j)].PntSum+=dir*a[j]; TD[(*fi).V(j)].LenSum+=a[j]; // well, it should be named angleSum } } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].LenSum>0 ) (*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum ) * delta; } }; // Scale dependent laplacian smoothing [Fujiwara 95] // as described in // Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow // Mathieu Desbrun, Mark Meyer, Peter Schroeder, Alan H. Barr // SIGGRAPH 99 // REQUIREMENTS: Border Flags. // // Note the delta parameter is in a absolute unit // to get stability it should be a small percentage of the shortest edge. static void VertexCoordScaleDependentLaplacian_Fujiwara(MeshType &m, int step, ScalarType delta) { SimpleTempData TD(m.vert); ScaleLaplacianInfo lpz; lpz.PntSum=CoordType(0,0,0); lpz.LenSum=0; FaceIterator fi; for(int i=0;iP() -(*fi).V(j)->P(); ScalarType len=Norm(edge); edge/=len; TD[(*fi).V(j)].PntSum+=edge; TD[(*fi).V1(j)].PntSum-=edge; TD[(*fi).V(j)].LenSum+=len; TD[(*fi).V1(j)].LenSum+=len; } for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) for(int j=0;j<3;++j) // se l'edge j e' di bordo si riazzera tutto e si riparte if((*fi).IsB(j)) { TD[(*fi).V(j)].PntSum=CoordType(0,0,0); TD[(*fi).V1(j)].PntSum=CoordType(0,0,0); TD[(*fi).V(j)].LenSum=0; TD[(*fi).V1(j)].LenSum=0; } for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { CoordType edge= (*fi).V1(j)->P() -(*fi).V(j)->P(); ScalarType len=Norm(edge); edge/=len; TD[(*fi).V(j)].PntSum+=edge; TD[(*fi).V1(j)].PntSum-=edge; TD[(*fi).V(j)].LenSum+=len; TD[(*fi).V1(j)].LenSum+=len; } // The fundamental part: // We move the new point of a quantity // // L(M) = 1/Sum(edgelen) * Sum(Normalized edges) // for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].LenSum>0 ) (*vi).P() = (*vi).P() + (TD[*vi].PntSum/TD[*vi].LenSum)*delta; } }; class LaplacianInfo { public: LaplacianInfo(const CoordType &_p, const int _n):sum(_p),cnt(_n) {} LaplacianInfo() {} CoordType sum; ScalarType cnt; }; // Classical Laplacian Smoothing. Each vertex can be moved onto the average of the adjacent vertices. // Can smooth only the selected vertices and weight the smoothing according to the quality // In the latter case 0 means that the vertex is not moved and 1 means that the vertex is moved onto the computed position. // // From the Taubin definition "A signal proc approach to fair surface design" // We define the discrete Laplacian of a discrete surface signal by weighted averages over the neighborhoods // \delta xi = \Sum wij (xj - xi) ; // where xj are the adjacent vertices of xi and wij is usually 1/n_adj // // This function simply accumulate over a TempData all the positions of the ajacent vertices // static void AccumulateLaplacianInfo(MeshType &m, SimpleTempData &TD, bool cotangentFlag=false) { float weight =1.0f; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) { if(!(*fi).IsD()) for(int j=0;j<3;++j) if(!(*fi).IsB(j)) { if(cotangentFlag) { float angle = Angle(fi->P1(j)-fi->P2(j),fi->P0(j)-fi->P2(j)); weight = tan((M_PI*0.5) - angle); } TD[(*fi).V0(j)].sum+=(*fi).P1(j)*weight; TD[(*fi).V1(j)].sum+=(*fi).P0(j)*weight; TD[(*fi).V0(j)].cnt+=weight; TD[(*fi).V1(j)].cnt+=weight; } } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) { if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V0(j)].sum=(*fi).P0(j); TD[(*fi).V1(j)].sum=(*fi).P1(j); TD[(*fi).V0(j)].cnt=1; TD[(*fi).V1(j)].cnt=1; } } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) { if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } } } static void VertexCoordLaplacian(MeshType &m, int step, bool SmoothSelected=false, bool cotangentWeight=false, vcg::CallBackPos * cb=0) { VertexIterator vi; LaplacianInfo lpz(CoordType(0,0,0),0); SimpleTempData TD(m.vert,lpz); for(int i=0;i0 ) { if(!SmoothSelected || (*vi).IsS()) (*vi).P() = ( (*vi).P() + TD[*vi].sum)/(TD[*vi].cnt+1); } } } // Same of above but moves only the vertices that do not change FaceOrientation more that the given threshold static void VertexCoordPlanarLaplacian(MeshType &m, int step, float AngleThrRad = math::ToRad(1.0), bool SmoothSelected=false, vcg::CallBackPos * cb=0) { VertexIterator vi; FaceIterator fi; LaplacianInfo lpz(CoordType(0,0,0),0); SimpleTempData TD(m.vert,lpz); for(int i=0;i0 ) { if(!SmoothSelected || (*vi).IsS()) TD[*vi].sum = ( (*vi).P() + TD[*vi].sum)/(TD[*vi].cnt+1); } for(fi=m.face.begin();fi!=m.face.end();++fi){ if(!(*fi).IsD()){ for (int j = 0; j < 3; ++j) { if(Angle( NormalizedNormal(TD[(*fi).V0(j)].sum, (*fi).P1(j), (*fi).P2(j) ), NormalizedNormal( (*fi).P0(j) , (*fi).P1(j), (*fi).P2(j) ) ) > AngleThrRad ) TD[(*fi).V0(j)].sum = (*fi).P0(j); } } } for(fi=m.face.begin();fi!=m.face.end();++fi){ if(!(*fi).IsD()){ for (int j = 0; j < 3; ++j) { if(Angle( NormalizedNormal(TD[(*fi).V0(j)].sum, TD[(*fi).V1(j)].sum, (*fi).P2(j) ), NormalizedNormal( (*fi).P0(j) , (*fi).P1(j), (*fi).P2(j) ) ) > AngleThrRad ) { TD[(*fi).V0(j)].sum = (*fi).P0(j); TD[(*fi).V1(j)].sum = (*fi).P1(j); } } } } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) (*vi).P()= TD[*vi].sum; }// end step } static void VertexCoordLaplacianBlend(MeshType &m, int step, float alpha, bool SmoothSelected=false) { VertexIterator vi; LaplacianInfo lpz(CoordType(0,0,0),0); assert (alpha<= 1.0); SimpleTempData TD(m.vert); for(int i=0;i0 ) { if(!SmoothSelected || (*vi).IsS()) { CoordType Delta = TD[*vi].sum/TD[*vi].cnt - (*vi).P(); (*vi).P() = (*vi).P() + Delta*alpha; } } } } /* a couple of notes about the lambda mu values We assume that 0 < lambda , and mu is a negative scale factor such that mu < - lambda. Holds mu+lambda < 0 (e.g in absolute value mu is greater) let kpb be the pass-band frequency, taubin says that: kpb = 1/lambda + 1/mu >0 Values of kpb from 0.01 to 0.1 produce good results according to the original paper. kpb * mu - mu/lambda = 1 mu = 1/(kpb-1/lambda ) So if * lambda == 0.5, kpb==0.1 -> mu = 1/(0.1 - 2) = -0.526 * lambda == 0.5, kpb==0.01 -> mu = 1/(0.01 - 2) = -0.502 */ static void VertexCoordTaubin(MeshType &m, int step, float lambda, float mu, bool SmoothSelected=false, vcg::CallBackPos * cb=0) { LaplacianInfo lpz(CoordType(0,0,0),0); SimpleTempData TD(m.vert,lpz); VertexIterator vi; for(int i=0;i0 ) { if(!SmoothSelected || (*vi).IsS()) { CoordType Delta = TD[*vi].sum/TD[*vi].cnt - (*vi).P(); (*vi).P() = (*vi).P() + Delta*lambda ; } } TD.Init(lpz); AccumulateLaplacianInfo(m,TD); for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) { if(!SmoothSelected || (*vi).IsS()) { CoordType Delta = TD[*vi].sum/TD[*vi].cnt - (*vi).P(); (*vi).P() = (*vi).P() + Delta*mu ; } } } // end for step } static void VertexCoordLaplacianQuality(MeshType &m, int step, bool SmoothSelected=false) { LaplacianInfo lpz; lpz.sum=CoordType(0,0,0); lpz.cnt=1; SimpleTempData TD(m.vert,lpz); for(int i=0;i0 ) if(!SmoothSelected || (*vi).IsS()) { float q=(*vi).Q(); (*vi).P()=(*vi).P()*q + (TD[*vi].sum/TD[*vi].cnt)*(1.0-q); } } // end for }; /* Improved Laplacian Smoothing of Noisy Surface Meshes J. Vollmer, R. Mencl, and H. M�ller EUROGRAPHICS Volume 18 (1999), Number 3 */ class HCSmoothInfo { public: CoordType dif; CoordType sum; int cnt; }; static void VertexCoordLaplacianHC(MeshType &m, int step, bool SmoothSelected=false ) { ScalarType beta=0.5; HCSmoothInfo lpz; lpz.sum=CoordType(0,0,0); lpz.dif=CoordType(0,0,0); lpz.cnt=0; for(int i=0;i TD(m.vert,lpz); // First Loop compute the laplacian FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi)if(!(*fi).IsD()) { for(int j=0;j<3;++j) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; // se l'edge j e' di bordo si deve sommare due volte if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->P(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->P(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } } } VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD()) TD[*vi].sum/=(float)TD[*vi].cnt; // Second Loop compute average difference for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { for(int j=0;j<3;++j) { TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P(); TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P(); // se l'edge j e' di bordo si deve sommare due volte if((*fi).IsB(j)) { TD[(*fi).V(j)].dif +=TD[(*fi).V1(j)].sum-(*fi).V1(j)->P(); TD[(*fi).V1(j)].dif+=TD[(*fi).V(j)].sum-(*fi).V(j)->P(); } } } for(vi=m.vert.begin();vi!=m.vert.end();++vi) { TD[*vi].dif/=(float)TD[*vi].cnt; if(!SmoothSelected || (*vi).IsS()) (*vi).P()= TD[*vi].sum - (TD[*vi].sum - (*vi).P())*beta + (TD[*vi].dif)*(1.f-beta); } } // end for step }; // Laplacian smooth of the quality. class ColorSmoothInfo { public: unsigned int r; unsigned int g; unsigned int b; unsigned int a; int cnt; }; static void VertexColorLaplacian(MeshType &m, int step, bool SmoothSelected=false, vcg::CallBackPos * cb=0) { ColorSmoothInfo csi; csi.r=0; csi.g=0; csi.b=0; csi.cnt=0; SimpleTempData TD(m.vert,csi); for(int i=0;iC()[0]; TD[(*fi).V(j)].g+=(*fi).V1(j)->C()[1]; TD[(*fi).V(j)].b+=(*fi).V1(j)->C()[2]; TD[(*fi).V(j)].a+=(*fi).V1(j)->C()[3]; TD[(*fi).V1(j)].r+=(*fi).V(j)->C()[0]; TD[(*fi).V1(j)].g+=(*fi).V(j)->C()[1]; TD[(*fi).V1(j)].b+=(*fi).V(j)->C()[2]; TD[(*fi).V1(j)].a+=(*fi).V(j)->C()[3]; ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=csi; TD[(*fi).V1(j)]=csi; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].r+=(*fi).V1(j)->C()[0]; TD[(*fi).V(j)].g+=(*fi).V1(j)->C()[1]; TD[(*fi).V(j)].b+=(*fi).V1(j)->C()[2]; TD[(*fi).V(j)].a+=(*fi).V1(j)->C()[3]; TD[(*fi).V1(j)].r+=(*fi).V(j)->C()[0]; TD[(*fi).V1(j)].g+=(*fi).V(j)->C()[1]; TD[(*fi).V1(j)].b+=(*fi).V(j)->C()[2]; TD[(*fi).V1(j)].a+=(*fi).V(j)->C()[3]; ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) { (*vi).C()[0] = (unsigned int) ceil((double) (TD[*vi].r / TD[*vi].cnt)); (*vi).C()[1] = (unsigned int) ceil((double) (TD[*vi].g / TD[*vi].cnt)); (*vi).C()[2] = (unsigned int) ceil((double) (TD[*vi].b / TD[*vi].cnt)); (*vi).C()[3] = (unsigned int) ceil((double) (TD[*vi].a / TD[*vi].cnt)); } } // end for step }; static void FaceColorLaplacian(MeshType &m, int step, bool SmoothSelected=false, vcg::CallBackPos * cb=0) { ColorSmoothInfo csi; csi.r=0; csi.g=0; csi.b=0; csi.cnt=0; SimpleTempData TD(m.face,csi); for(int i=0;iC()[0]; TD[*fi].g+=(*fi).FFp(j)->C()[1]; TD[*fi].b+=(*fi).FFp(j)->C()[2]; TD[*fi].a+=(*fi).FFp(j)->C()[3]; ++TD[*fi].cnt; } } for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD() && TD[*fi].cnt>0 ) if(!SmoothSelected || (*fi).IsS()) { (*fi).C()[0] = (unsigned int) ceil((float) (TD[*fi].r / TD[*fi].cnt)); (*fi).C()[1] = (unsigned int) ceil((float) (TD[*fi].g / TD[*fi].cnt)); (*fi).C()[2] = (unsigned int) ceil((float) (TD[*fi].b / TD[*fi].cnt)); (*fi).C()[3] = (unsigned int) ceil((float) (TD[*fi].a / TD[*fi].cnt)); } } // end for step }; // Laplacian smooth of the quality. class QualitySmoothInfo { public: ScalarType sum; int cnt; }; static void VertexQualityLaplacian(MeshType &m, int step=1, bool SmoothSelected=false) { QualitySmoothInfo lpz; lpz.sum=0; lpz.cnt=0; SimpleTempData TD(m.vert,lpz); //TD.Start(lpz); for(int i=0;iQ(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; TD[(*fi).V1(j)]=lpz; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->Q(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->Q(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } //VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) (*vi).Q()=TD[*vi].sum/TD[*vi].cnt; } //TD.Stop(); }; static void VertexNormalLaplacian(MeshType &m, int step,bool SmoothSelected=false) { LaplacianInfo lpz; lpz.sum=CoordType(0,0,0); lpz.cnt=0; SimpleTempData TD(m.vert,lpz); for(int i=0;iN(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->N(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; TD[(*fi).V1(j)]=lpz; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->N(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->N(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } //VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) if(!SmoothSelected || (*vi).IsS()) (*vi).N()=TD[*vi].sum/TD[*vi].cnt; } }; // Smooth solo lungo la direzione di vista // alpha e' compreso fra 0(no smoot) e 1 (tutto smoot) // Nota che se smootare il bordo puo far fare bandierine. static void VertexCoordViewDepth(MeshType &m, const CoordType & viewpoint, const ScalarType alpha, int step, bool SmoothBorder=false ) { LaplacianInfo lpz; lpz.sum=CoordType(0,0,0); lpz.cnt=0; SimpleTempData TD(m.vert,lpz); for(int i=0;icP(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->cP(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } // si azzaera i dati per i vertici di bordo for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)]=lpz; TD[(*fi).V1(j)]=lpz; } // se l'edge j e' di bordo si deve mediare solo con gli adiacenti if(SmoothBorder) for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) for(int j=0;j<3;++j) if((*fi).IsB(j)) { TD[(*fi).V(j)].sum+=(*fi).V1(j)->cP(); TD[(*fi).V1(j)].sum+=(*fi).V(j)->cP(); ++TD[(*fi).V(j)].cnt; ++TD[(*fi).V1(j)].cnt; } for(vi=m.vert.begin();vi!=m.vert.end();++vi) if(!(*vi).IsD() && TD[*vi].cnt>0 ) { CoordType np = TD[*vi].sum/TD[*vi].cnt; CoordType d = (*vi).cP() - viewpoint; d.Normalize(); ScalarType s = d .dot ( np - (*vi).cP() ); (*vi).P() += d * (s*alpha); } } } /****************************************************************************************************************/ /****************************************************************************************************************/ // Paso Double Smoothing // The proposed // approach is a two step method where in the first step the face normals // are adjusted and then, in a second phase, the vertex positions are updated. // Ref: // A. Belyaev and Y. Ohtake, A Comparison of Mesh Smoothing Methods, Proc. Israel-Korea Bi-Nat"l Conf. Geometric Modeling and Computer Graphics, pp. 83-87, 2003. /****************************************************************************************************************/ /****************************************************************************************************************/ // Classi di info class PDVertInfo { public: CoordType np; }; class PDFaceInfo { public: CoordType m; }; /***************************************************************************/ // Paso Doble Step 1 compute the smoothed normals /***************************************************************************/ // Requirements: // VF Topology // Normalized Face Normals // // This is the Normal Smoothing approach of Shen and Berner // Fuzzy Vector Median-Based Surface Smoothing TVCG 2004 void FaceNormalFuzzyVectorSB(MeshType &m, SimpleTempData &TD, ScalarType sigma) { int i; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) { CoordType bc=(*fi).Barycenter(); // 1) Clear all the visited flag of faces that are vertex-adjacent to fi for(i=0;i<3;++i) { vcg::face::VFIterator ep(&*fi,i); while (!ep.End()) { ep.f->ClearV(); ++ep; } } // 1) Effectively average the normals weighting them with (*fi).SetV(); CoordType mm=CoordType(0,0,0); for(i=0;i<3;++i) { vcg::face::VFIterator ep(&*fi,i); while (!ep.End()) { if(! (*ep.f).IsV() ) { if(sigma>0) { ScalarType dd=SquaredDistance(ep.f->Barycenter(),bc); ScalarType ang=AngleN(ep.f->N(),(*fi).N()); mm+=ep.f->N()*exp((-sigma)*ang*ang/dd); } else mm+=ep.f->N(); (*ep.f).SetV(); } ++ep; } } mm.Normalize(); TD[*fi].m=mm; } } // Replace the normal of the face with the average of normals of the vertex adijacent faces. // Normals are weighted with face area. // It assumes that: // Normals are normalized: // VF adjacency is present. static void FaceNormalLaplacianVF(MeshType &m) { SimpleTempData TDF(m.face); PDFaceInfo lpzf; lpzf.m=CoordType(0,0,0); assert(tri::HasPerVertexVFAdjacency(m) && tri::HasPerFaceVFAdjacency(m) ); TDF.Start(lpzf); int i; FaceIterator fi; tri::UpdateNormal::AreaNormalizeFace(m); for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { CoordType bc=Barycenter(*fi); // 1) Clear all the visited flag of faces that are vertex-adjacent to fi for(i=0;i<3;++i) { VFLocalIterator ep(&*fi,i); for (;!ep.End();++ep) ep.f->ClearV(); } // 2) Effectively average the normals CoordType normalSum=(*fi).N(); for(i=0;i<3;++i) { VFLocalIterator ep(&*fi,i); for (;!ep.End();++ep) { if(! (*ep.f).IsV() ) { normalSum += ep.f->N(); (*ep.f).SetV(); } } } normalSum.Normalize(); TDF[*fi].m=normalSum; } for(fi=m.face.begin();fi!=m.face.end();++fi) (*fi).N()=TDF[*fi].m; tri::UpdateNormal::NormalizePerFace(m); TDF.Stop(); } // Replace the normal of the face with the average of normals of the face adijacent faces. // Normals are weighted with face area. // It assumes that: // Normals are normalized: // FF adjacency is present. static void FaceNormalLaplacianFF(MeshType &m, int step=1, bool SmoothSelected=false ) { PDFaceInfo lpzf; lpzf.m=CoordType(0,0,0); SimpleTempData TDF(m.face,lpzf); assert(tri::HasFFAdjacency(m)); FaceIterator fi; tri::UpdateNormal::NormalizePerFaceByArea(m); for(int iStep=0;iStepN(); TDF[*fi].m=normalSum; } for(fi=m.face.begin();fi!=m.face.end();++fi) if(!SmoothSelected || (*fi).IsS()) (*fi).N()=TDF[*fi].m; tri::UpdateNormal::NormalizePerFace(m); } } /***************************************************************************/ // Paso Doble Step 1 compute the smoothed normals /***************************************************************************/ // Requirements: // VF Topology // Normalized Face Normals // // This is the Normal Smoothing approach bsased on a angle thresholded weighting // sigma is in the 0 .. 1 range, it represent the cosine of a threshold angle. // sigma == 0 All the normals are averaged // sigma == 1 Nothing is averaged. // Only within the specified range are averaged toghether. The averagin is weighted with the static void FaceNormalAngleThreshold(MeshType &m, SimpleTempData &TD, ScalarType sigma) { int i; FaceIterator fi; for(fi=m.face.begin();fi!=m.face.end();++fi) if(!(*fi).IsD()) { CoordType bc=Barycenter(*fi); // 1) Clear all the visited flag of faces that are vertex-adjacent to fi for(i=0;i<3;++i) { VFLocalIterator ep(&*fi,i); for (;!ep.End();++ep) ep.f->ClearV(); } // 1) Effectively average the normals weighting them with the squared difference of the angle similarity // sigma is the cosine of a threshold angle. sigma \in 0..1 // sigma == 0 All the normals are averaged // sigma == 1 Nothing is averaged. // The averaging is weighted with the difference between normals. more similar the normal more important they are. CoordType normalSum=CoordType(0,0,0); for(i=0;i<3;++i) { VFLocalIterator ep(&*fi,i); for (;!ep.End();++ep) { if(! (*ep.f).IsV() ) { ScalarType cosang=ep.f->N().dot((*fi).N()); // Note that if two faces form an angle larger than 90 deg, their contribution should be very very small. // Without this clamping cosang = math::Clamp(cosang,0.0001f,1.f); if(cosang >= sigma) { ScalarType w = cosang-sigma; normalSum += ep.f->N()*(w*w); // similar normals have a cosang very close to 1 so cosang - sigma is maximized } (*ep.f).SetV(); } } } normalSum.Normalize(); TD[*fi].m=normalSum; } for(fi=m.face.begin();fi!=m.face.end();++fi) (*fi).N()=TD[*fi].m; } /****************************************************************************************************************/ // Restituisce il gradiente dell'area del triangolo nel punto p. // Nota che dovrebbe essere sempre un vettore che giace nel piano del triangolo e perpendicolare al lato opposto al vertice p. // Ottimizzato con Maple e poi pesantemente a mano. static CoordType TriAreaGradient(CoordType &p,CoordType &p0,CoordType &p1) { CoordType dd = p1-p0; CoordType d0 = p-p0; CoordType d1 = p-p1; CoordType grad; ScalarType t16 = d0[1]* d1[2] - d0[2]* d1[1]; ScalarType t5 = -d0[2]* d1[0] + d0[0]* d1[2]; ScalarType t4 = -d0[0]* d1[1] + d0[1]* d1[0]; ScalarType delta= sqrtf(t4*t4 + t5*t5 +t16*t16); grad[0]= (t5 * (-dd[2]) + t4 * ( dd[1]))/delta; grad[1]= (t16 * (-dd[2]) + t4 * (-dd[0]))/delta; grad[2]= (t16 * ( dd[1]) + t5 * ( dd[0]))/delta; return grad; } template static CoordType CrossProdGradient(CoordType &p, CoordType &p0, CoordType &p1, CoordType &m) { CoordType grad; CoordType p00=p0-p; CoordType p01=p1-p; grad[0] = (-p00[2] + p01[2])*m[1] + (-p01[1] + p00[1])*m[2]; grad[1] = (-p01[2] + p00[2])*m[0] + (-p00[0] + p01[0])*m[2]; grad[2] = (-p00[1] + p01[1])*m[0] + (-p01[0] + p00[0])*m[1]; return grad; } /* Deve Calcolare il gradiente di E(p) = A(p,p0,p1) (n - m)^2 = A(...) (2-2nm) = (p0-p)^(p1-p) 2A - 2A * ------------- m = 2A 2A - 2 (p0-p)^(p1-p) * m */ static CoordType FaceErrorGrad(CoordType &p,CoordType &p0,CoordType &p1, CoordType &m) { return TriAreaGradient(p,p0,p1) *2.0f - CrossProdGradient(p,p0,p1,m) *2.0f ; } /***************************************************************************/ // Paso Doble Step 2 Fitta la mesh a un dato insieme di normali /***************************************************************************/ static void FitMesh(MeshType &m, SimpleTempData &TDV, SimpleTempData &TDF, float lambda) { //vcg::face::Pos ep; vcg::face::VFIterator ep; VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { CoordType ErrGrad=CoordType(0,0,0); ep.f=(*vi).VFp(); ep.z=(*vi).VFi(); while (!ep.End()) { ErrGrad+=FaceErrorGrad(ep.f->V(ep.z)->P(),ep.f->V1(ep.z)->P(),ep.f->V2(ep.z)->P(),TDF[ep.f].m); ++ep; } TDV[*vi].np=(*vi).P()-ErrGrad*(ScalarType)lambda; } for(vi=m.vert.begin();vi!=m.vert.end();++vi) (*vi).P()=TDV[*vi].np; } /****************************************************************************************************************/ static void FastFitMesh(MeshType &m, SimpleTempData &TDV, //SimpleTempData &TDF, bool OnlySelected=false) { //vcg::face::Pos ep; vcg::face::VFIterator ep; VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { CoordType Sum(0,0,0); ScalarType cnt=0; VFLocalIterator ep(&*vi); for (;!ep.End();++ep) { CoordType bc=Barycenter(*ep.F()); Sum += ep.F()->N()*(ep.F()->N().dot(bc - (*vi).P())); ++cnt; } TDV[*vi].np=(*vi).P()+ Sum*(1.0/cnt); } if(OnlySelected) { for(vi=m.vert.begin();vi!=m.vert.end();++vi) if((*vi).IsS()) (*vi).P()=TDV[*vi].np; } else { for(vi=m.vert.begin();vi!=m.vert.end();++vi) (*vi).P()=TDV[*vi].np; } } static void VertexCoordPasoDoble(MeshType &m, int step, typename MeshType::ScalarType Sigma=0, int FitStep=10, typename MeshType::ScalarType FitLambda=0.05) { SimpleTempData< typename MeshType::VertContainer, PDVertInfo> TDV(m.vert); SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face); PDVertInfo lpzv; lpzv.np=CoordType(0,0,0); PDFaceInfo lpzf; lpzf.m=CoordType(0,0,0); assert(m.HasVFTopology()); m.HasVFTopology(); TDV.Start(lpzv); TDF.Start(lpzf); for(int j=0;j::PerFace(m); FaceNormalAngleThreshold(m,TDF,Sigma); for(int k=0;k TDV(m.vert,lpzv); SimpleTempData< typename MeshType::FaceContainer, PDFaceInfo> TDF(m.face,lpzf); for(int j=0;j *tp=0) { SimpleTempData TD(m.vert,Point3f(0,0,0)); VertexConstDataWrapper ww(m); KdTree *tree=0; if(tp==0) tree = new KdTree(ww); else tree=tp; tree->setMaxNofNeighbors(neighborNum); for(int ii=0;iidoQueryK(vi->cP()); int neighbours = tree->getNofFoundNeighbors(); for (int i = 0; i < neighbours; i++) { int neightId = tree->getNeighborId(i); if(m.vert[neightId].cN()*vi->cN()>0) TD[vi]+= m.vert[neightId].cN(); else TD[vi]-= m.vert[neightId].cN(); } } for (VertexIterator vi = m.vert.begin();vi!=m.vert.end();++vi) { vi->N()=TD[vi]; TD[vi]=Point3f(0,0,0); } tri::UpdateNormal::NormalizePerVertex(m); } if(tp==0) delete tree; } //! Laplacian smoothing with a reprojection on a target surface. // grid must be a spatial index that contains all triangular faces of the target mesh gridmesh template static void VertexCoordLaplacianReproject(MeshType& m, GRID& grid, MeshTypeTri& gridmesh) { typename MeshType::VertexIterator vi; for(vi=m.vert.begin();vi!=m.vert.end();++vi) { if(! (*vi).IsD()) VertexCoordLaplacianReproject(m,grid,gridmesh,&*vi); } } template static void VertexCoordLaplacianReproject(MeshType& m, GRID& grid, MeshTypeTri& gridmesh, typename MeshType::VertexType* vp) { assert(MeshType::HEdgeType::HasHVAdjacency()); // compute barycenter typedef std::vector VertexSet; VertexSet verts; verts = HalfEdgeTopology::getVertices(vp); typename MeshType::CoordType ct(0,0,0); for(typename VertexSet::iterator it = verts.begin(); it != verts.end(); ++it) { ct += (*it)->P(); } ct /= verts.size(); // move vertex vp->P() = ct; vector faces2 = HalfEdgeTopology::get_incident_faces(vp); // estimate normal typename MeshType::CoordType avgn(0,0,0); for(unsigned int i = 0;i< faces2.size();i++) if(faces2[i]) { vector vertices = HalfEdgeTopology::getVertices(faces2[i]); assert(vertices.size() == 4); avgn += vcg::Normal(vertices[0]->cP(), vertices[1]->cP(), vertices[2]->cP()); avgn += vcg::Normal(vertices[2]->cP(), vertices[3]->cP(), vertices[0]->cP()); } avgn.Normalize(); // reproject ScalarType diag = m.bbox.Diag(); typename MeshType::CoordType raydir = avgn; Ray3 ray; ray.SetOrigin(vp->P()); ScalarType t; typename MeshTypeTri::FaceType* f = 0; typename MeshTypeTri::FaceType* fr = 0; vector closests; vector minDists; vector faces; ray.SetDirection(-raydir); f = vcg::tri::DoRay(gridmesh, grid, ray, diag/4.0, t); if (f) { closests.push_back(ray.Origin() + ray.Direction()*t); minDists.push_back(fabs(t)); faces.push_back(f); } ray.SetDirection(raydir); fr = vcg::tri::DoRay(gridmesh, grid, ray, diag/4.0, t); if (fr) { closests.push_back(ray.Origin() + ray.Direction()*t); minDists.push_back(fabs(t)); faces.push_back(fr); } if (fr) if (fr->N()*raydir<0) fr=0; // discard: inverse normal; typename MeshType::CoordType newPos; if (minDists.size() == 0) { newPos = vp->P(); f = 0; } else { int minI = std::min_element(minDists.begin(),minDists.end()) - minDists.begin(); newPos = closests[minI]; f = faces[minI]; } if (f) vp->P() = newPos; } }; //end Smooth class } // End namespace tri } // End namespace vcg #endif // VCG_SMOOTH