/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ /**************************************************************************** History $Log: not supported by cvs2svn $ Revision 1.10 2005/10/05 17:06:12 pietroni corrected sintax error on singular value decomposition Revision 1.9 2005/09/29 09:53:58 ganovelli added inverse by SVD Revision 1.8 2005/06/10 14:51:54 cignoni Changed a Zero in SetZero in WeightedCrossCovariance() Revision 1.7 2005/06/10 11:46:49 pietroni Added Norm Function Revision 1.6 2005/06/07 14:29:56 ganovelli changed from Matrix33Ide to MatrixeeDiag Revision 1.5 2005/05/23 15:05:26 ganovelli Matrix33Diag Added: it implements diagonal matrix. Added only operator += in Matrix33 Revision 1.4 2005/04/11 14:11:22 pietroni changed swap to math::Swap in Traspose Function Revision 1.3 2004/10/18 15:03:02 fiorin Updated interface: all Matrix classes have now the same interface Revision 1.2 2004/07/13 06:48:26 cignoni removed uppercase references in include Revision 1.1 2004/05/28 13:09:05 ganovelli created Revision 1.1 2004/05/28 13:00:39 ganovelli created ****************************************************************************/ #ifndef __VCGLIB_MATRIX33_H #define __VCGLIB_MATRIX33_H #include #include #include #include namespace vcg { template class Matrix33Diag:public Point3{ public: /** @name Matrix33 Class Matrix33Diag. This is the class for definition of a diagonal matrix 3x3. @param S (Templete Parameter) Specifies the ScalarType field. */ Matrix33Diag(const S & p0,const S & p1,const S & p2):Point3(p0,p1,p2){}; Matrix33Diag(const Point3&p ):Point3(p){}; }; template /** @name Matrix33 Class Matrix33. This is the class for definition of a matrix 3x3. @param S (Templete Parameter) Specifies the ScalarType field. */ class Matrix33 { public: typedef S ScalarType; /// Default constructor inline Matrix33() {} /// Copy constructor Matrix33( const Matrix33 & m ) { for(int i=0;i<9;++i) a[i] = m.a[i]; } /// create from array Matrix33( const S * v ) { for(int i=0;i<9;++i) a[i] = v[i]; } /// Number of columns inline unsigned int ColumnsNumber() const { return 3; }; /// Number of rows inline unsigned int RowsNumber() const { return 3; }; /// Assignment operator Matrix33 & operator = ( const Matrix33 & m ) { for(int i=0;i<9;++i) a[i] = m.a[i]; return *this; } /// Operatore di indicizzazione inline S * operator [] ( const int i ) { return a+i*3; } /// Operatore const di indicizzazione inline const S * operator [] ( const int i ) const { return a+i*3; } /// Modificatore somma per matrici 3x3 Matrix33 & operator += ( const Matrix33 &m ) { for(int i=0;i<9;++i) a[i] += m.a[i]; return *this; } /// Modificatore somma per matrici 3x3 Matrix33 & operator += ( const Matrix33Diag &p ) { a[0] += p[0]; a[4] += p[1]; a[8] += p[2]; return *this; } /// Modificatore sottrazione per matrici 3x3 Matrix33 & operator -= ( const Matrix33 &m ) { for(int i=0;i<9;++i) a[i] -= m.a[i]; return *this; } /// Modificatore divisione per scalare Matrix33 & operator /= ( const S &s ) { for(int i=0;i<9;++i) a[i] /= s; return *this; } /// Modificatore prodotto per matrice Matrix33 operator * ( const Matrix33< S> & t ) const { Matrix33 r; int i,j; for(i=0;i<3;++i) for(j=0;j<3;++j) r[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j]; return r; } /// Modificatore prodotto per matrice void operator *=( const Matrix33< S> & t ) { int i,j; for(i=0;i<3;++i) for(j=0;j<3;++j) (*this)[i][j] = (*this)[i][0]*t[0][j] + (*this)[i][1]*t[1][j] + (*this)[i][2]*t[2][j]; } /// Dot product with a diagonal matrix Matrix33 operator * ( const Matrix33Diag< S> & t ) const { Matrix33 r; int i,j; for(i=0;i<3;++i) for(j=0;j<3;++j) r[i][j] = (*this)[i][j]*t[j]; return r; } /// Dot product modifier with a diagonal matrix void operator *=( const Matrix33Diag< S> & t ) { int i,j; for(i=0;i<3;++i) for(j=0;j<3;++j) (*this)[i][j] = (*this)[i][j]*t[j]; } /// Modificatore prodotto per costante Matrix33 & operator *= ( const S t ) { for(int i=0;i<9;++i) a[i] *= t; return *this; } /// Operatore prodotto per costante Matrix33 operator * ( const S t ) { Matrix33 r; for(int i=0;i<9;++i) r.a[i] = a[i]* t; return r; } /// Operatore sottrazione per matrici 3x3 Matrix33 operator - ( const Matrix33 &m ) { Matrix33 r; for(int i=0;i<9;++i) r.a[i] = a[i] - m.a[i]; return r; } /** Operatore per il prodotto matrice-vettore. @param v A point in $R^{3}$ @return Il vettore risultante in $R^{3}$ */ Point3 operator * ( const Point3 & v ) const { Point3 t; t[0] = a[0]*v[0] + a[1]*v[1] + a[2]*v[2]; t[1] = a[3]*v[0] + a[4]*v[1] + a[5]*v[2]; t[2] = a[6]*v[0] + a[7]*v[1] + a[8]*v[2]; return t; } void OuterProduct(Point3 const &p0, Point3 const &p1) { Point3 row; row = p1*p0[0]; a[0] = row[0];a[1] = row[1];a[2] = row[2]; row = p1*p0[1]; a[3] = row[0]; a[4] = row[1]; a[5] = row[2]; row = p1*p0[2]; a[6] = row[0];a[7] = row[1];a[8] = row[2]; } void SetZero() { for(int i=0;i<9;++i) a[i] =0; } void SetIdentity() { for(int i=0;i<9;++i) a[i] =0; a[0]=a[4]=a[8]=1.0; } void Rotate(S angle, const Point3 & axis ) { angle = angle*3.14159265358979323846/180; double c = cos(angle); double s = sin(angle); double q = 1-c; Point3 t = axis; t.Normalize(); a[0] = t[0]*t[0]*q + c; a[1] = t[0]*t[1]*q - t[2]*s; a[2] = t[0]*t[2]*q + t[1]*s; a[3] = t[1]*t[0]*q + t[2]*s; a[4] = t[1]*t[1]*q + c; a[5] = t[1]*t[2]*q - t[0]*s; a[6] = t[2]*t[0]*q -t[1]*s; a[7] = t[2]*t[1]*q +t[0]*s; a[8] = t[2]*t[2]*q +c; } /// Funzione per eseguire la trasposta della matrice Matrix33 & Transpose() { math::Swap(a[1],a[3]); math::Swap(a[2],a[6]); math::Swap(a[5],a[7]); return *this; } /// Funzione per costruire una matrice diagonale dati i tre elem. Matrix33 & SetDiagonal(S *v) {int i,j; for(i=0;i<3;i++) for(j=0;j<3;j++) if(i==j) (*this)[i][j] = v[i]; else (*this)[i][j] = 0; return *this; } /// Assegna l'n-simo vettore colonna void SetColumn(const int n, S* v){ assert( (n>=0) && (n<3) ); a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2]; }; /// Assegna l'n-simo vettore riga void SetRow(const int n, S* v){ assert( (n>=0) && (n<3) ); int m=n*3; a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2]; }; /// Assegna l'n-simo vettore colonna void SetColumn(const int n, const Point3 v){ assert( (n>=0) && (n<3) ); a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2]; }; /// Assegna l'n-simo vettore riga void SetRow(const int n, const Point3 v){ assert( (n>=0) && (n<3) ); int m=n*3; a[m]=v[0]; a[m+1]=v[1]; a[m+2]=v[2]; }; /// Restituisce l'n-simo vettore colonna Point3 GetColumn(const int n) const { assert( (n>=0) && (n<3) ); Point3 t; t[0]=a[n]; t[1]=a[n+3]; t[2]=a[n+6]; return t; }; /// Restituisce l'n-simo vettore riga Point3 GetRow(const int n) const { assert( (n>=0) && (n<3) ); Point3 t; int m=n*3; t[0]=a[m]; t[1]=a[m+1]; t[2]=a[m+2]; return t; }; /// Funzione per il calcolo del determinante S Determinant() const { return a[0]*(a[4]*a[8]-a[5]*a[7]) - a[1]*(a[3]*a[8]-a[5]*a[6]) + a[2]*(a[3]*a[7]-a[4]*a[6]) ; } Matrix33 & Invert() { // Maple produsse: S t4 = a[0]*a[4]; S t6 = a[0]*a[5]; S t8 = a[1]*a[3]; S t10 = a[2]*a[3]; S t12 = a[1]*a[6]; S t14 = a[2]*a[6]; S t17 = 1/(t4*a[8]-t6*a[7]-t8*a[8]+t10*a[7]+t12*a[5]-t14*a[4]); S a0 = a[0]; S a1 = a[1]; S a3 = a[3]; S a4 = a[4]; a[0] = (a[4]*a[8]-a[5]*a[7])*t17; a[1] = -(a[1]*a[8]-a[2]*a[7])*t17; a[2] = (a1 *a[5]-a[2]*a[4])*t17; a[3] = -(a[3]*a[8]-a[5]*a[6])*t17; a[4] = (a0 *a[8]-t14 )*t17; a[5] = -(t6 - t10)*t17; a[6] = (a3 *a[7]-a[4]*a[6])*t17; a[7] = -(a[0]*a[7]-t12)*t17; a[8] = (t4-t8)*t17; return *this; } void show(FILE * fp) { for(int i=0;i<3;++i) printf("| %g \t%g \t%g |\n",a[3*i+0],a[3*i+1],a[3*i+2]); } // return the Trace of the matrix i.e. the sum of the diagonal elements S Trace() const { return a[0]+a[4]+a[8]; } /* compute the matrix generated by the product of a * b^T */ void ExternalProduct(const Point3 &a, const Point3 &b) { for(int i=0;i<3;++i) for(int j=0;j<3;++j) (*this)[i][j] = a[i]*b[j]; } /* Compute the Frobenius Norm of the Matrix */ ScalarType Norm() { ScalarType SQsum=0; for(int i=0;i<3;++i) for(int j=0;j<3;++j) SQsum += a[i]*a[i]; return (math::Sqrt(SQsum)); } /* It compute the cross covariance matrix of two set of 3d points P and X; it returns also the barycenters of P and X. fonte: Besl, McKay A method for registration o f 3d Shapes IEEE TPAMI Vol 14, No 2 1992 */ template void CrossCovariance(const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X, Point3 &bp, Point3 &bx) { SetZero(); assert(P.size()==X.size()); bx.Zero(); bp.Zero(); Matrix33 tmp; typename std::vector >::const_iterator pi,xi; for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){ bp+=*pi; bx+=*xi; tmp.ExternalProduct(*pi,*xi); (*this)+=tmp; } bp/=P.size(); bx/=X.size(); (*this)/=P.size(); tmp.ExternalProduct(bp,bx); (*this)-=tmp; } template void WeightedCrossCovariance(const STLREALCONTAINER & weights, const STLPOINTCONTAINER &P, const STLPOINTCONTAINER &X, Point3 &bp, Point3 &bx) { SetZero(); assert(P.size()==X.size()); bx.Zero(); bp.Zero(); Matrix33 tmp; typename std::vector >::const_iterator pi,xi; typename STLREALCONTAINER::const_iterator pw; for(pi=P.begin(),xi=X.begin();pi!=P.end();++pi,++xi){ bp+=(*pi); bx+=(*xi); } bp/=P.size(); bx/=X.size(); for(pi=P.begin(),xi=X.begin(),pw = weights.begin();pi!=P.end();++pi,++xi,++pw){ tmp.ExternalProduct(((*pi)-(bp)),((*xi)-(bp))); (*this)+=tmp*(*pw); } } private: S a[9]; }; template void Invert(Matrix33 &m) { Matrix33 v; Point3::ScalarType> e; SingularValueDecomposition(m,&e[0],v); e[0]=1/e[0];e[1]=1/e[1];e[2]=1/e[2]; m.Transpose(); m = v * Matrix33Diag(e) * m; } template Matrix33 Inverse(const Matrix33&m) { Matrix33 v,m_copy=m; Point3 e; SingularValueDecomposition(m_copy,&e[0],v); m_copy.Transpose(); e[0]=1/e[0];e[1]=1/e[1];e[2]=1/e[2]; return v * Matrix33Diag(e) * m_copy; } /// typedef Matrix33 Matrix33s; typedef Matrix33 Matrix33i; typedef Matrix33 Matrix33f; typedef Matrix33 Matrix33d; } // end of namespace #endif