/**************************************************************************** * VCGLib o o * * Visual and Computer Graphics Library o o * * _ O _ * * Copyright(C) 2004 \/)\/ * * Visual Computing Lab /\/| * * ISTI - Italian National Research Council | * * \ * * All rights reserved. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License (http://www.gnu.org/licenses/gpl.txt) * * for more details. * * * ****************************************************************************/ #ifndef __VCGLIB_QUADRIC #define __VCGLIB_QUADRIC #include #include #include #include namespace vcg { namespace math { /* * This class encode a quadric function * f(x) = xAx +bx + c * where A is a symmetric 3x3 matrix, b a vector and c a scalar constant. */ template class Quadric { public: typedef _ScalarType ScalarType; ScalarType a[6]; // Symmetric Matrix 3x3 : a11 a12 a13 a22 a23 a33 ScalarType b[3]; // Vector r3 ScalarType c; // Scalar (-1 means null/un-initialized quadric) inline Quadric() { c = -1; } bool IsValid() const { return c>=0; } void SetInvalid() { c = -1.0; } // Initialize the quadric to keep the squared distance from a given Plane template< class PlaneType > void ByPlane( const PlaneType & p ) { a[0] = (ScalarType)p.Direction()[0]*p.Direction()[0]; // a11 a[1] = (ScalarType)p.Direction()[1]*p.Direction()[0]; // a12 (=a21) a[2] = (ScalarType)p.Direction()[2]*p.Direction()[0]; // a13 (=a31) a[3] = (ScalarType)p.Direction()[1]*p.Direction()[1]; // a22 a[4] = (ScalarType)p.Direction()[2]*p.Direction()[1]; // a23 (=a32) a[5] = (ScalarType)p.Direction()[2]*p.Direction()[2]; // a33 b[0] = (ScalarType)(-2.0)*p.Offset()*p.Direction()[0]; b[1] = (ScalarType)(-2.0)*p.Offset()*p.Direction()[1]; b[2] = (ScalarType)(-2.0)*p.Offset()*p.Direction()[2]; c = (ScalarType)p.Offset()*p.Offset(); } /* * Initializes the quadric as the squared distance from a given line. * Note that this code also works for a vcg::Ray, even though the (squared) distance * from a ray is different "before" its origin. */ template< class LineType > void ByLine( const LineType & r ) // Init dato un raggio { ScalarType K = (ScalarType)(r.Origin()*r.Direction()); a[0] = (ScalarType)1.0-r.Direction()[0]*r.Direction()[0]; // a11 a[1] = (ScalarType)-r.Direction()[0]*r.Direction()[1]; // a12 (=a21) a[2] = (ScalarType)-r.Direction()[0]*r.Direction()[2]; // a13 (=a31) a[3] = (ScalarType)1.0-r.Direction()[1]*r.Direction()[1]; // a22 a[4] = (ScalarType)-r.Direction()[1]*r.Direction()[2]; // a23 (=a32) a[5] = (ScalarType)1.0-r.Direction()[2]*r.Direction()[2]; // a33 b[0] = (ScalarType)2.0*(r.Direction()[0]*K - r.Origin()[0]); b[1] = (ScalarType)2.0*(r.Direction()[1]*K - r.Origin()[1]); b[2] = (ScalarType)2.0*(r.Direction()[2]*K - r.Origin()[2]); c = -K*K + (ScalarType)(r.Origin()*r.Origin()); } void SetZero() { a[0] = 0; a[1] = 0; a[2] = 0; a[3] = 0; a[4] = 0; a[5] = 0; b[0] = 0; b[1] = 0; b[2] = 0; c = 0; } void operator = ( const Quadric & q ) { assert( q.IsValid() ); a[0] = q.a[0]; a[1] = q.a[1]; a[2] = q.a[2]; a[3] = q.a[3]; a[4] = q.a[4]; a[5] = q.a[5]; b[0] = q.b[0]; b[1] = q.b[1]; b[2] = q.b[2]; c = q.c; } void operator += ( const Quadric & q ) { assert( IsValid() ); assert( q.IsValid() ); a[0] += q.a[0]; a[1] += q.a[1]; a[2] += q.a[2]; a[3] += q.a[3]; a[4] += q.a[4]; a[5] += q.a[5]; b[0] += q.b[0]; b[1] += q.b[1]; b[2] += q.b[2]; c += q.c; } void operator *= ( const ScalarType & w ) // Amplifica una quadirca { assert( IsValid() ); a[0] *= w; a[1] *= w; a[2] *= w; a[3] *= w; a[4] *= w; a[5] *= w; b[0] *= w; b[1] *= w; b[2] *= w; c *= w; } /* Evaluate a quadric over a point p. */ template ResultScalarType Apply( const Point3 & p ) const { assert( IsValid() ); return ResultScalarType ( p[0]*p[0]*a[0] + 2*p[0]*p[1]*a[1] + 2*p[0]*p[2]*a[2] + p[0]*b[0] + p[1]*p[1]*a[3] + 2*p[1]*p[2]*a[4] + p[1]*b[1] + p[2]*p[2]*a[5] + p[2]*b[2] + c); } static double &RelativeErrorThr() { static double _err = 0.000001; return _err; } // Find the point minimizing the quadric xAx + bx + c // by solving the first derivative 2 Ax + b = 0 // return true if the found solution fits the system. template bool Minimum(Point3 &x) { Eigen::Matrix3d A; Eigen::Vector3d be; A << a[0], a[1], a[2], a[1], a[3], a[4], a[2], a[4], a[5]; be << -b[0]/2, -b[1]/2, -b[2]/2; // Eigen::Vector3d xe = A.colPivHouseholderQr().solve(bv); // Eigen::Vector3d xe = A.partialPivLu().solve(bv); Eigen::Vector3d xe = A.fullPivLu().solve(be); double relative_error = (A*xe - be).norm() / be.norm(); if(relative_error> Quadric::RelativeErrorThr() ) return false; x.FromEigenVector(xe); return true; } // spostare..risolve un sistema 3x3 template bool Gauss33( FLTYPE x[], FLTYPE C[3][3+1] ) { const FLTYPE keps = (FLTYPE)1e-3; int i,j,k; FLTYPE eps; // Determina valore cond. eps = math::Abs(C[0][0]); for(i=1;i<3;++i) { FLTYPE t = math::Abs(C[i][i]); if( eps vma) { vma = t; ma = k; } } if (vma=0; i--) // Sostituzione { FLTYPE t; for (t = 0.0, j = i + 1; j < 3; j++) t += C[i][j] * x[j]; x[i] = (C[i][3] - t) / C[i][i]; } return true; } template bool MinimumOld(Point3 &x) { ReturnScalarType C[3][4]; C[0][0]=a[0]; C[0][1]=a[1]; C[0][2]=a[2]; C[1][0]=a[1]; C[1][1]=a[3]; C[1][2]=a[4]; C[2][0]=a[2]; C[2][1]=a[4]; C[2][2]=a[5]; C[0][3]=-b[0]/2; C[1][3]=-b[1]/2; C[2][3]=-b[2]/2; return Gauss33(&(x[0]),C); } // determina il punto di errore minimo vincolato nel segmento (a,b) bool Minimum(Point3 &x,Point3 &pa,Point3 &pb){ ScalarType t1,t2, t4, t5, t8, t9, t11,t12,t14,t15,t17,t18,t25,t26,t30,t34,t35, t41,t42,t44,t45,t50,t52,t54, t56,t21,t23,t37,t64,lambda; t1 = a[4]*pb.z(); t2 = t1*pa.y(); t4 = a[1]*pb.y(); t5 = t4*pa.x(); t8 = a[1]*pa.y(); t9 = t8*pa.x(); t11 = a[4]*pa.z(); t12 = t11*pa.y(); t14 = pa.z()*pa.z(); t15 = a[5]*t14; t17 = a[2]*pa.z(); t18 = t17*pa.x(); t21 = 2.0*t11*pb.y(); t23 = a[5]*pb.z()*pa.z(); t25 = a[2]*pb.z(); t26 = t25*pa.x(); t30 = a[0]*pb.x()*pa.x(); t34 = 2.0*a[3]*pb.y()*pa.y(); t35 = t17*pb.x(); t37 = t8*pb.x(); t41 = pa.x()*pa.x(); t42 = a[0]*t41; t44 = pa.y()*pa.y(); t45 = a[3]*t44; t50 = 2.0*t30+t34+2.0*t35+2.0*t37-(-b[2]/2)*pa.z()-(-b[0]/2)*pa.x()-2.0*t42-2.0*t45+(-b[1]/2)*pb.y() +(-b[0]/2)*pb.x()-(-b[1]/2)*pa.y(); t52 = pb.y()*pb.y(); t54 = pb.z()*pb.z(); t56 = pb.x()*pb.x(); t64 = t5+t37-t9+t30-t18+t35+t26-t25*pb.x()+t2-t1*pb.y()+t23; lambda = (2.0*t2+2.0*t5+(-b[2]/2)*pb.z()-4.0*t9-4.0*t12-2.0*t15-4.0*t18+t21+2.0*t23+ 2.0*t26+t50)/(-t45-a[3]*t52-a[5]*t54-a[0]*t56-t15-t42+t34-2.0*t12+t21-2.0*t4*pb.x()+ 2.0*t64)/2.0; if(lambda<0) lambda=0; else if(lambda>1) lambda = 1; x = pa*(1.0-lambda)+pb*lambda; return true; } }; typedef Quadric Quadrics; typedef Quadric Quadrici; typedef Quadric Quadricf; typedef Quadric Quadricd; } // end namespace math } // end namespace vcg #endif